1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
base / task / sequence_manager / sequence_manager_impl.h [blame]
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_TASK_SEQUENCE_MANAGER_SEQUENCE_MANAGER_IMPL_H_
#define BASE_TASK_SEQUENCE_MANAGER_SEQUENCE_MANAGER_IMPL_H_
#include <atomic>
#include <deque>
#include <map>
#include <memory>
#include <optional>
#include <set>
#include <string>
#include <utility>
#include "base/atomic_sequence_num.h"
#include "base/base_export.h"
#include "base/callback_list.h"
#include "base/compiler_specific.h"
#include "base/containers/circular_deque.h"
#include "base/debug/crash_logging.h"
#include "base/feature_list.h"
#include "base/functional/callback_forward.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/raw_ptr_exclusion.h"
#include "base/memory/scoped_refptr.h"
#include "base/memory/weak_ptr.h"
#include "base/message_loop/message_pump_type.h"
#include "base/observer_list.h"
#include "base/pending_task.h"
#include "base/rand_util.h"
#include "base/run_loop.h"
#include "base/synchronization/lock.h"
#include "base/task/current_thread.h"
#include "base/task/sequence_manager/associated_thread_id.h"
#include "base/task/sequence_manager/enqueue_order.h"
#include "base/task/sequence_manager/enqueue_order_generator.h"
#include "base/task/sequence_manager/sequence_manager.h"
#include "base/task/sequence_manager/task_queue.h"
#include "base/task/sequence_manager/task_queue_impl.h"
#include "base/task/sequence_manager/task_queue_selector.h"
#include "base/task/sequence_manager/thread_controller.h"
#include "base/task/sequence_manager/work_tracker.h"
#include "base/task/sequenced_task_runner.h"
#include "base/task/single_thread_task_runner.h"
#include "base/threading/thread_checker.h"
#include "base/time/default_tick_clock.h"
#include "base/types/pass_key.h"
#include "base/values.h"
#include "build/build_config.h"
namespace base {
namespace internal {
class SequenceManagerThreadDelegate;
}
namespace trace_event {
class ConvertableToTraceFormat;
} // namespace trace_event
namespace sequence_manager {
class SequenceManagerForTest;
class TaskQueue;
class TaskTimeObserver;
class TimeDomain;
namespace internal {
class TaskQueueImpl;
class DefaultWakeUpQueue;
class SequenceManagerImpl;
class ThreadControllerImpl;
// A private factory method for SequenceManagerThreadDelegate which is
// equivalent to sequence_manager::CreateUnboundSequenceManager() but returns
// the underlying impl.
std::unique_ptr<SequenceManagerImpl> CreateUnboundSequenceManagerImpl(
PassKey<base::internal::SequenceManagerThreadDelegate>,
SequenceManager::Settings settings);
// The task queue manager provides N task queues and a selector interface for
// choosing which task queue to service next. Each task queue consists of two
// sub queues:
//
// 1. Incoming task queue. Tasks that are posted get immediately appended here.
// When a task is appended into an empty incoming queue, the task manager
// work function (DoWork()) is scheduled to run on the main task runner.
//
// 2. Work queue. If a work queue is empty when DoWork() is entered, tasks from
// the incoming task queue (if any) are moved here. The work queues are
// registered with the selector as input to the scheduling decision.
//
class BASE_EXPORT SequenceManagerImpl
: public SequenceManager,
public internal::SequencedTaskSource,
public internal::TaskQueueSelector::Observer,
public RunLoop::NestingObserver {
public:
using Observer = SequenceManager::Observer;
SequenceManagerImpl(const SequenceManagerImpl&) = delete;
SequenceManagerImpl& operator=(const SequenceManagerImpl&) = delete;
~SequenceManagerImpl() override;
// Initializes features for this class. See `base::features::Init()`.
