1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
base / task / sequence_manager / task_queue.h [blame]
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_TASK_SEQUENCE_MANAGER_TASK_QUEUE_H_
#define BASE_TASK_SEQUENCE_MANAGER_TASK_QUEUE_H_
#include <cstdint>
#include <memory>
#include <optional>
#include <type_traits>
#include "base/base_export.h"
#include "base/check.h"
#include "base/task/common/checked_lock.h"
#include "base/task/common/lazy_now.h"
#include "base/task/sequence_manager/tasks.h"
#include "base/task/single_thread_task_runner.h"
#include "base/task/task_observer.h"
#include "base/threading/platform_thread.h"
#include "base/time/time.h"
#include "base/trace_event/base_tracing.h"
#include "base/trace_event/base_tracing_forward.h"
namespace perfetto {
class EventContext;
}
namespace base {
class TaskObserver;
namespace sequence_manager {
using QueueName = ::perfetto::protos::pbzero::SequenceManagerTask::QueueName;
namespace internal {
class SequenceManagerImpl;
class TaskQueueImpl;
} // namespace internal
// A `TaskQueue` represents an ordered list of tasks sharing common properties,
// e.g. priority, throttling, etc. `TaskQueue`s are associated with a
// `SequenceManager` instance, which chooses the next task from its set of
// queues. `TaskQueue`s should typically be used on a single thread since most
// methods are not thread safe (enforeced via CHECKs), but cross-thread task
// posting is supported with thread-safe task runners.
//
// A `TaskQueue` is unregistered (stops accepting and running tasks) when either
// its associated `TaskQueue::Handle` or `SequenceManager` is destroyed. If the
// handle is destroyed while the `SequenceManager` is still alive, the
// `SequenceManager` takes ownership of the queue and schedules it for deletion
// after the current task finishes. Otherwise, if the handle outlives the
// sequence manager, the queue is destroyed when the handle is destroyed.
class BASE_EXPORT TaskQueue {
public:
// Interface that lets a task queue be throttled by changing the wake up time
// and optionally, by inserting fences. A wake up in this context is a
// notification at a given time that lets this TaskQueue know of newly ripe
// delayed tasks if it's enabled. By delaying the desired wake up time to a
// different allowed wake up time, the Throttler can hold off delayed tasks
// that would otherwise by allowed to run sooner.
class BASE_EXPORT Throttler {
public:
// Invoked when the TaskQueue's next allowed wake up time is reached and is
// enabled, even if blocked by a fence. That wake up is defined by the last
// value returned from GetNextAllowedWakeUp().
// This is always called on the thread this TaskQueue is associated with.
virtual void OnWakeUp(LazyNow* lazy_now) = 0;
// Invoked when the TaskQueue newly gets a pending immediate task and is
// enabled, even if blocked by a fence. Redundant calls are possible when
// the TaskQueue already had a pending immediate task.
// The implementation may use this to:
// - Restrict task execution by inserting/updating a fence.
// - Update the TaskQueue's next delayed wake up via UpdateWakeUp().
// This allows the Throttler to perform additional operations later from
// OnWakeUp().
// This is always called on the thread this TaskQueue is associated with.
virtual void OnHasImmediateTask() = 0;
// Invoked when the TaskQueue is enabled and wants to know when to schedule
// the next delayed wake-up (which happens at least every time this queue is
// about to cause the next wake up) provided |next_desired_wake_up|, the
// wake-up for the next pending delayed task in this queue (pending delayed
// tasks that are ripe may be ignored), or nullopt if there's no pending
// delayed task. |has_ready_task| indicates whether there are immediate
// tasks or ripe delayed tasks. The implementation should return the next
// allowed wake up, or nullopt if no future wake-up is necessary.
