1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273

base / test / sequenced_task_runner_test_template.cc [blame]

// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/test/sequenced_task_runner_test_template.h"

#include <ostream>

#include "base/location.h"

namespace base {

namespace internal {

TaskEvent::TaskEvent(int i, Type type)
  : i(i), type(type) {
}

SequencedTaskTracker::SequencedTaskTracker()
    : next_post_i_(0),
      task_end_count_(0),
      task_end_cv_(&lock_) {
}

void SequencedTaskTracker::PostWrappedNonNestableTask(
    SequencedTaskRunner* task_runner,
    OnceClosure task) {
  AutoLock event_lock(lock_);
  const int post_i = next_post_i_++;
  auto wrapped_task =
      BindOnce(&SequencedTaskTracker::RunTask, this, std::move(task), post_i);
  task_runner->PostNonNestableTask(FROM_HERE, std::move(wrapped_task));
  TaskPosted(post_i);
}

void SequencedTaskTracker::PostWrappedNestableTask(
    SequencedTaskRunner* task_runner,
    OnceClosure task) {
  AutoLock event_lock(lock_);
  const int post_i = next_post_i_++;
  auto wrapped_task =
      BindOnce(&SequencedTaskTracker::RunTask, this, std::move(task), post_i);
  task_runner->PostTask(FROM_HERE, std::move(wrapped_task));
  TaskPosted(post_i);
}

void SequencedTaskTracker::PostWrappedDelayedNonNestableTask(
    SequencedTaskRunner* task_runner,
    OnceClosure task,
    TimeDelta delay) {
  AutoLock event_lock(lock_);
  const int post_i = next_post_i_++;
  auto wrapped_task =
      BindOnce(&SequencedTaskTracker::RunTask, this, std::move(task), post_i);
  task_runner->PostNonNestableDelayedTask(FROM_HERE, std::move(wrapped_task),
                                          delay);
  TaskPosted(post_i);
}

void SequencedTaskTracker::PostNonNestableTasks(
    SequencedTaskRunner* task_runner,
    int task_count) {
  for (int i = 0; i < task_count; ++i) {
    PostWrappedNonNestableTask(task_runner, OnceClosure());
  }
}

void SequencedTaskTracker::RunTask(OnceClosure task, int task_i) {
  TaskStarted(task_i);
  if (!task.is_null())
    std::move(task).Run();
  TaskEnded(task_i);
}

void SequencedTaskTracker::TaskPosted(int i) {
  // Caller must own |lock_|.
  events_.push_back(TaskEvent(i, TaskEvent::POST));
}

void SequencedTaskTracker::TaskStarted(int i) {
  AutoLock lock(lock_);
  events_.push_back(TaskEvent(i, TaskEvent::START));
}

void SequencedTaskTracker::TaskEnded(int i) {
  AutoLock lock(lock_);
  events_.push_back(TaskEvent(i, TaskEvent::END));
  ++task_end_count_;
  task_end_cv_.Signal();
}

const std::vector<TaskEvent>&
SequencedTaskTracker::GetTaskEvents() const {
  return events_;
}

void SequencedTaskTracker::WaitForCompletedTasks(int count) {
  AutoLock lock(lock_);
  while (task_end_count_ < count)
    task_end_cv_.Wait();
}

SequencedTaskTracker::~SequencedTaskTracker() = default;

void PrintTo(const TaskEvent& event, std::ostream* os) {
  *os << "(i=" << event.i << ", type=";
  switch (event.type) {
    case TaskEvent::POST: *os << "POST"; break;
    case TaskEvent::START: *os << "START"; break;
    case TaskEvent::END: *os << "END"; break;
  }
  *os << ")";
}

namespace {

// Returns the task ordinals for the task event type |type| in the order that
// they were recorded.
std::vector<int> GetEventTypeOrder(const std::vector<TaskEvent>& events,
                                   TaskEvent::Type type) {
  std::vector<int> tasks;
  std::vector<TaskEvent>::const_iterator event;
  for (event = events.begin(); event != events.end(); ++event) {
    if (event->type == type)
      tasks.push_back(event->i);
  }
  return tasks;
}

// Returns all task events for task |task_i|.
std::vector<TaskEvent::Type> GetEventsForTask(
    const std::vector<TaskEvent>& events,
    int task_i) {
  std::vector<TaskEvent::Type> task_event_orders;
  std::vector<TaskEvent>::const_iterator event;
  for (event = events.begin(); event != events.end(); ++event) {
    if (event->i == task_i)
      task_event_orders.push_back(event->type);
  }
  return task_event_orders;
}

