1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756

base / task / sequence_manager / thread_controller_with_message_pump_impl.cc [blame]

// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/task/sequence_manager/thread_controller_with_message_pump_impl.h"

#include <algorithm>
#include <atomic>
#include <optional>
#include <utility>

#include "base/auto_reset.h"
#include "base/feature_list.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/memory/stack_allocated.h"
#include "base/message_loop/message_pump.h"
#include "base/metrics/histogram.h"
#include "base/metrics/histogram_macros.h"
#include "base/task/sequence_manager/tasks.h"
#include "base/task/task_features.h"
#include "base/threading/hang_watcher.h"
#include "base/time/tick_clock.h"
#include "base/time/time.h"
#include "base/trace_event/base_tracing.h"
#include "build/build_config.h"

#if BUILDFLAG(IS_IOS)
#include "base/message_loop/message_pump_apple.h"
#elif BUILDFLAG(IS_ANDROID)
#include "base/message_loop/message_pump_android.h"
#endif

namespace base {
namespace sequence_manager {
namespace internal {
namespace {

// Returns |next_run_time| capped at 1 day from |lazy_now|. This is used to
// mitigate https://crbug.com/850450 where some platforms are unhappy with
// delays > 100,000,000 seconds. In practice, a diagnosis metric showed that no
// sleep > 1 hour ever completes (always interrupted by an earlier MessageLoop
// event) and 99% of completed sleeps are the ones scheduled for <= 1 second.
// Details @ https://crrev.com/c/1142589.
TimeTicks CapAtOneDay(TimeTicks next_run_time, LazyNow* lazy_now) {
  return std::min(next_run_time, lazy_now->Now() + Days(1));
}

BASE_FEATURE(kAvoidScheduleWorkDuringNativeEventProcessing,
             "AvoidScheduleWorkDuringNativeEventProcessing",
             base::FEATURE_ENABLED_BY_DEFAULT);

std::atomic_bool g_run_tasks_by_batches = false;
std::atomic_bool g_avoid_schedule_calls_during_native_event_processing = false;

base::TimeDelta GetLeewayForWakeUp(std::optional<WakeUp> wake_up) {
  if (!wake_up || wake_up->delay_policy == subtle::DelayPolicy::kPrecise) {
    return TimeDelta();
  }
  return wake_up->leeway;
}

}  // namespace

// static
void ThreadControllerWithMessagePumpImpl::InitializeFeatures() {
  g_run_tasks_by_batches.store(FeatureList::IsEnabled(base::kRunTasksByBatches),
                               std::memory_order_relaxed);
  g_avoid_schedule_calls_during_native_event_processing.store(
      FeatureList::IsEnabled(kAvoidScheduleWorkDuringNativeEventProcessing),
      std::memory_order_relaxed);
}

// static
void ThreadControllerWithMessagePumpImpl::ResetFeatures() {
  g_run_tasks_by_batches.store(
      base::kRunTasksByBatches.default_state == FEATURE_ENABLED_BY_DEFAULT,
      std::memory_order_relaxed);
}

ThreadControllerWithMessagePumpImpl::ThreadControllerWithMessagePumpImpl(
    const SequenceManager::Settings& settings)
    : ThreadController(settings.clock),
      work_deduplicator_(associated_thread_),
      can_run_tasks_by_batches_(settings.can_run_tasks_by_batches) {}

ThreadControllerWithMessagePumpImpl::ThreadControllerWithMessagePumpImpl(
    std::unique_ptr<MessagePump> message_pump,
    const SequenceManager::Settings& settings)
    : ThreadControllerWithMessagePumpImpl(settings) {
  BindToCurrentThread(std::move(message_pump));
}

ThreadControllerWithMessagePumpImpl::~ThreadControllerWithMessagePumpImpl() {
  // Destructors of MessagePump::Delegate and
  // SingleThreadTaskRunner::CurrentDefaultHandle will do all the clean-up.
  // ScopedSetSequenceLocalStorageMapForCurrentThread destructor will
  // de-register the current thread as a sequence.