// This is always called on the thread this TaskQueue is associated with.
virtual std::optional<WakeUp> GetNextAllowedWakeUp(
LazyNow* lazy_now,
std::optional<WakeUp> next_desired_wake_up,
bool has_ready_task) = 0;
protected:
~Throttler() = default;
};
// Wrapper around a `TaskQueue`, exposed by `SequenceManager` when creating a
// task queue. The handle owns the underlying queue and exposes it through a
// unique_ptr-like interface, and it's responsible for managing the queue's
// lifetime, ensuring the queue is properly unregistered with the queue's
// `SequenceManager` when the handle is destroyed.
class BASE_EXPORT Handle {
public:
Handle();
Handle(Handle&&);
Handle& operator=(Handle&&);
~Handle();
void reset();
TaskQueue* get() const;
TaskQueue* operator->() const;
explicit operator bool() const { return !!task_queue_; }
private:
friend class internal::SequenceManagerImpl;
explicit Handle(std::unique_ptr<internal::TaskQueueImpl> task_queue);
std::unique_ptr<internal::TaskQueueImpl> task_queue_;
WeakPtr<internal::SequenceManagerImpl> sequence_manager_;
};
// Queues with higher priority (smaller number) are selected to run before
// queues of lower priority. Note that there is no starvation protection,
// i.e., a constant stream of high priority work can mean that tasks in lower
// priority queues won't get to run.
using QueuePriority = uint8_t;
// By default there is only a single priority. Sequences making use of
// priorities should parameterize the `SequenceManager` with the appropriate
// `SequenceManager::PrioritySettings`.
enum class DefaultQueuePriority : QueuePriority {
kNormalPriority = 0,
// Must be the last entry.
kQueuePriorityCount = 1,
};
// Options for constructing a TaskQueue.
struct Spec {
explicit Spec(QueueName name) : name(name) {}
Spec SetShouldMonitorQuiescence(bool should_monitor) {
should_monitor_quiescence = should_monitor;
return *this;
}
Spec SetShouldNotifyObservers(bool run_observers) {
should_notify_observers = run_observers;
return *this;
}
// Delayed fences require Now() to be sampled when posting immediate tasks
// which is not free.
Spec SetDelayedFencesAllowed(bool allow_delayed_fences) {
delayed_fence_allowed = allow_delayed_fences;
return *this;
}
Spec SetNonWaking(bool non_waking_in) {
non_waking = non_waking_in;
return *this;
}
QueueName name;
bool should_monitor_quiescence = false;
bool should_notify_observers = true;
bool delayed_fence_allowed = false;
bool non_waking = false;
};
// Information about task execution.
//
// Wall-time related methods (start_time, end_time, wall_duration) can be
// called only when |has_wall_time()| is true.
//
// start_* should be called after RecordTaskStart.
// end_* and *_duration should be called after RecordTaskEnd.
class BASE_EXPORT TaskTiming {
public:
enum class State { NotStarted, Running, Finished };
enum class TimeRecordingPolicy { DoRecord, DoNotRecord };
explicit TaskTiming(bool has_wall_time);
bool has_wall_time() const { return has_wall_time_; }
bool has_thread_time() const { return has_thread_time_; }
base::TimeTicks start_time() const {
DCHECK(has_wall_time());
return start_time_;
}
base::TimeTicks end_time() const {
DCHECK(has_wall_time());
return end_time_;
}
base::TimeDelta wall_duration() const {
DCHECK(has_wall_time());
return end_time_ - start_time_;
}
State state() const { return state_; }
void RecordTaskStart(LazyNow* now);
void RecordTaskEnd(LazyNow* now);
// Protected for tests.
protected:
State state_ = State::NotStarted;
bool has_wall_time_;
bool has_thread_time_;
base::TimeTicks start_time_;
base::TimeTicks end_time_;
};
// An interface that lets the owner vote on whether or not the associated
// TaskQueue should be enabled.
class BASE_EXPORT QueueEnabledVoter {
public:
~QueueEnabledVoter();
QueueEnabledVoter(const QueueEnabledVoter&) = delete;
const QueueEnabledVoter& operator=(const QueueEnabledVoter&) = delete;
// Votes to enable or disable the associated TaskQueue. The TaskQueue will
// only be enabled if all the voters agree it should be enabled, or if there
// are no voters. Voters don't keep the queue alive.
