1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
base / task / sequence_manager / thread_controller_impl.cc [blame]
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/task/sequence_manager/thread_controller_impl.h"
#include <algorithm>
#include "base/functional/bind.h"
#include "base/memory/ptr_util.h"
#include "base/message_loop/message_pump.h"
#include "base/notreached.h"
#include "base/run_loop.h"
#include "base/task/common/lazy_now.h"
#include "base/task/sequence_manager/sequence_manager_impl.h"
#include "base/task/sequence_manager/sequenced_task_source.h"
#include "base/trace_event/base_tracing.h"
#include "build/build_config.h"
namespace base {
namespace sequence_manager {
namespace internal {
using ShouldScheduleWork = WorkDeduplicator::ShouldScheduleWork;
ThreadControllerImpl::ThreadControllerImpl(
SequenceManagerImpl* funneled_sequence_manager,
scoped_refptr<SingleThreadTaskRunner> task_runner,
const TickClock* time_source)
: ThreadController(time_source),
funneled_sequence_manager_(funneled_sequence_manager),
task_runner_(task_runner),
message_loop_task_runner_(funneled_sequence_manager
? funneled_sequence_manager->GetTaskRunner()
: nullptr),
work_deduplicator_(associated_thread_) {
if (task_runner_ || funneled_sequence_manager_)
work_deduplicator_.BindToCurrentThread();
immediate_do_work_closure_ =
BindRepeating(&ThreadControllerImpl::DoWork, weak_factory_.GetWeakPtr(),
WorkType::kImmediate);
delayed_do_work_closure_ =
BindRepeating(&ThreadControllerImpl::DoWork, weak_factory_.GetWeakPtr(),
WorkType::kDelayed);
// Unlike ThreadControllerWithMessagePumpImpl, ThreadControllerImpl isn't
// explicitly Run(). Rather, DoWork() will be invoked at some point in the
// future when the associated thread begins pumping messages.
LazyNow lazy_now(time_source_);
run_level_tracker_.OnRunLoopStarted(RunLevelTracker::kIdle, lazy_now);
}
ThreadControllerImpl::~ThreadControllerImpl() {
// Balances OnRunLoopStarted() in the constructor to satisfy the exit criteria
// of ~RunLevelTracker().
run_level_tracker_.OnRunLoopEnded();
}
ThreadControllerImpl::MainSequenceOnly::MainSequenceOnly() = default;
ThreadControllerImpl::MainSequenceOnly::~MainSequenceOnly() = default;
std::unique_ptr<ThreadControllerImpl> ThreadControllerImpl::Create(
SequenceManagerImpl* funneled_sequence_manager,
const TickClock* time_source) {
return WrapUnique(new ThreadControllerImpl(
funneled_sequence_manager,
funneled_sequence_manager ? funneled_sequence_manager->GetTaskRunner()
: nullptr,
time_source));
}
void ThreadControllerImpl::SetSequencedTaskSource(
SequencedTaskSource* sequence) {
DCHECK_CALLED_ON_VALID_SEQUENCE(associated_thread_->sequence_checker);
DCHECK(sequence);
DCHECK(!sequence_);
sequence_ = sequence;
}
void ThreadControllerImpl::ScheduleWork() {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
"ThreadControllerImpl::ScheduleWork::PostTask");
if (work_deduplicator_.OnWorkRequested() ==
ShouldScheduleWork::kScheduleImmediate) {
task_runner_->PostTask(FROM_HERE, immediate_do_work_closure_);
}
}
void ThreadControllerImpl::SetNextDelayedDoWork(LazyNow* lazy_now,
std::optional<WakeUp> wake_up) {
DCHECK_CALLED_ON_VALID_SEQUENCE(associated_thread_->sequence_checker);
DCHECK(sequence_);
DCHECK(!wake_up || !wake_up->is_immediate());
// Cancel DoWork if it was scheduled and we set an "infinite" delay now.
if (!wake_up) {
if (!main_sequence_only().next_delayed_do_work.is_max()) {
cancelable_delayed_do_work_closure_.Cancel();
main_sequence_only().next_delayed_do_work = TimeTicks::Max();
}
return;
}
if (work_deduplicator_.OnDelayedWorkRequested() ==
ShouldScheduleWork::kNotNeeded) {
return;
}
if (main_sequence_only().next_delayed_do_work == wake_up->time)
return;
base::TimeDelta delay =
std::max(TimeDelta(), wake_up->time - lazy_now->Now());
TRACE_EVENT1(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
"ThreadControllerImpl::SetNextDelayedDoWork::PostDelayedTask",
"delay_ms", delay.InMillisecondsF());
main_sequence_only().next_delayed_do_work = wake_up->time;
// Reset also causes cancellation of the previous DoWork task.