#if BUILDFLAG(IS_WIN)
  if (main_thread_only().in_high_res_mode) {
    main_thread_only().in_high_res_mode = false;
    Time::ActivateHighResolutionTimer(false);
  }
#endif
}

// static
std::unique_ptr<ThreadControllerWithMessagePumpImpl>
ThreadControllerWithMessagePumpImpl::CreateUnbound(
    const SequenceManager::Settings& settings) {
  return base::WrapUnique(new ThreadControllerWithMessagePumpImpl(settings));
}

ThreadControllerWithMessagePumpImpl::MainThreadOnly::MainThreadOnly() = default;

ThreadControllerWithMessagePumpImpl::MainThreadOnly::~MainThreadOnly() =
    default;

void ThreadControllerWithMessagePumpImpl::SetSequencedTaskSource(
    SequencedTaskSource* task_source) {
  DCHECK(task_source);
  DCHECK(!main_thread_only().task_source);
  main_thread_only().task_source = task_source;
}

void ThreadControllerWithMessagePumpImpl::BindToCurrentThread(
    std::unique_ptr<MessagePump> message_pump) {
  associated_thread_->BindToCurrentThread();
  pump_ = std::move(message_pump);
  work_id_provider_ = WorkIdProvider::GetForCurrentThread();
  RunLoop::RegisterDelegateForCurrentThread(this);
  scoped_set_sequence_local_storage_map_for_current_thread_ = std::make_unique<
      base::internal::ScopedSetSequenceLocalStorageMapForCurrentThread>(
      &sequence_local_storage_map_);
  {
    base::internal::CheckedAutoLock task_runner_lock(task_runner_lock_);
    if (task_runner_)
      InitializeSingleThreadTaskRunnerCurrentDefaultHandle();
  }
  if (work_deduplicator_.BindToCurrentThread() ==
      ShouldScheduleWork::kScheduleImmediate) {
    pump_->ScheduleWork();
  }
}

void ThreadControllerWithMessagePumpImpl::SetWorkBatchSize(
    int work_batch_size) {
  DCHECK_GE(work_batch_size, 1);
  CHECK(main_thread_only().can_change_batch_size);
  main_thread_only().work_batch_size = work_batch_size;
}

void ThreadControllerWithMessagePumpImpl::WillQueueTask(
    PendingTask* pending_task) {
  task_annotator_.WillQueueTask("SequenceManager PostTask", pending_task);
}

void ThreadControllerWithMessagePumpImpl::ScheduleWork() {
  base::internal::CheckedLock::AssertNoLockHeldOnCurrentThread();
  if (work_deduplicator_.OnWorkRequested() ==
      ShouldScheduleWork::kScheduleImmediate) {
    if (!associated_thread_->IsBoundToCurrentThread()) {
      run_level_tracker_.RecordScheduleWork();
    } else {
      TRACE_EVENT_INSTANT("wakeup.flow", "ScheduleWorkToSelf");
    }
    pump_->ScheduleWork();
  }
}
void ThreadControllerWithMessagePumpImpl::BeginNativeWorkBeforeDoWork() {
  do_work_needed_before_wait_ = true;

  if (!g_avoid_schedule_calls_during_native_event_processing.load(
          std::memory_order_relaxed)) {
    return;
  }

  // Native nested loops don't guarantee that `DoWork()` will be called after
  // executing native work. This is the invariant that is needed to avoid
  // calls to `ScheduleWork()`. Since these calls can't be skipped there is
  // nothing left to do in this function.
  if (task_execution_allowed_in_native_nested_loop_) {
    return;
  }

