1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
base / task / sequence_manager / work_queue.cc [blame]
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/task/sequence_manager/work_queue.h"
#include <optional>
#include "base/debug/alias.h"
#include "base/task/common/task_annotator.h"
#include "base/task/sequence_manager/fence.h"
#include "base/task/sequence_manager/sequence_manager_impl.h"
#include "base/task/sequence_manager/task_order.h"
#include "base/task/sequence_manager/work_queue_sets.h"
#include "build/build_config.h"
#include "third_party/abseil-cpp/absl/cleanup/cleanup.h"
#include "third_party/abseil-cpp/absl/container/inlined_vector.h"
namespace base {
namespace sequence_manager {
namespace internal {
WorkQueue::WorkQueue(TaskQueueImpl* task_queue,
const char* name,
QueueType queue_type)
: task_queue_(task_queue), name_(name), queue_type_(queue_type) {}
Value::List WorkQueue::AsValue(TimeTicks now) const {
Value::List state;
for (const Task& task : tasks_)
state.Append(TaskQueueImpl::TaskAsValue(task, now));
return state;
}
WorkQueue::~WorkQueue() {
DCHECK(!work_queue_sets_) << task_queue_->GetName() << " : "
<< work_queue_sets_->GetName() << " : " << name_;
}
const Task* WorkQueue::GetFrontTask() const {
if (tasks_.empty())
return nullptr;
return &tasks_.front();
}
const Task* WorkQueue::GetBackTask() const {
if (tasks_.empty())
return nullptr;
return &tasks_.back();
}
bool WorkQueue::BlockedByFence() const {
if (!fence_)
return false;
// If the queue is empty then any future tasks will have a higher enqueue
// order and will be blocked. The queue is also blocked if the head is past
// the fence.
return tasks_.empty() || tasks_.front().task_order() >= fence_->task_order();
}
std::optional<TaskOrder> WorkQueue::GetFrontTaskOrder() const {
if (tasks_.empty() || BlockedByFence())
return std::nullopt;
// Quick sanity check.
DCHECK(tasks_.front().task_order() <= tasks_.back().task_order())
<< task_queue_->GetName() << " : " << work_queue_sets_->GetName() << " : "
<< name_;
return tasks_.front().task_order();
}
void WorkQueue::Push(Task task) {
bool was_empty = tasks_.empty();
#ifndef NDEBUG
DCHECK(task.enqueue_order_set());
#endif
// Make sure the task order is strictly increasing.
DCHECK(was_empty || tasks_.back().task_order() < task.task_order());
// Make sure enqueue order is strictly increasing for immediate queues and
// monotonically increasing for delayed queues.
DCHECK(was_empty || tasks_.back().enqueue_order() < task.enqueue_order() ||
(queue_type_ == QueueType::kDelayed &&
tasks_.back().enqueue_order() == task.enqueue_order()));
// Amortized O(1).
tasks_.push_back(std::move(task));
if (!was_empty)
return;
// If we hit the fence, pretend to WorkQueueSets that we're empty.
if (work_queue_sets_ && !BlockedByFence())
work_queue_sets_->OnTaskPushedToEmptyQueue(this);
}
WorkQueue::TaskPusher::TaskPusher(WorkQueue* work_queue)
: work_queue_(work_queue), was_empty_(work_queue->Empty()) {}
WorkQueue::TaskPusher::TaskPusher(TaskPusher&& other)
: work_queue_(other.work_queue_), was_empty_(other.was_empty_) {
other.work_queue_ = nullptr;
}
void WorkQueue::TaskPusher::Push(Task task) {
DCHECK(work_queue_);
#ifndef NDEBUG
DCHECK(task.enqueue_order_set());
#endif
// Make sure the task order is strictly increasing.
DCHECK(work_queue_->tasks_.empty() ||
work_queue_->tasks_.back().task_order() < task.task_order());
// Make sure enqueue order is strictly increasing for immediate queues and
// monotonically increasing for delayed queues.
