1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
base / task / sequence_manager / task_queue_selector.h [blame]
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_TASK_SEQUENCE_MANAGER_TASK_QUEUE_SELECTOR_H_
#define BASE_TASK_SEQUENCE_MANAGER_TASK_QUEUE_SELECTOR_H_
#include <stddef.h>
#include <atomic>
#include <optional>
#include <vector>
#include "base/base_export.h"
#include "base/dcheck_is_on.h"
#include "base/memory/raw_ptr.h"
#include "base/pending_task.h"
#include "base/task/sequence_manager/sequence_manager.h"
#include "base/task/sequence_manager/sequenced_task_source.h"
#include "base/task/sequence_manager/task_order.h"
#include "base/task/sequence_manager/work_queue_sets.h"
#include "base/values.h"
namespace base {
namespace sequence_manager {
namespace internal {
class AssociatedThreadId;
// TaskQueueSelector is used by the SchedulerHelper to enable prioritization
// of particular task queues.
class BASE_EXPORT TaskQueueSelector : public WorkQueueSets::Observer {
public:
using SelectTaskOption = SequencedTaskSource::SelectTaskOption;
TaskQueueSelector(scoped_refptr<const AssociatedThreadId> associated_thread,
const SequenceManager::Settings& settings);
TaskQueueSelector(const TaskQueueSelector&) = delete;
TaskQueueSelector& operator=(const TaskQueueSelector&) = delete;
~TaskQueueSelector() override;
// Called to register a queue that can be selected. This function is called
// on the main thread.
void AddQueue(internal::TaskQueueImpl* queue,
TaskQueue::QueuePriority priority);
// The specified work will no longer be considered for selection. This
// function is called on the main thread.
void RemoveQueue(internal::TaskQueueImpl* queue);
// Make |queue| eligible for selection. This function is called on the main
// thread. Must only be called if |queue| is disabled.
void EnableQueue(internal::TaskQueueImpl* queue);
// Disable selection from |queue|. Must only be called if |queue| is enabled.
void DisableQueue(internal::TaskQueueImpl* queue);
// Called get or set the priority of |queue|.
void SetQueuePriority(internal::TaskQueueImpl* queue,
TaskQueue::QueuePriority priority);
// Called to choose the work queue from which the next task should be taken
// and run. Return the queue to service if there is one or null otherwise.
// This function is called on the main thread.
WorkQueue* SelectWorkQueueToService(
SelectTaskOption option = SelectTaskOption::kDefault);
// Serialize the selector state for tracing/debugging.
Value::Dict AsValue() const;
class BASE_EXPORT Observer {
public:
virtual ~Observer() = default;
// Called when |queue| transitions from disabled to enabled.
virtual void OnTaskQueueEnabled(internal::TaskQueueImpl* queue) = 0;
// Called when work becomes available.
virtual void OnWorkAvailable() = 0;
};
// Called once to set the Observer. This function is called
// on the main thread. If |observer| is null, then no callbacks will occur.
void SetTaskQueueSelectorObserver(Observer* observer);
// Returns the priority of the most important pending task if one exists.
// O(1).
std::optional<TaskQueue::QueuePriority> GetHighestPendingPriority(
SelectTaskOption option = SelectTaskOption::kDefault) const;
// WorkQueueSets::Observer implementation:
void WorkQueueSetBecameEmpty(size_t set_index) override;
void WorkQueueSetBecameNonEmpty(size_t set_index) override;
// Populates |result| with tasks with lower priority than the first task from
// |selected_work_queue| which could otherwise run now.
void CollectSkippedOverLowerPriorityTasks(
const internal::WorkQueue* selected_work_queue,
std::vector<const Task*>* result) const;
protected:
WorkQueueSets* delayed_work_queue_sets() { return &delayed_work_queue_sets_; }
WorkQueueSets* immediate_work_queue_sets() {
return &immediate_work_queue_sets_;
}
// This method will force select an immediate task if those are being
// starved by delayed tasks.
void SetImmediateStarvationCountForTest(int immediate_starvation_count);
// Tracks which priorities are currently active, meaning there are pending
// runnable tasks with that priority. Because there are only a handful of
// priorities, and because we always run tasks in order from highest to lowest
// priority, we can use a single integer to represent enabled priorities,
// using a bit per priority.