  // Reuse the deduplicator facility to indicate that there is no need for
  // ScheduleWork() until the next time we look for work.
  work_deduplicator_.OnWorkStarted();
}

void ThreadControllerWithMessagePumpImpl::SetNextDelayedDoWork(
    LazyNow* lazy_now,
    std::optional<WakeUp> wake_up) {
  DCHECK(!wake_up || !wake_up->is_immediate());
  // It's very rare for PostDelayedTask to be called outside of a DoWork in
  // production, so most of the time this does nothing.
  if (work_deduplicator_.OnDelayedWorkRequested() !=
      ShouldScheduleWork::kScheduleImmediate) {
    return;
  }
  TimeTicks run_time =
      wake_up.has_value()
          ? pump_->AdjustDelayedRunTime(wake_up->earliest_time(), wake_up->time,
                                        wake_up->latest_time())
          : TimeTicks::Max();
  DCHECK_LT(lazy_now->Now(), run_time);

  if (!run_time.is_max()) {
    run_time = CapAtOneDay(run_time, lazy_now);
  }
  // |pump_| can't be null as all postTasks are cross-thread before binding,
  // and delayed cross-thread postTasks do the thread hop through an immediate
  // task.
  pump_->ScheduleDelayedWork(
      {run_time, GetLeewayForWakeUp(wake_up), lazy_now->Now()});
}

bool ThreadControllerWithMessagePumpImpl::RunsTasksInCurrentSequence() {
  return associated_thread_->IsBoundToCurrentThread();
}

void ThreadControllerWithMessagePumpImpl::SetDefaultTaskRunner(
    scoped_refptr<SingleThreadTaskRunner> task_runner) {
  base::internal::CheckedAutoLock lock(task_runner_lock_);
  task_runner_ = task_runner;
  if (associated_thread_->IsBound()) {
    DCHECK(associated_thread_->IsBoundToCurrentThread());
    // Thread task runner handle will be created in BindToCurrentThread().
    InitializeSingleThreadTaskRunnerCurrentDefaultHandle();
  }
}

void ThreadControllerWithMessagePumpImpl::
    InitializeSingleThreadTaskRunnerCurrentDefaultHandle() {
  // Only one SingleThreadTaskRunner::CurrentDefaultHandle can exist at any
  // time, so reset the old one.
  main_thread_only().thread_task_runner_handle.reset();
  main_thread_only().thread_task_runner_handle =
      std::make_unique<SingleThreadTaskRunner::CurrentDefaultHandle>(
          task_runner_);
  // When the task runner is known, bind the power manager. Power notifications
  // are received through that sequence.
  power_monitor_.BindToCurrentThread();
}

scoped_refptr<SingleThreadTaskRunner>
ThreadControllerWithMessagePumpImpl::GetDefaultTaskRunner() {
  base::internal::CheckedAutoLock lock(task_runner_lock_);
  return task_runner_;
}

void ThreadControllerWithMessagePumpImpl::RestoreDefaultTaskRunner() {
  // There is no default task runner (as opposed to ThreadControllerImpl).
}

void ThreadControllerWithMessagePumpImpl::AddNestingObserver(
    RunLoop::NestingObserver* observer) {
  DCHECK(!main_thread_only().nesting_observer);
  DCHECK(observer);
  main_thread_only().nesting_observer = observer;
  RunLoop::AddNestingObserverOnCurrentThread(this);
}

void ThreadControllerWithMessagePumpImpl::RemoveNestingObserver(
    RunLoop::NestingObserver* observer) {
  DCHECK_EQ(main_thread_only().nesting_observer, observer);
  main_thread_only().nesting_observer = nullptr;
  RunLoop::RemoveNestingObserverOnCurrentThread(this);
}

void ThreadControllerWithMessagePumpImpl::OnBeginWorkItem() {
  LazyNow lazy_now(time_source_);
  OnBeginWorkItemImpl(lazy_now);
}

void ThreadControllerWithMessagePumpImpl::OnBeginWorkItemImpl(
    LazyNow& lazy_now) {
  hang_watch_scope_.emplace();
  work_id_provider_->IncrementWorkId();
  run_level_tracker_.OnWorkStarted(lazy_now);
  main_thread_only().task_source->OnBeginWork();
}

void ThreadControllerWithMessagePumpImpl::OnEndWorkItem(int run_level_depth) {
  LazyNow lazy_now(time_source_);
  OnEndWorkItemImpl(lazy_now, run_level_depth);
}