cancelable_delayed_do_work_closure_.Reset(delayed_do_work_closure_);
task_runner_->PostDelayedTask(
FROM_HERE, cancelable_delayed_do_work_closure_.callback(), delay);
}
bool ThreadControllerImpl::RunsTasksInCurrentSequence() {
return task_runner_->RunsTasksInCurrentSequence();
}
void ThreadControllerImpl::SetDefaultTaskRunner(
scoped_refptr<SingleThreadTaskRunner> task_runner) {
#if DCHECK_IS_ON()
default_task_runner_set_ = true;
#endif
if (!funneled_sequence_manager_)
return;
funneled_sequence_manager_->SetTaskRunner(task_runner);
}
scoped_refptr<SingleThreadTaskRunner>
ThreadControllerImpl::GetDefaultTaskRunner() {
return funneled_sequence_manager_->GetTaskRunner();
}
void ThreadControllerImpl::RestoreDefaultTaskRunner() {
if (!funneled_sequence_manager_)
return;
funneled_sequence_manager_->SetTaskRunner(message_loop_task_runner_);
}
void ThreadControllerImpl::BindToCurrentThread(
std::unique_ptr<MessagePump> message_pump) {
NOTREACHED();
}
void ThreadControllerImpl::WillQueueTask(PendingTask* pending_task) {
task_annotator_.WillQueueTask("SequenceManager PostTask", pending_task);
}
void ThreadControllerImpl::DoWork(WorkType work_type) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
"ThreadControllerImpl::DoWork");
DCHECK_CALLED_ON_VALID_SEQUENCE(associated_thread_->sequence_checker);
DCHECK(sequence_);
work_deduplicator_.OnWorkStarted();
std::optional<base::TimeTicks> recent_time;
WeakPtr<ThreadControllerImpl> weak_ptr = weak_factory_.GetWeakPtr();
for (int i = 0; i < main_sequence_only().work_batch_size_; i++) {
LazyNow lazy_now_select_task(recent_time, time_source_);
// Include SelectNextTask() in the scope of the work item. This ensures
// it's covered in tracing and hang reports. This is particularly
// important when SelectNextTask() finds no work immediately after a
// wakeup, otherwise the power-inefficient wakeup is invisible in
// tracing. OnApplicationTaskSelected() assumes this ordering as well.
DCHECK_GT(run_level_tracker_.num_run_levels(), 0U);
run_level_tracker_.OnWorkStarted(lazy_now_select_task);
int run_depth = static_cast<int>(run_level_tracker_.num_run_levels());
std::optional<SequencedTaskSource::SelectedTask> selected_task =
sequence_->SelectNextTask(lazy_now_select_task);
LazyNow lazy_now_task_selected(time_source_);
run_level_tracker_.OnApplicationTaskSelected(
(selected_task && selected_task->task.delayed_run_time.is_null())
? selected_task->task.queue_time
: TimeTicks(),
lazy_now_task_selected);
if (!selected_task) {
run_level_tracker_.OnWorkEnded(lazy_now_task_selected, run_depth);
break;
}
{
// Trace-parsing tools (DevTools, Lighthouse, etc) consume this event
// to determine long tasks.
// See https://crbug.com/681863 and https://crbug.com/874982
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("devtools.timeline"), "RunTask");
// Note: all arguments after task are just passed to a TRACE_EVENT for
// logging so lambda captures are safe as lambda is executed inline.
SequencedTaskSource* source = sequence_;
task_annotator_.RunTask(
"ThreadControllerImpl::RunTask", selected_task->task,
[&selected_task, &source](perfetto::EventContext& ctx) {
if (selected_task->task_execution_trace_logger)
selected_task->task_execution_trace_logger.Run(
ctx, selected_task->task);
source->MaybeEmitTaskDetails(ctx, *selected_task);
});
if (!weak_ptr)
return;
// This processes microtasks, hence all scoped operations above must end
// after it.
LazyNow lazy_now_after_run_task(time_source_);
sequence_->DidRunTask(lazy_now_after_run_task);
run_level_tracker_.OnWorkEnded(lazy_now_after_run_task, run_depth);
// If DidRunTask() read the clock (lazy_now_after_run_task.has_value()),
// store it in `recent_time` so it can be reused by SelectNextTask() at
// the next loop iteration.
if (lazy_now_after_run_task.has_value()) {
recent_time =
std::optional<base::TimeTicks>(lazy_now_after_run_task.Now());
} else {
recent_time.reset();
}
}
// NOTE: https://crbug.com/828835.
// When we're running inside a nested RunLoop it may quit anytime, so any
// outstanding pending tasks must run in the outer RunLoop
// (see SequenceManagerTestWithMessageLoop.QuitWhileNested test).
// Unfortunately, it's MessageLoop who's receiving that signal and we can't
// know it before we return from DoWork, hence, OnExitNestedRunLoop
// will be called later. Since we must implement ThreadController and
// SequenceManager in conformance with MessageLoop task runners, we need
// to disable this batching optimization while nested.