static void InitializeFeatures();
// SequenceManager implementation:
void BindToCurrentThread() override;
scoped_refptr<SequencedTaskRunner> GetTaskRunnerForCurrentTask() override;
void BindToMessagePump(std::unique_ptr<MessagePump> message_pump) override;
void SetObserver(Observer* observer) override;
void AddTaskTimeObserver(TaskTimeObserver* task_time_observer) override;
void RemoveTaskTimeObserver(TaskTimeObserver* task_time_observer) override;
void SetTimeDomain(TimeDomain* time_domain) override;
void ResetTimeDomain() override;
const TickClock* GetTickClock() const override;
TimeTicks NowTicks() const override;
void SetDefaultTaskRunner(
scoped_refptr<SingleThreadTaskRunner> task_runner) override;
void ReclaimMemory() override;
bool GetAndClearSystemIsQuiescentBit() override;
void SetWorkBatchSize(int work_batch_size) override;
void EnableCrashKeys(const char* async_stack_crash_key) override;
size_t GetPendingTaskCountForTesting() const override;
TaskQueue::Handle CreateTaskQueue(const TaskQueue::Spec& spec) override;
std::string DescribeAllPendingTasks() const override;
void PrioritizeYieldingToNative(base::TimeTicks prioritize_until) override;
void AddTaskObserver(TaskObserver* task_observer) override;
void RemoveTaskObserver(TaskObserver* task_observer) override;
std::optional<WakeUp> GetNextDelayedWakeUp() const override;
TaskQueue::QueuePriority GetPriorityCount() const override;
// SequencedTaskSource implementation:
void SetRunTaskSynchronouslyAllowed(
bool can_run_tasks_synchronously) override;
std::optional<SelectedTask> SelectNextTask(
LazyNow& lazy_now,
SelectTaskOption option = SelectTaskOption::kDefault) override;
void DidRunTask(LazyNow& lazy_now) override;
std::optional<WakeUp> GetPendingWakeUp(
LazyNow* lazy_now,
SelectTaskOption option = SelectTaskOption::kDefault) override;
bool HasPendingHighResolutionTasks() override;
void OnBeginWork() override;
bool OnIdle() override;
void MaybeEmitTaskDetails(
perfetto::EventContext& ctx,
const SequencedTaskSource::SelectedTask& selected_task) const override;
void AddDestructionObserver(
CurrentThread::DestructionObserver* destruction_observer);
void RemoveDestructionObserver(
CurrentThread::DestructionObserver* destruction_observer);
[[nodiscard]] CallbackListSubscription RegisterOnNextIdleCallback(
OnceClosure on_next_idle_callback);
// Sets / returns the default TaskRunner. Thread-safe.
void SetTaskRunner(scoped_refptr<SingleThreadTaskRunner> task_runner);
scoped_refptr<SingleThreadTaskRunner> GetTaskRunner();
bool IsBoundToCurrentThread() const;
MessagePump* GetMessagePump() const;
bool IsType(MessagePumpType type) const;
void SetAddQueueTimeToTasks(bool enable);
void SetTaskExecutionAllowedInNativeNestedLoop(bool allowed);
bool IsTaskExecutionAllowedInNativeNestedLoop() const;
#if BUILDFLAG(IS_IOS)
void AttachToMessagePump();
#endif
bool IsIdleForTesting() override;
void EnableMessagePumpTimeKeeperMetrics(
const char* thread_name,
bool wall_time_based_metrics_enabled_for_testing = false);
// Requests that a task to process work is scheduled.
void ScheduleWork();
// Returns the currently executing TaskQueue if any. Must be called on the
// thread this class was created on.
internal::TaskQueueImpl* currently_executing_task_queue() const;
// Unregisters a TaskQueue previously created by |NewTaskQueue()|.
// No tasks will run on this queue after this call.
void UnregisterTaskQueueImpl(
std::unique_ptr<internal::TaskQueueImpl> task_queue);
scoped_refptr<AssociatedThreadId> associated_thread() const {
return associated_thread_;
}
const Settings& settings() const LIFETIME_BOUND { return settings_; }
WeakPtr<SequenceManagerImpl> GetWeakPtr();
// How frequently to perform housekeeping tasks (sweeping canceled tasks etc).
static constexpr TimeDelta kReclaimMemoryInterval = Seconds(30);
protected:
static std::unique_ptr<ThreadControllerImpl>
CreateThreadControllerImplForCurrentThread(const TickClock* clock);
// Create a task queue manager where |controller| controls the thread
// on which the tasks are eventually run.