void ThreadControllerWithMessagePumpImpl::OnEndWorkItemImpl(
    LazyNow& lazy_now,
    int run_level_depth) {
  // Work completed, begin a new hang watch until the next task (watching the
  // pump's overhead).
  hang_watch_scope_.emplace();
  work_id_provider_->IncrementWorkId();
  run_level_tracker_.OnWorkEnded(lazy_now, run_level_depth);
}

void ThreadControllerWithMessagePumpImpl::BeforeWait() {
  // DoWork is guaranteed to be called after native work batches and before
  // wait.
  CHECK(!do_work_needed_before_wait_);

  // In most cases, DoIdleWork() will already have cleared the
  // `hang_watch_scope_` but in some cases where the native side of the
  // MessagePump impl is instrumented, it's possible to get a BeforeWait()
  // outside of a DoWork cycle (e.g. message_pump_win.cc :
  // MessagePumpForUI::HandleWorkMessage).
  hang_watch_scope_.reset();

  work_id_provider_->IncrementWorkId();
  LazyNow lazy_now(time_source_);
  run_level_tracker_.OnIdle(lazy_now);
}

MessagePump::Delegate::NextWorkInfo
ThreadControllerWithMessagePumpImpl::DoWork() {

#if BUILDFLAG(IS_WIN)
  // We've been already in a wakeup here. Deactivate the high res timer of OS
  // immediately instead of waiting for next DoIdleWork().
  if (main_thread_only().in_high_res_mode) {
    main_thread_only().in_high_res_mode = false;
    Time::ActivateHighResolutionTimer(false);
  }
#endif
  MessagePump::Delegate::NextWorkInfo next_work_info{};

  work_deduplicator_.OnWorkStarted();
  LazyNow continuation_lazy_now(time_source_);
  std::optional<WakeUp> next_wake_up = DoWorkImpl(&continuation_lazy_now);

  // If we are yielding after DoWorkImpl (a work batch) set the flag boolean.
  // This will inform the MessagePump to schedule a new continuation based on
  // the information below, but even if its immediate let the native sequence
  // have a chance to run.
  // When we have |g_run_tasks_by_batches| active we want to always set the flag
  // to true to have a similar behavior on Android as on the desktop platforms
  // for this experiment.
  if (RunsTasksByBatches() ||
      (!main_thread_only().yield_to_native_after_batch.is_null() &&
       continuation_lazy_now.Now() <
           main_thread_only().yield_to_native_after_batch)) {
    next_work_info.yield_to_native = true;
  }

  do_work_needed_before_wait_ = false;

  // Schedule a continuation.
  WorkDeduplicator::NextTask next_task =
      (next_wake_up && next_wake_up->is_immediate())
          ? WorkDeduplicator::NextTask::kIsImmediate
          : WorkDeduplicator::NextTask::kIsDelayed;
  if (work_deduplicator_.DidCheckForMoreWork(next_task) ==
      ShouldScheduleWork::kScheduleImmediate) {
    // Need to run new work immediately, but due to the contract of DoWork
    // we only need to return a null TimeTicks to ensure that happens.
    return next_work_info;
  }

  // Special-casing here avoids unnecessarily sampling Now() when out of work.
  if (!next_wake_up) {
    next_work_info.delayed_run_time = TimeTicks::Max();
    return next_work_info;
  }

  // The MessagePump will schedule the wake up on our behalf, so we need to
  // update |next_work_info.delayed_run_time|.
  TimeTicks next_delayed_do_work = pump_->AdjustDelayedRunTime(
      next_wake_up->earliest_time(), next_wake_up->time,
      next_wake_up->latest_time());

