1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796

base / third_party / double_conversion / double-conversion / bignum.cc [blame]

// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <algorithm>
#include <cstring>

#include "bignum.h"
#include "utils.h"

namespace double_conversion {

Bignum::Chunk& Bignum::RawBigit(const int index) {
  DOUBLE_CONVERSION_ASSERT(static_cast<unsigned>(index) < kBigitCapacity);
  return bigits_buffer_[index];
}


const Bignum::Chunk& Bignum::RawBigit(const int index) const {
  DOUBLE_CONVERSION_ASSERT(static_cast<unsigned>(index) < kBigitCapacity);
  return bigits_buffer_[index];
}


template<typename S>
static int BitSize(const S value) {
  (void) value;  // Mark variable as used.
  return 8 * sizeof(value);
}

// Guaranteed to lie in one Bigit.
void Bignum::AssignUInt16(const uint16_t value) {
  DOUBLE_CONVERSION_ASSERT(kBigitSize >= BitSize(value));
  Zero();
  if (value > 0) {
    RawBigit(0) = value;
    used_bigits_ = 1;
  }
}


void Bignum::AssignUInt64(uint64_t value) {
  Zero();
  for(int i = 0; value > 0; ++i) {
    RawBigit(i) = value & kBigitMask;
    value >>= kBigitSize;
    ++used_bigits_;
  }
}


void Bignum::AssignBignum(const Bignum& other) {
  exponent_ = other.exponent_;
  for (int i = 0; i < other.used_bigits_; ++i) {
    RawBigit(i) = other.RawBigit(i);
  }
  used_bigits_ = other.used_bigits_;
}


static uint64_t ReadUInt64(const Vector<const char> buffer,
                           const int from,
                           const int digits_to_read) {
  uint64_t result = 0;
  for (int i = from; i < from + digits_to_read; ++i) {
    const int digit = buffer[i] - '0';
    DOUBLE_CONVERSION_ASSERT(0 <= digit && digit <= 9);
    result = result * 10 + digit;
  }
  return result;
}


void Bignum::AssignDecimalString(const Vector<const char> value) {
  // 2^64 = 18446744073709551616 > 10^19
  static const int kMaxUint64DecimalDigits = 19;
  Zero();
  int length = value.length();
  unsigned pos = 0;
  // Let's just say that each digit needs 4 bits.
  while (length >= kMaxUint64DecimalDigits) {
    const uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
    pos += kMaxUint64DecimalDigits;
    length -= kMaxUint64DecimalDigits;
    MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
    AddUInt64(digits);
  }
  const uint64_t digits = ReadUInt64(value, pos, length);
  MultiplyByPowerOfTen(length);
  AddUInt64(digits);
  Clamp();
}


static uint64_t HexCharValue(const int c) {
  if ('0' <= c && c <= '9') {
    return c - '0';
  }
  if ('a' <= c && c <= 'f') {
    return 10 + c - 'a';
  }
  DOUBLE_CONVERSION_ASSERT('A' <= c && c <= 'F');
  return 10 + c - 'A';
}


// Unlike AssignDecimalString(), this function is "only" used
// for unit-tests and therefore not performance critical.
void Bignum::AssignHexString(Vector<const char> value) {
  Zero();
  // Required capacity could be reduced by ignoring leading zeros.
  EnsureCapacity(((value.length() * 4) + kBigitSize - 1) / kBigitSize);
  DOUBLE_CONVERSION_ASSERT(sizeof(uint64_t) * 8 >= kBigitSize + 4);  // TODO: static_assert
  // Accumulates converted hex digits until at least kBigitSize bits.
  // Works with non-factor-of-four kBigitSizes.
  uint64_t tmp = 0;  // Accumulates converted hex digits until at least
  for (int cnt = 0; !value.is_empty(); value.pop_back()) {
    tmp |= (HexCharValue(value.last()) << cnt);
    if ((cnt += 4) >= kBigitSize) {
      RawBigit(used_bigits_++) = (tmp & kBigitMask);
      cnt -= kBigitSize;
      tmp >>= kBigitSize;
    }
  }
  if (tmp > 0) {
    RawBigit(used_bigits_++) = tmp;
  }
  Clamp();
}


void Bignum::AddUInt64(const uint64_t operand) {
  if (operand == 0) {
    return;
  }
  Bignum other;
  other.AssignUInt64(operand);
  AddBignum(other);
}


void Bignum::AddBignum(const Bignum& other) {
  DOUBLE_CONVERSION_ASSERT(IsClamped());
  DOUBLE_CONVERSION_ASSERT(other.IsClamped());

  // If this has a greater exponent than other append zero-bigits to this.
  // After this call exponent_ <= other.exponent_.
  Align(other);

  // There are two possibilities:
  //   aaaaaaaaaaa 0000  (where the 0s represent a's exponent)
  //     bbbbb 00000000
  //   ----------------
  //   ccccccccccc 0000
  // or
  //    aaaaaaaaaa 0000
  //  bbbbbbbbb 0000000
  //  -----------------
  //  cccccccccccc 0000
  // In both cases we might need a carry bigit.

