1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418

base / task / thread_pool / job_task_source.cc [blame]

// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/task/thread_pool/job_task_source.h"

#include <bit>
#include <type_traits>
#include <utility>

#include "base/check_op.h"
#include "base/functional/bind.h"
#include "base/functional/callback_helpers.h"
#include "base/memory/ptr_util.h"
#include "base/notreached.h"
#include "base/task/common/checked_lock.h"
#include "base/task/task_features.h"
#include "base/task/thread_pool/pooled_task_runner_delegate.h"
#include "base/threading/thread_restrictions.h"
#include "base/time/time.h"
#include "base/time/time_override.h"
#include "base/trace_event/base_tracing.h"

namespace base {
namespace internal {

namespace {

// Capped to allow assigning task_ids from a bitfield.
constexpr size_t kMaxWorkersPerJob = 32;
static_assert(
    kMaxWorkersPerJob <=
        std::numeric_limits<
            std::invoke_result<decltype(&JobDelegate::GetTaskId),
                               JobDelegate>::type>::max(),
    "AcquireTaskId return type isn't big enough to fit kMaxWorkersPerJob");

}  // namespace

JobTaskSource::State::State() = default;
JobTaskSource::State::~State() = default;

JobTaskSource::State::Value JobTaskSource::State::Cancel() {
  return {value_.fetch_or(kCanceledMask, std::memory_order_relaxed)};
}

JobTaskSource::State::Value JobTaskSource::State::DecrementWorkerCount() {
  const uint32_t value_before_sub =
      value_.fetch_sub(kWorkerCountIncrement, std::memory_order_relaxed);
  DCHECK((value_before_sub >> kWorkerCountBitOffset) > 0);
  return {value_before_sub};
}

JobTaskSource::State::Value JobTaskSource::State::IncrementWorkerCount() {
  uint32_t value_before_add =
      value_.fetch_add(kWorkerCountIncrement, std::memory_order_relaxed);
  // The worker count must not overflow a uint8_t.
  DCHECK((value_before_add >> kWorkerCountBitOffset) < ((1 << 8) - 1));
  return {value_before_add};
}

JobTaskSource::State::Value JobTaskSource::State::Load() const {
  return {value_.load(std::memory_order_relaxed)};
}

JobTaskSource::JoinFlag::JoinFlag() = default;
JobTaskSource::JoinFlag::~JoinFlag() = default;

void JobTaskSource::JoinFlag::Reset() {
  value_.store(kNotWaiting, std::memory_order_relaxed);
}

void JobTaskSource::JoinFlag::SetWaiting() {
  value_.store(kWaitingForWorkerToYield, std::memory_order_relaxed);
}

bool JobTaskSource::JoinFlag::ShouldWorkerYield() {
  // The fetch_and() sets the state to kWaitingForWorkerToSignal if it was
  // previously kWaitingForWorkerToYield, otherwise it leaves it unchanged.
  return value_.fetch_and(kWaitingForWorkerToSignal,
                          std::memory_order_relaxed) ==
         kWaitingForWorkerToYield;
}

bool JobTaskSource::JoinFlag::ShouldWorkerSignal() {
  return value_.exchange(kNotWaiting, std::memory_order_relaxed) != kNotWaiting;
}

JobTaskSource::JobTaskSource(const Location& from_here,
                             const TaskTraits& traits,
                             RepeatingCallback<void(JobDelegate*)> worker_task,
                             MaxConcurrencyCallback max_concurrency_callback,
                             PooledTaskRunnerDelegate* delegate)
    : TaskSource(traits, TaskSourceExecutionMode::kJob),
      max_concurrency_callback_(std::move(max_concurrency_callback)),
      worker_task_(std::move(worker_task)),
      primary_task_(base::BindRepeating(
          [](JobTaskSource* self) {
            CheckedLock::AssertNoLockHeldOnCurrentThread();
            // Each worker task has its own delegate with associated state.
            JobDelegate job_delegate{self, self->delegate_};
            self->worker_task_.Run(&job_delegate);
          },
          base::Unretained(this))),
      task_metadata_(from_here),
      ready_time_(TimeTicks::Now()),
      delegate_(delegate) {
  DCHECK(delegate_);
  task_metadata_.sequence_num = -1;
}