  // Don't request a run time past |main_thread_only().quit_runloop_after|.
  if (next_delayed_do_work > main_thread_only().quit_runloop_after) {
    next_delayed_do_work = main_thread_only().quit_runloop_after;
    // If we've passed |quit_runloop_after| there's no more work to do.
    if (continuation_lazy_now.Now() >= main_thread_only().quit_runloop_after) {
      next_work_info.delayed_run_time = TimeTicks::Max();
      return next_work_info;
    }
  }

  next_work_info.delayed_run_time =
      CapAtOneDay(next_delayed_do_work, &continuation_lazy_now);
  next_work_info.leeway = GetLeewayForWakeUp(next_wake_up);
  next_work_info.recent_now = continuation_lazy_now.Now();
  return next_work_info;
}

std::optional<WakeUp> ThreadControllerWithMessagePumpImpl::DoWorkImpl(
    LazyNow* continuation_lazy_now) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("sequence_manager"),
               "ThreadControllerImpl::DoWork");

  if (!main_thread_only().task_execution_allowed) {
    // Broadcast in a trace event that application tasks were disallowed. This
    // helps spot nested loops that intentionally starve application tasks.
    TRACE_EVENT0("base", "ThreadController: application tasks disallowed");
    if (main_thread_only().quit_runloop_after == TimeTicks::Max())
      return std::nullopt;
    return WakeUp{main_thread_only().quit_runloop_after};
  }

  DCHECK(main_thread_only().task_source);

  // Keep running tasks for up to 8ms before yielding to the pump when tasks are
  // run by batches.
  const base::TimeDelta batch_duration =
      RunsTasksByBatches() ? base::Milliseconds(8) : base::Milliseconds(0);

  const std::optional<base::TimeTicks> start_time =
      batch_duration.is_zero()
          ? std::nullopt
          : std::optional<base::TimeTicks>(time_source_->NowTicks());
  std::optional<base::TimeTicks> recent_time = start_time;

  // Loops for |batch_duration|, or |work_batch_size| times if |batch_duration|
  // is zero.
  for (int num_tasks_executed = 0;
       (!batch_duration.is_zero() &&
        (recent_time.value() - start_time.value()) < batch_duration) ||
       (batch_duration.is_zero() &&
        num_tasks_executed < main_thread_only().work_batch_size);
       ++num_tasks_executed) {
    LazyNow lazy_now_select_task(recent_time, time_source_);
    // Include SelectNextTask() in the scope of the work item. This ensures
    // it's covered in tracing and hang reports. This is particularly
    // important when SelectNextTask() finds no work immediately after a
    // wakeup, otherwise the power-inefficient wakeup is invisible in
    // tracing. OnApplicationTaskSelected() assumes this ordering as well.
    OnBeginWorkItemImpl(lazy_now_select_task);
    int run_depth = static_cast<int>(run_level_tracker_.num_run_levels());

    const SequencedTaskSource::SelectTaskOption select_task_option =
        power_monitor_.IsProcessInPowerSuspendState()
            ? SequencedTaskSource::SelectTaskOption::kSkipDelayedTask
            : SequencedTaskSource::SelectTaskOption::kDefault;
    std::optional<SequencedTaskSource::SelectedTask> selected_task =
        main_thread_only().task_source->SelectNextTask(lazy_now_select_task,
                                                       select_task_option);
    LazyNow lazy_now_task_selected(time_source_);
    run_level_tracker_.OnApplicationTaskSelected(
        (selected_task && selected_task->task.delayed_run_time.is_null())
            ? selected_task->task.queue_time
            : TimeTicks(),
        lazy_now_task_selected);
    if (!selected_task) {
      OnEndWorkItemImpl(lazy_now_task_selected, run_depth);
      break;
    }

    // Execute the task and assume the worst: it is probably not reentrant.
    AutoReset<bool> ban_nested_application_tasks(
        &main_thread_only().task_execution_allowed, false);

    // Trace-parsing tools (DevTools, Lighthouse, etc) consume this event to
    // determine long tasks.
    // See https://crbug.com/681863 and https://crbug.com/874982
    TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("devtools.timeline"), "RunTask");

    {
      // Always track the start of the task, as this is low-overhead.
      TaskAnnotator::LongTaskTracker long_task_tracker(
          time_source_, selected_task->task, &task_annotator_,
          lazy_now_task_selected.Now());