  EnsureCapacity(1 + (std::max)(BigitLength(), other.BigitLength()) - exponent_);
  Chunk carry = 0;
  int bigit_pos = other.exponent_ - exponent_;
  DOUBLE_CONVERSION_ASSERT(bigit_pos >= 0);
  for (int i = used_bigits_; i < bigit_pos; ++i) {
    RawBigit(i) = 0;
  }
  for (int i = 0; i < other.used_bigits_; ++i) {
    const Chunk my = (bigit_pos < used_bigits_) ? RawBigit(bigit_pos) : 0;
    const Chunk sum = my + other.RawBigit(i) + carry;
    RawBigit(bigit_pos) = sum & kBigitMask;
    carry = sum >> kBigitSize;
    ++bigit_pos;
  }
  while (carry != 0) {
    const Chunk my = (bigit_pos < used_bigits_) ? RawBigit(bigit_pos) : 0;
    const Chunk sum = my + carry;
    RawBigit(bigit_pos) = sum & kBigitMask;
    carry = sum >> kBigitSize;
    ++bigit_pos;
  }
  used_bigits_ = (std::max)(bigit_pos, static_cast<int>(used_bigits_));
  DOUBLE_CONVERSION_ASSERT(IsClamped());
}


void Bignum::SubtractBignum(const Bignum& other) {
  DOUBLE_CONVERSION_ASSERT(IsClamped());
  DOUBLE_CONVERSION_ASSERT(other.IsClamped());
  // We require this to be bigger than other.
  DOUBLE_CONVERSION_ASSERT(LessEqual(other, *this));

  Align(other);

  const int offset = other.exponent_ - exponent_;
  Chunk borrow = 0;
  int i;
  for (i = 0; i < other.used_bigits_; ++i) {
    DOUBLE_CONVERSION_ASSERT((borrow == 0) || (borrow == 1));
    const Chunk difference = RawBigit(i + offset) - other.RawBigit(i) - borrow;
    RawBigit(i + offset) = difference & kBigitMask;
    borrow = difference >> (kChunkSize - 1);
  }
  while (borrow != 0) {
    const Chunk difference = RawBigit(i + offset) - borrow;
    RawBigit(i + offset) = difference & kBigitMask;
    borrow = difference >> (kChunkSize - 1);
    ++i;
  }
  Clamp();
}


void Bignum::ShiftLeft(const int shift_amount) {
  if (used_bigits_ == 0) {
    return;
  }
  exponent_ += (shift_amount / kBigitSize);
  const int local_shift = shift_amount % kBigitSize;
  EnsureCapacity(used_bigits_ + 1);
  BigitsShiftLeft(local_shift);
}


void Bignum::MultiplyByUInt32(const uint32_t factor) {
  if (factor == 1) {
    return;
  }
  if (factor == 0) {
    Zero();
    return;
  }
  if (used_bigits_ == 0) {
    return;
  }
  // The product of a bigit with the factor is of size kBigitSize + 32.
  // Assert that this number + 1 (for the carry) fits into double chunk.
  DOUBLE_CONVERSION_ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
  DoubleChunk carry = 0;
  for (int i = 0; i < used_bigits_; ++i) {
    const DoubleChunk product = static_cast<DoubleChunk>(factor) * RawBigit(i) + carry;
    RawBigit(i) = static_cast<Chunk>(product & kBigitMask);
    carry = (product >> kBigitSize);
  }
  while (carry != 0) {
    EnsureCapacity(used_bigits_ + 1);
    RawBigit(used_bigits_) = carry & kBigitMask;
    used_bigits_++;
    carry >>= kBigitSize;
  }
}