DCHECK(work_queue_->tasks_.empty() ||
work_queue_->tasks_.back().enqueue_order() < task.enqueue_order() ||
(work_queue_->queue_type_ == QueueType::kDelayed &&
work_queue_->tasks_.back().enqueue_order() == task.enqueue_order()));
// Amortized O(1).
work_queue_->tasks_.push_back(std::move(task));
}
WorkQueue::TaskPusher::~TaskPusher() {
// If |work_queue_| became non empty and it isn't blocked by a fence then we
// must notify |work_queue_->work_queue_sets_|.
if (was_empty_ && work_queue_ && !work_queue_->Empty() &&
work_queue_->work_queue_sets_ && !work_queue_->BlockedByFence()) {
work_queue_->work_queue_sets_->OnTaskPushedToEmptyQueue(work_queue_);
}
}
WorkQueue::TaskPusher WorkQueue::CreateTaskPusher() {
return TaskPusher(this);
}
void WorkQueue::PushNonNestableTaskToFront(Task task) {
DCHECK(task.nestable == Nestable::kNonNestable);
bool was_empty = tasks_.empty();
bool was_blocked = BlockedByFence();
#ifndef NDEBUG
DCHECK(task.enqueue_order_set());
#endif
if (!was_empty) {
// Make sure the task order is strictly increasing.
DCHECK(task.task_order() < tasks_.front().task_order())
<< task_queue_->GetName() << " : " << work_queue_sets_->GetName()
<< " : " << name_;
// Make sure the enqueue order is strictly increasing for immediate queues
// and monotonically increasing for delayed queues.
DCHECK(task.enqueue_order() < tasks_.front().enqueue_order() ||
(queue_type_ == QueueType::kDelayed &&
task.enqueue_order() == tasks_.front().enqueue_order()))
<< task_queue_->GetName() << " : " << work_queue_sets_->GetName()
<< " : " << name_;
}
// Amortized O(1).
tasks_.push_front(std::move(task));
if (!work_queue_sets_)
return;
// Pretend to WorkQueueSets that nothing has changed if we're blocked.
if (BlockedByFence())
return;
// Pushing task to front may unblock the fence.
if (was_empty || was_blocked) {
work_queue_sets_->OnTaskPushedToEmptyQueue(this);
} else {
work_queue_sets_->OnQueuesFrontTaskChanged(this);
}
}
void WorkQueue::TakeImmediateIncomingQueueTasks() {
DCHECK(tasks_.empty());
task_queue_->TakeImmediateIncomingQueueTasks(&tasks_);
if (tasks_.empty())
return;
// If we hit the fence, pretend to WorkQueueSets that we're empty.
if (work_queue_sets_ && !BlockedByFence())
work_queue_sets_->OnTaskPushedToEmptyQueue(this);
}
Task WorkQueue::TakeTaskFromWorkQueue() {
DCHECK(work_queue_sets_);
DCHECK(!tasks_.empty());
Task pending_task = std::move(tasks_.front());
tasks_.pop_front();
// NB immediate tasks have a different pipeline to delayed ones.
if (tasks_.empty()) {
// NB delayed tasks are inserted via Push, no don't need to reload those.
if (queue_type_ == QueueType::kImmediate) {
// Short-circuit the queue reload so that OnPopMinQueueInSet does the
// right thing.
task_queue_->TakeImmediateIncomingQueueTasks(&tasks_);
}
// Since the queue is empty, now is a good time to consider reducing it's
// capacity if we're wasting memory.
tasks_.MaybeShrinkQueue();
}
DCHECK(work_queue_sets_);
#if DCHECK_IS_ON()
// If diagnostics are on it's possible task queues are being selected at
// random so we can't use the (slightly) more efficient OnPopMinQueueInSet.
work_queue_sets_->OnQueuesFrontTaskChanged(this);
#else
// OnPopMinQueueInSet calls GetFrontTaskOrder which checks
// BlockedByFence() so we don't need to here.
work_queue_sets_->OnPopMinQueueInSet(this);
#endif
task_queue_->TraceQueueSize();
return pending_task;
}
bool WorkQueue::RemoveAllCanceledTasksFromFront() {
if (!work_queue_sets_) {
return false;
}
// Since task destructors could have a side-effect of deleting this task queue
// we move cancelled tasks into a temporary container which can be emptied
// without accessing |this|.