SequenceManagerImpl(std::unique_ptr<internal::ThreadController> controller,
SequenceManager::Settings settings = Settings());
friend class internal::TaskQueueImpl;
friend class internal::DefaultWakeUpQueue;
friend class ::base::sequence_manager::SequenceManagerForTest;
private:
// Returns the SequenceManager running the
// current thread. It must only be used on the thread it was obtained.
// Only to be used by CurrentThread for the moment
static SequenceManagerImpl* GetCurrent();
friend class ::base::CurrentThread;
// Factory friends to call into private creation methods.
friend std::unique_ptr<SequenceManager>
sequence_manager::CreateSequenceManagerOnCurrentThread(
SequenceManager::Settings);
friend std::unique_ptr<SequenceManager>
sequence_manager::CreateSequenceManagerOnCurrentThreadWithPump(
std::unique_ptr<MessagePump> message_pump,
SequenceManager::Settings);
friend std::unique_ptr<SequenceManager>
sequence_manager::CreateUnboundSequenceManager(SequenceManager::Settings);
friend std::unique_ptr<SequenceManagerImpl>
sequence_manager::internal::CreateUnboundSequenceManagerImpl(
PassKey<base::internal::SequenceManagerThreadDelegate>,
SequenceManager::Settings);
// Assume direct control over current thread and create a SequenceManager.
// This function should be called only once per thread.
// This function assumes that a task execution environment is already
// initialized for the current thread.
static std::unique_ptr<SequenceManagerImpl> CreateOnCurrentThread(
SequenceManager::Settings settings);
// Create an unbound SequenceManager (typically for a future thread). The
// SequenceManager can be initialized on the current thread and then needs to
// be bound and initialized on the target thread by calling one of the Bind*()
// methods.
static std::unique_ptr<SequenceManagerImpl> CreateUnbound(
SequenceManager::Settings settings);
enum class ProcessTaskResult {
kDeferred,
kExecuted,
kSequenceManagerDeleted,
};
// SequenceManager maintains a queue of non-nestable tasks since they're
// uncommon and allocating an extra deque per TaskQueue will waste the memory.
using NonNestableTaskDeque =
circular_deque<internal::TaskQueueImpl::DeferredNonNestableTask>;
// We have to track rentrancy because we support nested runloops but the
// selector interface is unaware of those. This struct keeps track off all
// task related state needed to make pairs of SelectNextTask() / DidRunTask()
// work.
struct ExecutingTask {
ExecutingTask(Task&& task,
internal::TaskQueueImpl* task_queue,
TaskQueue::TaskTiming task_timing)
: pending_task(std::move(task)),
task_queue(task_queue),
task_queue_name(task_queue->GetProtoName()),
task_timing(task_timing),
priority(task_queue->GetQueuePriority()),
task_type(pending_task.task_type) {}
Task pending_task;
// `task_queue` is not a raw_ptr<...> for performance reasons (based on
// analysis of sampling profiler data and tab_search:top100:2020).
RAW_PTR_EXCLUSION internal::TaskQueueImpl* task_queue = nullptr;
// Save task_queue_name as the task queue can be deleted within the task.
QueueName task_queue_name;
TaskQueue::TaskTiming task_timing;
// Save priority as it might change after running a task.
TaskQueue::QueuePriority priority;
// Save task metadata to use in after running a task as |pending_task|
// won't be available then.
int task_type;
};
struct MainThreadOnly {
explicit MainThreadOnly(
SequenceManagerImpl* sequence_manager,
const scoped_refptr<AssociatedThreadId>& associated_thread,
const SequenceManager::Settings& settings,
const base::TickClock* clock);
~MainThreadOnly();
int nesting_depth = 0;
NonNestableTaskDeque non_nestable_task_queue;
// TODO(altimin): Switch to instruction pointer crash key when it's
// available.
raw_ptr<debug::CrashKeyString> file_name_crash_key = nullptr;
raw_ptr<debug::CrashKeyString> function_name_crash_key = nullptr;
raw_ptr<debug::CrashKeyString> async_stack_crash_key = nullptr;
std::array<char, static_cast<size_t>(debug::CrashKeySize::Size64)>
async_stack_buffer = {};
internal::TaskQueueSelector selector;
// RAW_PTR_EXCLUSION: Performance reasons(based on analysis of
// speedometer3).