void Bignum::MultiplyByUInt64(const uint64_t factor) {
  if (factor == 1) {
    return;
  }
  if (factor == 0) {
    Zero();
    return;
  }
  if (used_bigits_ == 0) {
    return;
  }
  DOUBLE_CONVERSION_ASSERT(kBigitSize < 32);
  uint64_t carry = 0;
  const uint64_t low = factor & 0xFFFFFFFF;
  const uint64_t high = factor >> 32;
  for (int i = 0; i < used_bigits_; ++i) {
    const uint64_t product_low = low * RawBigit(i);
    const uint64_t product_high = high * RawBigit(i);
    const uint64_t tmp = (carry & kBigitMask) + product_low;
    RawBigit(i) = tmp & kBigitMask;
    carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
        (product_high << (32 - kBigitSize));
  }
  while (carry != 0) {
    EnsureCapacity(used_bigits_ + 1);
    RawBigit(used_bigits_) = carry & kBigitMask;
    used_bigits_++;
    carry >>= kBigitSize;
  }
}


void Bignum::MultiplyByPowerOfTen(const int exponent) {
  static const uint64_t kFive27 = DOUBLE_CONVERSION_UINT64_2PART_C(0x6765c793, fa10079d);
  static const uint16_t kFive1 = 5;
  static const uint16_t kFive2 = kFive1 * 5;
  static const uint16_t kFive3 = kFive2 * 5;
  static const uint16_t kFive4 = kFive3 * 5;
  static const uint16_t kFive5 = kFive4 * 5;
  static const uint16_t kFive6 = kFive5 * 5;
  static const uint32_t kFive7 = kFive6 * 5;
  static const uint32_t kFive8 = kFive7 * 5;
  static const uint32_t kFive9 = kFive8 * 5;
  static const uint32_t kFive10 = kFive9 * 5;
  static const uint32_t kFive11 = kFive10 * 5;
  static const uint32_t kFive12 = kFive11 * 5;
  static const uint32_t kFive13 = kFive12 * 5;
  static const uint32_t kFive1_to_12[] =
      { kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
        kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };

  DOUBLE_CONVERSION_ASSERT(exponent >= 0);

  if (exponent == 0) {
    return;
  }
  if (used_bigits_ == 0) {
    return;
  }
  // We shift by exponent at the end just before returning.
  int remaining_exponent = exponent;
  while (remaining_exponent >= 27) {
    MultiplyByUInt64(kFive27);
    remaining_exponent -= 27;
  }
  while (remaining_exponent >= 13) {
    MultiplyByUInt32(kFive13);
    remaining_exponent -= 13;
  }
  if (remaining_exponent > 0) {
    MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
  }
  ShiftLeft(exponent);
}


void Bignum::Square() {
  DOUBLE_CONVERSION_ASSERT(IsClamped());
  const int product_length = 2 * used_bigits_;
  EnsureCapacity(product_length);

  // Comba multiplication: compute each column separately.
  // Example: r = a2a1a0 * b2b1b0.
  //    r =  1    * a0b0 +
  //        10    * (a1b0 + a0b1) +
  //        100   * (a2b0 + a1b1 + a0b2) +
  //        1000  * (a2b1 + a1b2) +
  //        10000 * a2b2
  //
  // In the worst case we have to accumulate nb-digits products of digit*digit.
  //
  // Assert that the additional number of bits in a DoubleChunk are enough to
  // sum up used_digits of Bigit*Bigit.
  if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_bigits_) {
    DOUBLE_CONVERSION_UNIMPLEMENTED();
  }
  DoubleChunk accumulator = 0;
  // First shift the digits so we don't overwrite them.
  const int copy_offset = used_bigits_;
  for (int i = 0; i < used_bigits_; ++i) {
    RawBigit(copy_offset + i) = RawBigit(i);
  }
  // We have two loops to avoid some 'if's in the loop.
  for (int i = 0; i < used_bigits_; ++i) {
    // Process temporary digit i with power i.
    // The sum of the two indices must be equal to i.
    int bigit_index1 = i;
    int bigit_index2 = 0;
    // Sum all of the sub-products.
    while (bigit_index1 >= 0) {
      const Chunk chunk1 = RawBigit(copy_offset + bigit_index1);
      const Chunk chunk2 = RawBigit(copy_offset + bigit_index2);
      accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
      bigit_index1--;
      bigit_index2++;
    }
    RawBigit(i) = static_cast<Chunk>(accumulator) & kBigitMask;
    accumulator >>= kBigitSize;
  }
  for (int i = used_bigits_; i < product_length; ++i) {
    int bigit_index1 = used_bigits_ - 1;
    int bigit_index2 = i - bigit_index1;
    // Invariant: sum of both indices is again equal to i.
    // Inner loop runs 0 times on last iteration, emptying accumulator.
    while (bigit_index2 < used_bigits_) {
      const Chunk chunk1 = RawBigit(copy_offset + bigit_index1);
      const Chunk chunk2 = RawBigit(copy_offset + bigit_index2);
      accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
      bigit_index1--;
      bigit_index2++;
    }
    // The overwritten RawBigit(i) will never be read in further loop iterations,
    // because bigit_index1 and bigit_index2 are always greater
    // than i - used_bigits_.
    RawBigit(i) = static_cast<Chunk>(accumulator) & kBigitMask;
    accumulator >>= kBigitSize;
  }
  // Since the result was guaranteed to lie inside the number the
  // accumulator must be 0 now.
  DOUBLE_CONVERSION_ASSERT(accumulator == 0);