JobTaskSource::~JobTaskSource() {
  // Make sure there's no outstanding active run operation left.
  DCHECK_EQ(state_.Load().worker_count(), 0U);
}

ExecutionEnvironment JobTaskSource::GetExecutionEnvironment() {
  return {SequenceToken::Create()};
}

void JobTaskSource::WillEnqueue(int sequence_num, TaskAnnotator& annotator) {
  if (task_metadata_.sequence_num != -1) {
    // WillEnqueue() was already called.
    return;
  }
  task_metadata_.sequence_num = sequence_num;
  annotator.WillQueueTask("ThreadPool_PostJob", &task_metadata_);
}

bool JobTaskSource::WillJoin() {
  TRACE_EVENT0("base", "Job.WaitForParticipationOpportunity");
  CheckedAutoLock auto_lock(worker_lock_);
  DCHECK(!worker_released_condition_);  // This may only be called once.
  worker_lock_.CreateConditionVariableAndEmplace(worker_released_condition_);
  // Prevent wait from triggering a ScopedBlockingCall as this would cause
  // |ThreadGroup::lock_| to be acquired, causing lock inversion.
  worker_released_condition_->declare_only_used_while_idle();
  const auto state_before_add = state_.IncrementWorkerCount();

  if (!state_before_add.is_canceled() &&
      state_before_add.worker_count() <
          GetMaxConcurrency(state_before_add.worker_count())) {
    return true;
  }
  return WaitForParticipationOpportunity();
}

bool JobTaskSource::RunJoinTask() {
  JobDelegate job_delegate{this, nullptr};
  worker_task_.Run(&job_delegate);

  // It is safe to read |state_| without a lock since this variable is atomic
  // and the call to GetMaxConcurrency() is used for a best effort early exit.
  // Stale values will only cause WaitForParticipationOpportunity() to be
  // called.
  const auto state = TS_UNCHECKED_READ(state_).Load();
  // The condition is slightly different from the one in WillJoin() since we're
  // using |state| that was already incremented to include the joining thread.
  if (!state.is_canceled() &&
      state.worker_count() <= GetMaxConcurrency(state.worker_count() - 1)) {
    return true;
  }

  TRACE_EVENT0("base", "Job.WaitForParticipationOpportunity");
  CheckedAutoLock auto_lock(worker_lock_);
  return WaitForParticipationOpportunity();
}

void JobTaskSource::Cancel(TaskSource::Transaction* transaction) {
  // Sets the kCanceledMask bit on |state_| so that further calls to
  // WillRunTask() never succeed. std::memory_order_relaxed without a lock is
  // safe because this task source never needs to be re-enqueued after Cancel().
  TS_UNCHECKED_READ(state_).Cancel();
}

// EXCLUSIVE_LOCK_REQUIRED(worker_lock_)
bool JobTaskSource::WaitForParticipationOpportunity() {
  DCHECK(!join_flag_.IsWaiting());

  // std::memory_order_relaxed is sufficient because no other state is
  // synchronized with |state_| outside of |lock_|.
  auto state = state_.Load();
  // |worker_count - 1| to exclude the joining thread which is not active.
  size_t max_concurrency = GetMaxConcurrency(state.worker_count() - 1);

  // Wait until either:
  //  A) |worker_count| is below or equal to max concurrency and state is not
  //  canceled.
  //  B) All other workers returned and |worker_count| is 1.
  while (!((state.worker_count() <= max_concurrency && !state.is_canceled()) ||
           state.worker_count() == 1)) {
    // std::memory_order_relaxed is sufficient because no other state is
    // synchronized with |join_flag_| outside of |lock_|.
    join_flag_.SetWaiting();

    // To avoid unnecessarily waiting, if either condition A) or B) change
    // |lock_| is taken and |worker_released_condition_| signaled if necessary:
    // 1- In DidProcessTask(), after worker count is decremented.
    // 2- In NotifyConcurrencyIncrease(), following a max_concurrency increase.
    worker_released_condition_->Wait();
    state = state_.Load();
    // |worker_count - 1| to exclude the joining thread which is not active.
    max_concurrency = GetMaxConcurrency(state.worker_count() - 1);
  }
  // It's possible though unlikely that the joining thread got a participation
  // opportunity without a worker signaling.
  join_flag_.Reset();