class BASE_EXPORT ActivePriorityTracker {
public:
ActivePriorityTracker();
bool HasActivePriority() const { return active_priorities_ != 0; }
bool IsActive(TaskQueue::QueuePriority priority) const {
return active_priorities_ & (size_t{1} << static_cast<size_t>(priority));
}
void SetActive(TaskQueue::QueuePriority priority, bool is_active);
TaskQueue::QueuePriority HighestActivePriority() const;
private:
static_assert(SequenceManager::PrioritySettings::kMaxPriorities <
sizeof(size_t) * 8,
"The number of priorities must be strictly less than the "
"number of bits of |active_priorities_|!");
size_t active_priorities_ = 0;
};
/*
* SetOperation is used to configure ChooseWithPriority() and must have:
*
* static std::optional<WorkQueueAndTaskOrder>
* GetWithPriority(const WorkQueueSets& sets,
* TaskQueue::QueuePriority priority);
*/
// The default
struct SetOperationOldest {
static std::optional<WorkQueueAndTaskOrder> GetWithPriority(
const WorkQueueSets& sets,
TaskQueue::QueuePriority priority) {
return sets.GetOldestQueueAndTaskOrderInSet(priority);
}
};
#if DCHECK_IS_ON()
struct SetOperationRandom {
static std::optional<WorkQueueAndTaskOrder> GetWithPriority(
const WorkQueueSets& sets,
TaskQueue::QueuePriority priority) {
return sets.GetRandomQueueAndTaskOrderInSet(priority);
}
};
#endif // DCHECK_IS_ON()
template <typename SetOperation>
WorkQueue* ChooseWithPriority(TaskQueue::QueuePriority priority) const {
// Maximum number of delayed tasks tasks which can be run while there's a
// waiting non-delayed task.
static const int kMaxDelayedStarvationTasks = 3;
// Select an immediate work queue if we are starving immediate tasks.
if (immediate_starvation_count_ >= kMaxDelayedStarvationTasks) {
WorkQueue* queue =
ChooseImmediateOnlyWithPriority<SetOperation>(priority);
if (queue)
return queue;
return ChooseDelayedOnlyWithPriority<SetOperation>(priority);
}
return ChooseImmediateOrDelayedTaskWithPriority<SetOperation>(priority);
}
template <typename SetOperation>
WorkQueue* ChooseImmediateOnlyWithPriority(
TaskQueue::QueuePriority priority) const {
if (auto queue_and_order = SetOperation::GetWithPriority(
immediate_work_queue_sets_, priority)) {
return queue_and_order->queue;
}
return nullptr;
}
template <typename SetOperation>
WorkQueue* ChooseDelayedOnlyWithPriority(
TaskQueue::QueuePriority priority) const {
if (auto queue_and_order =
SetOperation::GetWithPriority(delayed_work_queue_sets_, priority)) {
return queue_and_order->queue;
}
return nullptr;
}
private:
size_t priority_count() const { return non_empty_set_counts_.size(); }
void ChangeSetIndex(internal::TaskQueueImpl* queue,
TaskQueue::QueuePriority priority);
void AddQueueImpl(internal::TaskQueueImpl* queue,
TaskQueue::QueuePriority priority);
void RemoveQueueImpl(internal::TaskQueueImpl* queue);
#if DCHECK_IS_ON() || !defined(NDEBUG)
bool CheckContainsQueueForTest(const internal::TaskQueueImpl* queue) const;
#endif
template <typename SetOperation>
WorkQueue* ChooseImmediateOrDelayedTaskWithPriority(
TaskQueue::QueuePriority priority) const {
if (auto immediate_queue_and_order = SetOperation::GetWithPriority(
immediate_work_queue_sets_, priority)) {
if (auto delayed_queue_and_order = SetOperation::GetWithPriority(
delayed_work_queue_sets_, priority)) {
return immediate_queue_and_order->order < delayed_queue_and_order->order
? immediate_queue_and_order->queue
: delayed_queue_and_order->queue;
}
return immediate_queue_and_order->queue;
}
return ChooseDelayedOnlyWithPriority<SetOperation>(priority);
}
// Returns true if there are pending tasks with priority |priority|.
bool HasTasksWithPriority(TaskQueue::QueuePriority priority) const;
const scoped_refptr<const AssociatedThreadId> associated_thread_;
#if DCHECK_IS_ON()
const bool random_task_selection_ = false;
#endif
// Count of the number of sets (delayed or immediate) for each priority.
// Should only contain 0, 1 or 2.
std::vector<int> non_empty_set_counts_;
static constexpr const int kMaxNonEmptySetCount = 2;
// An atomic is used here because InitializeFeatures() can race with
// SequenceManager reading this.
static std::atomic_int g_max_delayed_starvation_tasks;
// List of active priorities, which is used to work out which priority to run
// next.
ActivePriorityTracker active_priority_tracker_;
WorkQueueSets delayed_work_queue_sets_;
WorkQueueSets immediate_work_queue_sets_;
int immediate_starvation_count_ = 0;
raw_ptr<Observer> task_queue_selector_observer_ = nullptr; // Not owned.
};
} // namespace internal
} // namespace sequence_manager
} // namespace base
#endif // BASE_TASK_SEQUENCE_MANAGER_TASK_QUEUE_SELECTOR_H_