// NOTE this must be called on the thread the associated TaskQueue was
// created on.
void SetVoteToEnable(bool enabled);
bool IsVotingToEnable() const { return enabled_; }
private:
friend class internal::TaskQueueImpl;
explicit QueueEnabledVoter(WeakPtr<internal::TaskQueueImpl> task_queue);
WeakPtr<internal::TaskQueueImpl> task_queue_;
bool enabled_ = true;
};
TaskQueue(const TaskQueue&) = delete;
TaskQueue& operator=(const TaskQueue&) = delete;
virtual ~TaskQueue() = default;
// Returns an interface that allows the caller to vote on whether or not this
// TaskQueue is enabled. The TaskQueue will be enabled if there are no voters
// or if all agree it should be enabled.
// NOTE this must be called on the thread this TaskQueue was created by.
virtual std::unique_ptr<QueueEnabledVoter> CreateQueueEnabledVoter() = 0;
// NOTE this must be called on the thread this TaskQueue was created by.
virtual bool IsQueueEnabled() const = 0;
// Returns true if the queue is completely empty.
virtual bool IsEmpty() const = 0;
// Returns the number of pending tasks in the queue.
virtual size_t GetNumberOfPendingTasks() const = 0;
// Returns true iff this queue has immediate tasks or delayed tasks that are
// ripe for execution. Ignores the queue's enabled state and fences.
// NOTE: this must be called on the thread this TaskQueue was created by.
// TODO(etiennep): Rename to HasReadyTask() and add LazyNow parameter.
virtual bool HasTaskToRunImmediatelyOrReadyDelayedTask() const = 0;
// Returns a wake-up for the next pending delayed task (pending delayed tasks
// that are ripe may be ignored), ignoring Throttler is any. If there are no
// such tasks (immediate tasks don't count) or the queue is disabled it
// returns nullopt.
// NOTE: this must be called on the thread this TaskQueue was created by.
virtual std::optional<WakeUp> GetNextDesiredWakeUp() = 0;
// Can be called on any thread.
virtual const char* GetName() const = 0;
// Set the priority of the queue to |priority|. NOTE this must be called on
// the thread this TaskQueue was created by.
virtual void SetQueuePriority(QueuePriority priority) = 0;
// Same as above but with an enum value as the priority.
template <typename T, typename = typename std::enable_if_t<std::is_enum_v<T>>>
void SetQueuePriority(T priority) {
static_assert(std::is_same_v<std::underlying_type_t<T>, QueuePriority>,
"Enumerated priorites must have the same underlying type as "
"TaskQueue::QueuePriority");
SetQueuePriority(static_cast<QueuePriority>(priority));
}
// Returns the current queue priority.
virtual QueuePriority GetQueuePriority() const = 0;
// These functions can only be called on the same thread that the task queue
// manager executes its tasks on.
virtual void AddTaskObserver(TaskObserver* task_observer) = 0;
virtual void RemoveTaskObserver(TaskObserver* task_observer) = 0;
enum class InsertFencePosition {
kNow, // Tasks posted on the queue up till this point further may run.
// All further tasks are blocked.
kBeginningOfTime, // No tasks posted on this queue may run.
};
// Inserts a barrier into the task queue which prevents tasks with an enqueue
// order greater than the fence from running until either the fence has been
// removed or a subsequent fence has unblocked some tasks within the queue.
// Note: delayed tasks get their enqueue order set once their delay has
// expired, and non-delayed tasks get their enqueue order set when posted.
//
// Fences come in three flavours:
// - Regular (InsertFence(NOW)) - all tasks posted after this moment
// are blocked.
// - Fully blocking (InsertFence(kBeginningOfTime)) - all tasks including
// already posted are blocked.
// - Delayed (InsertFenceAt(timestamp)) - blocks all tasks posted after given
// point in time (must be in the future).