ObserverList<TaskObserver>::UncheckedAndRawPtrExcluded task_observers;
ObserverList<TaskTimeObserver> task_time_observers;
const raw_ptr<const base::TickClock> default_clock;
raw_ptr<TimeDomain> time_domain = nullptr;
std::unique_ptr<WakeUpQueue> wake_up_queue;
std::unique_ptr<WakeUpQueue> non_waking_wake_up_queue;
// If true MaybeReclaimMemory will attempt to reclaim memory.
bool memory_reclaim_scheduled = false;
// Used to ensure we don't perform expensive housekeeping too frequently.
TimeTicks next_time_to_reclaim_memory;
// List of task queues managed by this SequenceManager.
// - active_queues contains queues that are still running tasks, which are
// are owned by relevant TaskQueues.
// - queues_to_delete contains soon-to-be-deleted queues, because some
// internal scheduling code does not expect queues to be pulled
// from underneath.
// RAW_PTR_EXCLUSION: Performance reasons (based on analysis of
// speedometer3).
RAW_PTR_EXCLUSION std::set<internal::TaskQueueImpl*> active_queues;
std::map<internal::TaskQueueImpl*, std::unique_ptr<internal::TaskQueueImpl>>
queues_to_delete;
bool task_was_run_on_quiescence_monitored_queue = false;
bool nesting_observer_registered_ = false;
// Use std::deque() so that references returned by SelectNextTask() remain
// valid until the matching call to DidRunTask(), even when nested RunLoops
// cause tasks to be pushed on the stack in-between. This is needed because
// references are kept in local variables by calling code between
// SelectNextTask()/DidRunTask().
std::deque<ExecutingTask> task_execution_stack;
raw_ptr<Observer> observer = nullptr; // NOT OWNED
ObserverList<CurrentThread::DestructionObserver>::
UncheckedAndDanglingUntriaged destruction_observers;
// Notified the next time `OnIdle()` completes without scheduling additional
// work.
OnceClosureList on_next_idle_callbacks;
};
void CompleteInitializationOnBoundThread();
// TaskQueueSelector::Observer:
void OnTaskQueueEnabled(internal::TaskQueueImpl* queue) override;
void OnWorkAvailable() override;
// RunLoop::NestingObserver:
void OnBeginNestedRunLoop() override;
void OnExitNestedRunLoop() override;
// Schedules next wake-up at the given time, canceling any previous requests.
// Use std::nullopt to cancel a wake-up. Must be called on the thread this
// class was created on.
void SetNextWakeUp(LazyNow* lazy_now, std::optional<WakeUp> wake_up);
// Called before TaskQueue requests to reload its empty immediate work queue.
void WillRequestReloadImmediateWorkQueue();
// Returns a valid `SyncWorkAuthorization` if a call to `RunOrPostTask` on a
// `SequencedTaskRunner` bound to this `SequenceManager` may run its task
// synchronously.
SyncWorkAuthorization TryAcquireSyncWorkAuthorization();
// Called when a task is about to be queued. May add metadata to the task and
// emit trace events.
void WillQueueTask(Task* pending_task);
// Enqueues onto delayed WorkQueues all delayed tasks which must run now
// (cannot be postponed) and possibly some delayed tasks which can run now but
// could be postponed (due to how tasks are stored, it is not possible to
// retrieve all such tasks efficiently) and reloads any empty work queues.
void MoveReadyDelayedTasksToWorkQueues(LazyNow* lazy_now);
void NotifyWillProcessTask(ExecutingTask* task, LazyNow* time_before_task);
void NotifyDidProcessTask(ExecutingTask* task, LazyNow* time_after_task);
EnqueueOrder GetNextSequenceNumber();
bool GetAddQueueTimeToTasks();
std::unique_ptr<trace_event::ConvertableToTraceFormat>
AsValueWithSelectorResultForTracing(internal::WorkQueue* selected_work_queue,
bool force_verbose) const;
Value::Dict AsValueWithSelectorResult(
internal::WorkQueue* selected_work_queue,
bool force_verbose) const;
// Used in construction of TaskQueueImpl to obtain an AtomicFlag which it can
// use to request reload by ReloadEmptyWorkQueues. The lifetime of
// TaskQueueImpl is managed by this class and the handle will be released by
// TaskQueueImpl::UnregisterTaskQueue which is always called before the
// queue's destruction.