      // Note: all arguments after task are just passed to a TRACE_EVENT for
      // logging so lambda captures are safe as lambda is executed inline.
      SequencedTaskSource* source = main_thread_only().task_source;
      task_annotator_.RunTask(
          "ThreadControllerImpl::RunTask", selected_task->task,
          [&selected_task, &source](perfetto::EventContext& ctx) {
            if (selected_task->task_execution_trace_logger) {
              selected_task->task_execution_trace_logger.Run(
                  ctx, selected_task->task);
            }
            source->MaybeEmitTaskDetails(ctx, selected_task.value());
          });
    }

    // Reset `selected_task` before the call to `DidRunTask()` below makes its
    // `PendingTask` reference dangling.
    selected_task.reset();

    LazyNow lazy_now_after_run_task(time_source_);
    main_thread_only().task_source->DidRunTask(lazy_now_after_run_task);
    // End the work item scope after DidRunTask() as it can process microtasks
    // (which are extensions of the RunTask).
    OnEndWorkItemImpl(lazy_now_after_run_task, run_depth);

    // If DidRunTask() read the clock (lazy_now_after_run_task.has_value()) or
    // if |batch_duration| > 0, store the clock value in `recent_time` so it can
    // be reused by SelectNextTask() at the next loop iteration.
    if (lazy_now_after_run_task.has_value() || !batch_duration.is_zero()) {
      recent_time = lazy_now_after_run_task.Now();
    } else {
      recent_time.reset();
    }

    // When Quit() is called we must stop running the batch because the
    // caller expects per-task granularity.
    if (main_thread_only().quit_pending)
      break;
  }

  if (main_thread_only().quit_pending)
    return std::nullopt;

  work_deduplicator_.WillCheckForMoreWork();

  // Re-check the state of the power after running tasks. An executed task may
  // have been a power change notification.
  const SequencedTaskSource::SelectTaskOption select_task_option =
      power_monitor_.IsProcessInPowerSuspendState()
          ? SequencedTaskSource::SelectTaskOption::kSkipDelayedTask
          : SequencedTaskSource::SelectTaskOption::kDefault;
  return main_thread_only().task_source->GetPendingWakeUp(continuation_lazy_now,
                                                          select_task_option);
}

bool ThreadControllerWithMessagePumpImpl::RunsTasksByBatches() const {
  return can_run_tasks_by_batches_ &&
         g_run_tasks_by_batches.load(std::memory_order_relaxed);
}

void ThreadControllerWithMessagePumpImpl::DoIdleWork() {
  struct OnIdle {
    STACK_ALLOCATED();

   public:
    OnIdle(const TickClock* time_source, RunLevelTracker& run_level_tracker_ref)
        : lazy_now(time_source), run_level_tracker(run_level_tracker_ref) {}

    // Very last step before going idle, must be fast as this is hidden from the
    // DoIdleWork trace event below.
    ~OnIdle() { run_level_tracker.OnIdle(lazy_now); }

    LazyNow lazy_now;

   private:
    RunLevelTracker& run_level_tracker;
  };
  std::optional<OnIdle> on_idle;

  // Must be after `on_idle` as this trace event's scope must end before the END
  // of the "ThreadController active" trace event emitted from
  // `run_level_tracker_.OnIdle()`.
  TRACE_EVENT0("sequence_manager", "SequenceManager::DoIdleWork");

#if BUILDFLAG(IS_WIN)
  if (!power_monitor_.IsProcessInPowerSuspendState()) {
    // Avoid calling Time::ActivateHighResolutionTimer() between
    // suspend/resume as the system hangs if we do (crbug.com/1074028).
    // OnResume() will generate a task on this thread per the
    // ThreadControllerPowerMonitor observer and DoIdleWork() will thus get
    // another chance to set the right high-resolution-timer-state before
    // going to sleep after resume.