// Implementing MessagePump::Delegate ourselves will help to resolve this
// issue.
if (run_level_tracker_.num_run_levels() > 1)
break;
}
work_deduplicator_.WillCheckForMoreWork();
LazyNow lazy_now_after_work(time_source_);
std::optional<WakeUp> next_wake_up =
sequence_->GetPendingWakeUp(&lazy_now_after_work);
// The OnIdle() callback allows the TimeDomains to advance virtual time in
// which case we now have immediate work to do.
if ((next_wake_up && next_wake_up->is_immediate()) || sequence_->OnIdle()) {
// The next task needs to run immediately, post a continuation if
// another thread didn't get there first.
if (work_deduplicator_.DidCheckForMoreWork(
WorkDeduplicator::NextTask::kIsImmediate) ==
ShouldScheduleWork::kScheduleImmediate) {
task_runner_->PostTask(FROM_HERE, immediate_do_work_closure_);
}
return;
}
// It looks like we have a non-zero delay, however another thread may have
// posted an immediate task while we computed the delay.
if (work_deduplicator_.DidCheckForMoreWork(
WorkDeduplicator::NextTask::kIsDelayed) ==
ShouldScheduleWork::kScheduleImmediate) {
task_runner_->PostTask(FROM_HERE, immediate_do_work_closure_);
return;
}
// No more immediate work.
run_level_tracker_.OnIdle(lazy_now_after_work);
// Any future work?
if (!next_wake_up) {
main_sequence_only().next_delayed_do_work = TimeTicks::Max();
cancelable_delayed_do_work_closure_.Cancel();
return;
}
TimeTicks next_wake_up_time = next_wake_up->time;
// Already requested next delay?
if (next_wake_up_time == main_sequence_only().next_delayed_do_work)
return;
// Schedule a callback after |delay_till_next_task| and cancel any previous
// callback.
main_sequence_only().next_delayed_do_work = next_wake_up_time;
cancelable_delayed_do_work_closure_.Reset(delayed_do_work_closure_);
// TODO(crbug.com/40158967): Use PostDelayedTaskAt().
task_runner_->PostDelayedTask(FROM_HERE,
cancelable_delayed_do_work_closure_.callback(),
next_wake_up_time - lazy_now_after_work.Now());
}
void ThreadControllerImpl::AddNestingObserver(
RunLoop::NestingObserver* observer) {
DCHECK_CALLED_ON_VALID_SEQUENCE(associated_thread_->sequence_checker);
nesting_observer_ = observer;
RunLoop::AddNestingObserverOnCurrentThread(this);
}
void ThreadControllerImpl::RemoveNestingObserver(
RunLoop::NestingObserver* observer) {
DCHECK_CALLED_ON_VALID_SEQUENCE(associated_thread_->sequence_checker);
DCHECK_EQ(observer, nesting_observer_);
nesting_observer_ = nullptr;
RunLoop::RemoveNestingObserverOnCurrentThread(this);
}
void ThreadControllerImpl::OnBeginNestedRunLoop() {
LazyNow lazy_now(time_source_);
run_level_tracker_.OnRunLoopStarted(RunLevelTracker::kInBetweenWorkItems,
lazy_now);
// Just assume we have a pending task and post a DoWork to make sure we don't
// grind to a halt while nested.
work_deduplicator_.OnWorkRequested(); // Set the pending DoWork flag.
task_runner_->PostTask(FROM_HERE, immediate_do_work_closure_);
if (nesting_observer_)
nesting_observer_->OnBeginNestedRunLoop();
}
void ThreadControllerImpl::OnExitNestedRunLoop() {
if (nesting_observer_)
nesting_observer_->OnExitNestedRunLoop();
run_level_tracker_.OnRunLoopEnded();
}
void ThreadControllerImpl::SetWorkBatchSize(int work_batch_size) {
main_sequence_only().work_batch_size_ = work_batch_size;
}
void ThreadControllerImpl::SetTaskExecutionAllowedInNativeNestedLoop(
bool allowed) {
NOTREACHED();
}
bool ThreadControllerImpl::IsTaskExecutionAllowed() const {
return true;
}
bool ThreadControllerImpl::ShouldQuitRunLoopWhenIdle() {
// The MessageLoop does not expose the API needed to support this query.
return false;
}
MessagePump* ThreadControllerImpl::GetBoundMessagePump() const {
return nullptr;
}
#if BUILDFLAG(IS_IOS) || BUILDFLAG(IS_ANDROID)
void ThreadControllerImpl::AttachToMessagePump() {
NOTREACHED();
}
#endif // BUILDFLAG(IS_IOS) || BUILDFLAG(IS_ANDROID)
#if BUILDFLAG(IS_IOS)
void ThreadControllerImpl::DetachFromMessagePump() {
NOTREACHED();
}
#endif // BUILDFLAG(IS_IOS)
void ThreadControllerImpl::PrioritizeYieldingToNative(base::TimeTicks) {
NOTREACHED();
}
} // namespace internal
} // namespace sequence_manager
} // namespace base