AtomicFlagSet::AtomicFlag GetFlagToRequestReloadForEmptyQueue(
TaskQueueImpl* task_queue);
// Calls |TakeImmediateIncomingQueueTasks| on all queues with their reload
// flag set in |empty_queues_to_reload_|.
void ReloadEmptyWorkQueues();
std::unique_ptr<internal::TaskQueueImpl> CreateTaskQueueImpl(
const TaskQueue::Spec& spec);
// Periodically reclaims memory by sweeping away canceled tasks and shrinking
// buffers.
void MaybeReclaimMemory();
// Deletes queues marked for deletion and empty queues marked for shutdown.
void CleanUpQueues();
// Removes canceled delayed tasks from the front of wake up queue.
void RemoveAllCanceledDelayedTasksFromFront(LazyNow* lazy_now);
TaskQueue::TaskTiming::TimeRecordingPolicy ShouldRecordTaskTiming(
const internal::TaskQueueImpl* task_queue);
// Write the async stack trace onto a crash key as whitespace-delimited hex
// addresses.
void RecordCrashKeys(const PendingTask&);
// Helper to terminate all scoped trace events to allow starting new ones
// in SelectNextTask().
std::optional<SelectedTask> SelectNextTaskImpl(LazyNow& lazy_now,
SelectTaskOption option);
// Returns a wake-up for the next delayed task which is not ripe for
// execution, or nullopt if `option` is `kSkipDelayedTask` or there
// are no such tasks (immediate tasks don't count).
std::optional<WakeUp> GetNextDelayedWakeUpWithOption(
SelectTaskOption option) const;
// Given a `wake_up` describing when the next delayed task should run, returns
// a wake up that should be scheduled on the thread. `is_immediate()` if the
// wake up should run immediately. `nullopt` if no wake up is required because
// `wake_up` is `nullopt` or a `time_domain` is used.
std::optional<WakeUp> AdjustWakeUp(std::optional<WakeUp> wake_up,
LazyNow* lazy_now) const;
void MaybeAddLeewayToTask(Task& task) const;
#if DCHECK_IS_ON()
void LogTaskDebugInfo(const internal::WorkQueue* work_queue) const;
#endif
// Determines if wall time or thread time should be recorded for the next
// task.
TaskQueue::TaskTiming InitializeTaskTiming(
internal::TaskQueueImpl* task_queue);
const scoped_refptr<AssociatedThreadId> associated_thread_;
EnqueueOrderGenerator enqueue_order_generator_;
const std::unique_ptr<internal::ThreadController> controller_;
const Settings settings_;
WorkTracker work_tracker_;
// Whether to add the queue time to tasks.
std::atomic<bool> add_queue_time_to_tasks_;
AtomicFlagSet empty_queues_to_reload_;
MainThreadOnly main_thread_only_;
MainThreadOnly& main_thread_only() {
DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
return main_thread_only_;
}
const MainThreadOnly& main_thread_only() const LIFETIME_BOUND {
DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
return main_thread_only_;
}
// |clock_| either refers to the TickClock representation of |time_domain|
// (same object) if any, or to |default_clock| otherwise. It is maintained as
// an atomic pointer here for multi-threaded usage.
std::atomic<const base::TickClock*> clock_;
const base::TickClock* main_thread_clock() const {
DCHECK_CALLED_ON_VALID_THREAD(associated_thread_->thread_checker);
return clock_.load(std::memory_order_relaxed);
}
const base::TickClock* any_thread_clock() const {
// |memory_order_acquire| matched by |memory_order_release| in
// SetTimeDomain() to ensure all data used by |clock_| is visible when read
// from the current thread. A thread might try to access a stale |clock_|
// but that's not an issue since |time_domain| contractually outlives
// SequenceManagerImpl even if it's reset.
return clock_.load(std::memory_order_acquire);
}
WeakPtrFactory<SequenceManagerImpl> weak_factory_{this};
};
} // namespace internal
} // namespace sequence_manager
} // namespace base
#endif // BASE_TASK_SEQUENCE_MANAGER_SEQUENCE_MANAGER_IMPL_H_