// Checks that the task events for each task in |events| occur in the order
// {POST, START, END}, and that there is only one instance of each event type
// per task.
::testing::AssertionResult CheckEventOrdersForEachTask(
    const std::vector<TaskEvent>& events,
    int task_count) {
  std::vector<TaskEvent::Type> expected_order;
  expected_order.push_back(TaskEvent::POST);
  expected_order.push_back(TaskEvent::START);
  expected_order.push_back(TaskEvent::END);

  // This is O(n^2), but it runs fast enough currently so is not worth
  // optimizing.
  for (int i = 0; i < task_count; ++i) {
    const std::vector<TaskEvent::Type> task_events =
        GetEventsForTask(events, i);
    if (task_events != expected_order) {
      return ::testing::AssertionFailure()
          << "Events for task " << i << " are out of order; expected: "
          << ::testing::PrintToString(expected_order) << "; actual: "
          << ::testing::PrintToString(task_events);
    }
  }
  return ::testing::AssertionSuccess();
}

// Checks that no two tasks were running at the same time. I.e. the only
// events allowed between the START and END of a task are the POSTs of other
// tasks.
::testing::AssertionResult CheckNoTaskRunsOverlap(
    const std::vector<TaskEvent>& events) {
  // If > -1, we're currently inside a START, END pair.
  int current_task_i = -1;

  std::vector<TaskEvent>::const_iterator event;
  for (event = events.begin(); event != events.end(); ++event) {
    bool spurious_event_found = false;

    if (current_task_i == -1) {  // Not inside a START, END pair.
      switch (event->type) {
        case TaskEvent::POST:
          break;
        case TaskEvent::START:
          current_task_i = event->i;
          break;
        case TaskEvent::END:
          spurious_event_found = true;
          break;
      }

    } else {  // Inside a START, END pair.
      bool interleaved_task_detected = false;

      switch (event->type) {
        case TaskEvent::POST:
          if (event->i == current_task_i)
            spurious_event_found = true;
          break;
        case TaskEvent::START:
          interleaved_task_detected = true;
          break;
        case TaskEvent::END:
          if (event->i != current_task_i)
            interleaved_task_detected = true;
          else
            current_task_i = -1;
          break;
      }

      if (interleaved_task_detected) {
        return ::testing::AssertionFailure()
            << "Found event " << ::testing::PrintToString(*event)
            << " between START and END events for task " << current_task_i
            << "; event dump: " << ::testing::PrintToString(events);
      }
    }

    if (spurious_event_found) {
      const int event_i = event - events.begin();
      return ::testing::AssertionFailure()
          << "Spurious event " << ::testing::PrintToString(*event)
          << " at position " << event_i << "; event dump: "
          << ::testing::PrintToString(events);
    }
  }

  return ::testing::AssertionSuccess();
}

}  // namespace

::testing::AssertionResult CheckNonNestableInvariants(
    const std::vector<TaskEvent>& events,
    int task_count) {
  const std::vector<int> post_order =
      GetEventTypeOrder(events, TaskEvent::POST);
  const std::vector<int> start_order =
      GetEventTypeOrder(events, TaskEvent::START);
  const std::vector<int> end_order =
      GetEventTypeOrder(events, TaskEvent::END);

  if (start_order != post_order) {
    return ::testing::AssertionFailure()
        << "Expected START order (which equals actual POST order): \n"
        << ::testing::PrintToString(post_order)
        << "\n Actual START order:\n"
        << ::testing::PrintToString(start_order);
  }

  if (end_order != post_order) {
    return ::testing::AssertionFailure()
        << "Expected END order (which equals actual POST order): \n"
        << ::testing::PrintToString(post_order)
        << "\n Actual END order:\n"
        << ::testing::PrintToString(end_order);
  }

  const ::testing::AssertionResult result =
      CheckEventOrdersForEachTask(events, task_count);
  if (!result)
    return result;

  return CheckNoTaskRunsOverlap(events);
}

}  // namespace internal

// This suite is instantiated in binaries that use //base:test_support.
GTEST_ALLOW_UNINSTANTIATED_PARAMETERIZED_TEST(SequencedTaskRunnerTest);

}  // namespace base