  // Case A:
  if (state.worker_count() <= max_concurrency && !state.is_canceled()) {
    return true;
  }
  // Case B:
  // Only the joining thread remains.
  DCHECK_EQ(state.worker_count(), 1U);
  DCHECK(state.is_canceled() || max_concurrency == 0U);
  state_.DecrementWorkerCount();
  // Prevent subsequent accesses to user callbacks.
  state_.Cancel();
  return false;
}

TaskSource::RunStatus JobTaskSource::WillRunTask() {
  CheckedAutoLock auto_lock(worker_lock_);
  auto state_before_add = state_.Load();

  // Don't allow this worker to run the task if either:
  //   A) |state_| was canceled.
  //   B) |worker_count| is already at |max_concurrency|.
  //   C) |max_concurrency| was lowered below or to |worker_count|.
  // Case A:
  if (state_before_add.is_canceled()) {
    return RunStatus::kDisallowed;
  }

  const size_t max_concurrency =
      GetMaxConcurrency(state_before_add.worker_count());
  if (state_before_add.worker_count() < max_concurrency) {
    state_before_add = state_.IncrementWorkerCount();
  }
  const size_t worker_count_before_add = state_before_add.worker_count();
  // Case B) or C):
  if (worker_count_before_add >= max_concurrency) {
    return RunStatus::kDisallowed;
  }

  DCHECK_LT(worker_count_before_add, max_concurrency);
  return max_concurrency == worker_count_before_add + 1
             ? RunStatus::kAllowedSaturated
             : RunStatus::kAllowedNotSaturated;
}

size_t JobTaskSource::GetRemainingConcurrency() const {
  // It is safe to read |state_| without a lock since this variable is atomic,
  // and no other state is synchronized with GetRemainingConcurrency().
  const auto state = TS_UNCHECKED_READ(state_).Load();
  if (state.is_canceled()) {
    return 0;
  }
  const size_t max_concurrency = GetMaxConcurrency(state.worker_count());
  // Avoid underflows.
  if (state.worker_count() > max_concurrency)
    return 0;
  return max_concurrency - state.worker_count();
}

bool JobTaskSource::IsActive() const {
  CheckedAutoLock auto_lock(worker_lock_);
  auto state = state_.Load();
  return GetMaxConcurrency(state.worker_count()) != 0 ||
         state.worker_count() != 0;
}

size_t JobTaskSource::GetWorkerCount() const {
  return TS_UNCHECKED_READ(state_).Load().worker_count();
}

void JobTaskSource::NotifyConcurrencyIncrease() {
  // Avoid unnecessary locks when NotifyConcurrencyIncrease() is spuriously
  // called.
  if (GetRemainingConcurrency() == 0) {
    return;
  }

  {
    // Lock is taken to access |join_flag_| below and signal
    // |worker_released_condition_|.
    CheckedAutoLock auto_lock(worker_lock_);
    if (join_flag_.ShouldWorkerSignal()) {
      worker_released_condition_->Signal();
    }
  }

  // Make sure the task source is in the queue if not already.
  // Caveat: it's possible but unlikely that the task source has already reached
  // its intended concurrency and doesn't need to be enqueued if there
  // previously were too many worker. For simplicity, the task source is always
  // enqueued and will get discarded if already saturated when it is popped from
  // the priority queue.
  delegate_->EnqueueJobTaskSource(this);
}

size_t JobTaskSource::GetMaxConcurrency() const {
  return GetMaxConcurrency(TS_UNCHECKED_READ(state_).Load().worker_count());
}

size_t JobTaskSource::GetMaxConcurrency(size_t worker_count) const {
  return std::min(max_concurrency_callback_.Run(worker_count),
                  kMaxWorkersPerJob);
}