absl::InlinedVector<Task, 8> tasks_to_delete;
while (!tasks_.empty()) {
const auto& pending_task = tasks_.front();
#if DCHECK_IS_ON()
// Checking if a task is cancelled can trip DCHECK/CHECK failures out of the
// control of the SequenceManager code, so provide a task trace for easier
// diagnosis. See crbug.com/374409662 for context.
absl::Cleanup resetter = [original_task =
TaskAnnotator::CurrentTaskForThread()] {
TaskAnnotator::SetCurrentTaskForThread({}, original_task);
};
TaskAnnotator::SetCurrentTaskForThread(base::PassKey<WorkQueue>(),
&pending_task);
#endif
if (pending_task.task && !pending_task.IsCanceled())
break;
tasks_to_delete.push_back(std::move(tasks_.front()));
tasks_.pop_front();
}
if (!tasks_to_delete.empty()) {
if (tasks_.empty()) {
// NB delayed tasks are inserted via Push, no don't need to reload those.
if (queue_type_ == QueueType::kImmediate) {
// Short-circuit the queue reload so that OnPopMinQueueInSet does the
// right thing.
task_queue_->TakeImmediateIncomingQueueTasks(&tasks_);
}
// Since the queue is empty, now is a good time to consider reducing it's
// capacity if we're wasting memory.
tasks_.MaybeShrinkQueue();
}
// If we have a valid |heap_handle_| (i.e. we're not blocked by a fence or
// disabled) then |work_queue_sets_| needs to be told.
if (heap_handle_.IsValid())
work_queue_sets_->OnQueuesFrontTaskChanged(this);
task_queue_->TraceQueueSize();
}
return !tasks_to_delete.empty();
}
void WorkQueue::AssignToWorkQueueSets(WorkQueueSets* work_queue_sets) {
work_queue_sets_ = work_queue_sets;
}
void WorkQueue::AssignSetIndex(size_t work_queue_set_index) {
work_queue_set_index_ = work_queue_set_index;
}
bool WorkQueue::InsertFenceImpl(Fence fence) {
DCHECK(!fence_ || fence.task_order() >= fence_->task_order() ||
fence.IsBlockingFence());
bool was_blocked_by_fence = BlockedByFence();
fence_ = fence;
return was_blocked_by_fence;
}
void WorkQueue::InsertFenceSilently(Fence fence) {
// Ensure that there is no fence present or a new one blocks queue completely.
DCHECK(!fence_ || fence_->IsBlockingFence());
InsertFenceImpl(fence);
}
bool WorkQueue::InsertFence(Fence fence) {
bool was_blocked_by_fence = InsertFenceImpl(fence);
if (!work_queue_sets_)
return false;
// Moving the fence forward may unblock some tasks.
if (!tasks_.empty() && was_blocked_by_fence && !BlockedByFence()) {
work_queue_sets_->OnTaskPushedToEmptyQueue(this);
return true;
}
// Fence insertion may have blocked all tasks in this work queue.
if (BlockedByFence())
work_queue_sets_->OnQueueBlocked(this);
return false;
}
bool WorkQueue::RemoveFence() {
bool was_blocked_by_fence = BlockedByFence();
fence_ = std::nullopt;
if (work_queue_sets_ && !tasks_.empty() && was_blocked_by_fence) {
work_queue_sets_->OnTaskPushedToEmptyQueue(this);
return true;
}
return false;
}
void WorkQueue::MaybeShrinkQueue() {
tasks_.MaybeShrinkQueue();
}
void WorkQueue::PopTaskForTesting() {
if (tasks_.empty())
return;
tasks_.pop_front();
}
void WorkQueue::CollectTasksOlderThan(TaskOrder reference,
std::vector<const Task*>* result) const {
for (const Task& task : tasks_) {
if (task.task_order() >= reference)
break;
result->push_back(&task);
}
}
} // namespace internal
} // namespace sequence_manager
} // namespace base