    const bool need_high_res_mode =
        main_thread_only().task_source->HasPendingHighResolutionTasks();
    if (main_thread_only().in_high_res_mode != need_high_res_mode) {
      // On Windows we activate the high resolution timer so that the wait
      // _if_ triggered by the timer happens with good resolution. If we don't
      // do this the default resolution is 15ms which might not be acceptable
      // for some tasks.
      main_thread_only().in_high_res_mode = need_high_res_mode;
      Time::ActivateHighResolutionTimer(need_high_res_mode);
    }
  }
#endif  // BUILDFLAG(IS_WIN)

  if (main_thread_only().task_source->OnIdle()) {
    work_id_provider_->IncrementWorkId();
    // The OnIdle() callback resulted in more immediate work, so schedule a
    // DoWork callback. For some message pumps returning true from here is
    // sufficient to do that but not on mac.
    pump_->ScheduleWork();
    return;
  }
  work_id_provider_->IncrementWorkId();
  // This is mostly redundant with the identical call in BeforeWait (upcoming)
  // but some uninstrumented MessagePump impls don't call BeforeWait so it must
  // also be done here.
  hang_watch_scope_.reset();

  // All return paths below are truly idle.
  on_idle.emplace(time_source_, run_level_tracker_);

  // Check if any runloop timeout has expired.
  if (main_thread_only().quit_runloop_after != TimeTicks::Max() &&
      main_thread_only().quit_runloop_after <= on_idle->lazy_now.Now()) {
    Quit();
    return;
  }

  // RunLoop::Delegate knows whether we called Run() or RunUntilIdle().
  if (ShouldQuitWhenIdle())
    Quit();
}

int ThreadControllerWithMessagePumpImpl::RunDepth() {
  return static_cast<int>(run_level_tracker_.num_run_levels());
}

void ThreadControllerWithMessagePumpImpl::Run(bool application_tasks_allowed,
                                              TimeDelta timeout) {
  DCHECK(RunsTasksInCurrentSequence());

  // Inside a `RunLoop`, all work that has mutual exclusion or ordering
  // expectations with the task source is tracked, so it's safe to allow running
  // tasks synchronously in `RunOrPostTask()`.
  main_thread_only().task_source->SetRunTaskSynchronouslyAllowed(true);

  LazyNow lazy_now_run_loop_start(time_source_);

  // RunLoops can be nested so we need to restore the previous value of
  // |quit_runloop_after| upon exit. NB we could use saturated arithmetic here
  // but don't because we have some tests which assert the number of calls to
  // Now.
  AutoReset<TimeTicks> quit_runloop_after(
      &main_thread_only().quit_runloop_after,
      (timeout == TimeDelta::Max()) ? TimeTicks::Max()
                                    : lazy_now_run_loop_start.Now() + timeout);

  run_level_tracker_.OnRunLoopStarted(RunLevelTracker::kInBetweenWorkItems,
                                      lazy_now_run_loop_start);

  // Quit may have been called outside of a Run(), so |quit_pending| might be
  // true here. We can't use InTopLevelDoWork() in Quit() as this call may be
  // outside top-level DoWork but still in Run().
  main_thread_only().quit_pending = false;
  hang_watch_scope_.emplace();
  if (application_tasks_allowed && !main_thread_only().task_execution_allowed) {
    // Allow nested task execution as explicitly requested.
    DCHECK(RunLoop::IsNestedOnCurrentThread());
    main_thread_only().task_execution_allowed = true;
    pump_->Run(this);
    main_thread_only().task_execution_allowed = false;
  } else {
    pump_->Run(this);
  }

  run_level_tracker_.OnRunLoopEnded();
  main_thread_only().quit_pending = false;

  // If this was a nested loop, hang watch the remainder of the task which
  // caused it. Otherwise, stop watching as we're no longer running.
  if (RunLoop::IsNestedOnCurrentThread()) {
    hang_watch_scope_.emplace();
  } else {
    hang_watch_scope_.reset();
  }
  work_id_provider_->IncrementWorkId();