uint8_t JobTaskSource::AcquireTaskId() {
  static_assert(kMaxWorkersPerJob <= sizeof(assigned_task_ids_) * 8,
                "TaskId bitfield isn't big enough to fit kMaxWorkersPerJob.");
  uint32_t assigned_task_ids =
      assigned_task_ids_.load(std::memory_order_relaxed);
  uint32_t new_assigned_task_ids = 0;
  int task_id = 0;
  // memory_order_acquire on success, matched with memory_order_release in
  // ReleaseTaskId() so that operations done by previous threads that had
  // the same task_id become visible to the current thread.
  do {
    // Count trailing one bits. This is the id of the right-most 0-bit in
    // |assigned_task_ids|.
    task_id = std::countr_one(assigned_task_ids);
    new_assigned_task_ids = assigned_task_ids | (uint32_t(1) << task_id);
  } while (!assigned_task_ids_.compare_exchange_weak(
      assigned_task_ids, new_assigned_task_ids, std::memory_order_acquire,
      std::memory_order_relaxed));
  return static_cast<uint8_t>(task_id);
}

void JobTaskSource::ReleaseTaskId(uint8_t task_id) {
  // memory_order_release to match AcquireTaskId().
  uint32_t previous_task_ids = assigned_task_ids_.fetch_and(
      ~(uint32_t(1) << task_id), std::memory_order_release);
  DCHECK(previous_task_ids & (uint32_t(1) << task_id));
}

bool JobTaskSource::ShouldYield() {
  // It is safe to read |join_flag_| and |state_| without a lock since these
  // variables are atomic, keeping in mind that threads may not immediately see
  // the new value when it is updated.
  return TS_UNCHECKED_READ(join_flag_).ShouldWorkerYield() ||
         TS_UNCHECKED_READ(state_).Load().is_canceled();
}

Task JobTaskSource::TakeTask(TaskSource::Transaction* transaction) {
  // JobTaskSource members are not lock-protected so no need to acquire a lock
  // if |transaction| is nullptr.
  DCHECK_GT(TS_UNCHECKED_READ(state_).Load().worker_count(), 0U);
  DCHECK(primary_task_);
  return {task_metadata_, primary_task_};
}

bool JobTaskSource::DidProcessTask(TaskSource::Transaction* /*transaction*/) {
  // Lock is needed to access |join_flag_| below and signal
  // |worker_released_condition_|.
  CheckedAutoLock auto_lock(worker_lock_);
  const auto state_before_sub = state_.DecrementWorkerCount();

  if (join_flag_.ShouldWorkerSignal()) {
    worker_released_condition_->Signal();
  }

  // A canceled task source should never get re-enqueued.
  if (state_before_sub.is_canceled()) {
    return false;
  }

  DCHECK_GT(state_before_sub.worker_count(), 0U);

  // Re-enqueue the TaskSource if the task ran and the worker count is below the
  // max concurrency.
  // |worker_count - 1| to exclude the returning thread.
  return state_before_sub.worker_count() <=
         GetMaxConcurrency(state_before_sub.worker_count() - 1);
}

// This is a no-op and should always return true.
bool JobTaskSource::WillReEnqueue(TimeTicks now,
                                  TaskSource::Transaction* /*transaction*/) {
  return true;
}

// This is a no-op.
bool JobTaskSource::OnBecomeReady() {
  return false;
}

TaskSourceSortKey JobTaskSource::GetSortKey() const {
  return TaskSourceSortKey(priority_racy(), ready_time_,
                           TS_UNCHECKED_READ(state_).Load().worker_count());
}

// This function isn't expected to be called since a job is never delayed.
// However, the class still needs to provide an override.
TimeTicks JobTaskSource::GetDelayedSortKey() const {
  return TimeTicks();
}

// This function isn't expected to be called since a job is never delayed.
// However, the class still needs to provide an override.
bool JobTaskSource::HasReadyTasks(TimeTicks now) const {
  NOTREACHED();
}

std::optional<Task> JobTaskSource::Clear(TaskSource::Transaction* transaction) {
  Cancel();

  // Nothing is cleared since other workers might still racily run tasks. For
  // simplicity, the destructor will take care of it once all references are
  // released.
  return std::nullopt;
}

}  // namespace internal
}  // namespace base