//
// Only one fence can be scheduled at a time. Inserting a new fence
// will automatically remove the previous one, regardless of fence type.
virtual void InsertFence(InsertFencePosition position) = 0;
// Delayed fences are only allowed for queues created with
// SetDelayedFencesAllowed(true) because this feature implies sampling Now()
// (which isn't free) for every PostTask, even those with zero delay.
virtual void InsertFenceAt(TimeTicks time) = 0;
// Removes any previously added fence and unblocks execution of any tasks
// blocked by it.
virtual void RemoveFence() = 0;
// Returns true if the queue has a fence but it isn't necessarily blocking
// execution of tasks (it may be the case if tasks enqueue order hasn't
// reached the number set for a fence).
virtual bool HasActiveFence() = 0;
// Returns true if the queue has a fence which is blocking execution of tasks.
virtual bool BlockedByFence() const = 0;
// Associates |throttler| to this queue. Only one throttler can be associated
// with this queue. |throttler| must outlive this TaskQueue, or remain valid
// until ResetThrottler().
virtual void SetThrottler(Throttler* throttler) = 0;
// Disassociates the current throttler from this queue, if any.
virtual void ResetThrottler() = 0;
// Updates the task queue's next wake up time in its time domain, taking into
// account the desired run time of queued tasks and policies enforced by the
// throttler if any.
virtual void UpdateWakeUp(LazyNow* lazy_now) = 0;
// Controls whether or not the queue will emit traces events when tasks are
// posted to it while disabled. This only applies for the current or next
// period during which the queue is disabled. When the queue is re-enabled
// this will revert back to the default value of false.
virtual void SetShouldReportPostedTasksWhenDisabled(bool should_report) = 0;
// Create a task runner for this TaskQueue which will annotate all
// posted tasks with the given task type.
// Must be called on the thread this task queue is associated with.
//
// NOTE: Task runners don't keep the TaskQueue alive, so task queues can be
// deleted with valid task runners. Posting a task in that case will fail.
virtual scoped_refptr<SingleThreadTaskRunner> CreateTaskRunner(
TaskType task_type) const = 0;
// Default task runner which doesn't annotate tasks with a task type.
virtual const scoped_refptr<SingleThreadTaskRunner>& task_runner() const = 0;
using OnTaskStartedHandler =
RepeatingCallback<void(const Task&, const TaskQueue::TaskTiming&)>;
using OnTaskCompletedHandler =
RepeatingCallback<void(const Task&, TaskQueue::TaskTiming*, LazyNow*)>;
using OnTaskPostedHandler = RepeatingCallback<void(const Task&)>;
using TaskExecutionTraceLogger =
RepeatingCallback<void(perfetto::EventContext&, const Task&)>;
// Sets a handler to subscribe for notifications about started and completed
// tasks.
virtual void SetOnTaskStartedHandler(OnTaskStartedHandler handler) = 0;
// |task_timing| may be passed in Running state and may not have the end time,
// so that the handler can run an additional task that is counted as a part of
// the main task.
// The handler can call TaskTiming::RecordTaskEnd, which is optional, to
// finalize the task, and use the resulting timing.
virtual void SetOnTaskCompletedHandler(OnTaskCompletedHandler handler) = 0;
// RAII handle associated with an OnTaskPostedHandler. Unregisters the handler
// upon destruction.
class OnTaskPostedCallbackHandle {
public:
OnTaskPostedCallbackHandle(const OnTaskPostedCallbackHandle&) = delete;
OnTaskPostedCallbackHandle& operator=(const OnTaskPostedCallbackHandle&) =
delete;
virtual ~OnTaskPostedCallbackHandle() = default;
protected:
OnTaskPostedCallbackHandle() = default;
};
// Add a callback for adding custom functionality for processing posted task.
// Callback will be dispatched while holding a scheduler lock. As a result,
// callback should not call scheduler APIs directly, as this can lead to
// deadlocks. For example, PostTask should not be called directly and
// ScopedDeferTaskPosting::PostOrDefer should be used instead. `handler` must
// not be a null callback. Must be called on the thread this task queue is
// associated with, and the handle returned must be destroyed on the same
// thread.
[[nodiscard]] virtual std::unique_ptr<OnTaskPostedCallbackHandle>
AddOnTaskPostedHandler(OnTaskPostedHandler handler) = 0;
// Set a callback to fill trace event arguments associated with the task
// execution.
virtual void SetTaskExecutionTraceLogger(TaskExecutionTraceLogger logger) = 0;
protected:
TaskQueue() = default;
};
} // namespace sequence_manager
} // namespace base
#endif // BASE_TASK_SEQUENCE_MANAGER_TASK_QUEUE_H_