  // Work outside of a `RunLoop` may have mutual exclusion or ordering
  // guarantees with the task source, so disallow running tasks synchronously in
  // `RunOrPostTask()`.
  if (run_level_tracker_.num_run_levels() == 0) {
    main_thread_only().task_source->SetRunTaskSynchronouslyAllowed(false);
  }
}

void ThreadControllerWithMessagePumpImpl::OnBeginNestedRunLoop() {
  // We don't need to ScheduleWork here! That's because the call to pump_->Run()
  // above, which is always called for RunLoop().Run(), guarantees a call to
  // DoWork on all platforms.
  if (main_thread_only().nesting_observer)
    main_thread_only().nesting_observer->OnBeginNestedRunLoop();
}

void ThreadControllerWithMessagePumpImpl::OnExitNestedRunLoop() {
  if (main_thread_only().nesting_observer)
    main_thread_only().nesting_observer->OnExitNestedRunLoop();
}

void ThreadControllerWithMessagePumpImpl::Quit() {
  DCHECK(RunsTasksInCurrentSequence());
  // Interrupt a batch of work.
  main_thread_only().quit_pending = true;

  // If we're in a nested RunLoop, continuation will be posted if necessary.
  pump_->Quit();
}

void ThreadControllerWithMessagePumpImpl::EnsureWorkScheduled() {
  if (work_deduplicator_.OnWorkRequested() ==
      ShouldScheduleWork::kScheduleImmediate) {
    pump_->ScheduleWork();
  }
}

void ThreadControllerWithMessagePumpImpl::
    SetTaskExecutionAllowedInNativeNestedLoop(bool allowed) {
  if (allowed) {
    // We need to schedule work unconditionally because we might be about to
    // enter an OS level nested message loop. Unlike a RunLoop().Run() we don't
    // get a call to DoWork on entering for free.
    work_deduplicator_.OnWorkRequested();  // Set the pending DoWork flag.
  } else {
    // We've (probably) just left an OS level nested message loop. Make sure a
    // subsequent PostTask within the same Task doesn't ScheduleWork with the
    // pump (this will be done anyway when the task exits).
    work_deduplicator_.OnWorkStarted();
  }
  if (!pump_->HandleNestedNativeLoopWithApplicationTasks(allowed)) {
    // Pump does not have its own support for native nested loops,
    // ThreadController must handle scheduling for upcoming tasks.
    if (allowed) {
      pump_->ScheduleWork();
    }
  }
  task_execution_allowed_in_native_nested_loop_ = allowed;
  main_thread_only().task_execution_allowed = allowed;
}

bool ThreadControllerWithMessagePumpImpl::IsTaskExecutionAllowed() const {
  return main_thread_only().task_execution_allowed;
}

MessagePump* ThreadControllerWithMessagePumpImpl::GetBoundMessagePump() const {
  return pump_.get();
}

void ThreadControllerWithMessagePumpImpl::PrioritizeYieldingToNative(
    base::TimeTicks prioritize_until) {
  main_thread_only().yield_to_native_after_batch = prioritize_until;
}

#if BUILDFLAG(IS_IOS)
void ThreadControllerWithMessagePumpImpl::AttachToMessagePump() {
  static_cast<MessagePumpCFRunLoopBase*>(pump_.get())->Attach(this);
}

void ThreadControllerWithMessagePumpImpl::DetachFromMessagePump() {
  static_cast<MessagePumpCFRunLoopBase*>(pump_.get())->Detach();
}
#elif BUILDFLAG(IS_ANDROID)
void ThreadControllerWithMessagePumpImpl::AttachToMessagePump() {
  CHECK(main_thread_only().work_batch_size == 1);
  // Aborting the message pump currently relies on the batch size being 1.
  main_thread_only().can_change_batch_size = false;
  static_cast<MessagePumpForUI*>(pump_.get())->Attach(this);
}
#endif

bool ThreadControllerWithMessagePumpImpl::ShouldQuitRunLoopWhenIdle() {
  if (run_level_tracker_.num_run_levels() == 0)
    return false;
  // It's only safe to call ShouldQuitWhenIdle() when in a RunLoop.
  return ShouldQuitWhenIdle();
}

}  // namespace internal
}  // namespace sequence_manager
}  // namespace base