  // Don't forget to update the used_digits and the exponent.
  used_bigits_ = product_length;
  exponent_ *= 2;
  Clamp();
}


void Bignum::AssignPowerUInt16(uint16_t base, const int power_exponent) {
  DOUBLE_CONVERSION_ASSERT(base != 0);
  DOUBLE_CONVERSION_ASSERT(power_exponent >= 0);
  if (power_exponent == 0) {
    AssignUInt16(1);
    return;
  }
  Zero();
  int shifts = 0;
  // We expect base to be in range 2-32, and most often to be 10.
  // It does not make much sense to implement different algorithms for counting
  // the bits.
  while ((base & 1) == 0) {
    base >>= 1;
    shifts++;
  }
  int bit_size = 0;
  int tmp_base = base;
  while (tmp_base != 0) {
    tmp_base >>= 1;
    bit_size++;
  }
  const int final_size = bit_size * power_exponent;
  // 1 extra bigit for the shifting, and one for rounded final_size.
  EnsureCapacity(final_size / kBigitSize + 2);

  // Left to Right exponentiation.
  int mask = 1;
  while (power_exponent >= mask) mask <<= 1;

  // The mask is now pointing to the bit above the most significant 1-bit of
  // power_exponent.
  // Get rid of first 1-bit;
  mask >>= 2;
  uint64_t this_value = base;

  bool delayed_multiplication = false;
  const uint64_t max_32bits = 0xFFFFFFFF;
  while (mask != 0 && this_value <= max_32bits) {
    this_value = this_value * this_value;
    // Verify that there is enough space in this_value to perform the
    // multiplication.  The first bit_size bits must be 0.
    if ((power_exponent & mask) != 0) {
      DOUBLE_CONVERSION_ASSERT(bit_size > 0);
      const uint64_t base_bits_mask =
        ~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
      const bool high_bits_zero = (this_value & base_bits_mask) == 0;
      if (high_bits_zero) {
        this_value *= base;
      } else {
        delayed_multiplication = true;
      }
    }
    mask >>= 1;
  }
  AssignUInt64(this_value);
  if (delayed_multiplication) {
    MultiplyByUInt32(base);
  }

  // Now do the same thing as a bignum.
  while (mask != 0) {
    Square();
    if ((power_exponent & mask) != 0) {
      MultiplyByUInt32(base);
    }
    mask >>= 1;
  }

  // And finally add the saved shifts.
  ShiftLeft(shifts * power_exponent);
}


// Precondition: this/other < 16bit.
uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
  DOUBLE_CONVERSION_ASSERT(IsClamped());
  DOUBLE_CONVERSION_ASSERT(other.IsClamped());
  DOUBLE_CONVERSION_ASSERT(other.used_bigits_ > 0);

  // Easy case: if we have less digits than the divisor than the result is 0.
  // Note: this handles the case where this == 0, too.
  if (BigitLength() < other.BigitLength()) {
    return 0;
  }

  Align(other);

  uint16_t result = 0;

  // Start by removing multiples of 'other' until both numbers have the same
  // number of digits.
  while (BigitLength() > other.BigitLength()) {
    // This naive approach is extremely inefficient if `this` divided by other
    // is big. This function is implemented for doubleToString where
    // the result should be small (less than 10).
    DOUBLE_CONVERSION_ASSERT(other.RawBigit(other.used_bigits_ - 1) >= ((1 << kBigitSize) / 16));
    DOUBLE_CONVERSION_ASSERT(RawBigit(used_bigits_ - 1) < 0x10000);
    // Remove the multiples of the first digit.
    // Example this = 23 and other equals 9. -> Remove 2 multiples.
    result += static_cast<uint16_t>(RawBigit(used_bigits_ - 1));
    SubtractTimes(other, RawBigit(used_bigits_ - 1));
  }

  DOUBLE_CONVERSION_ASSERT(BigitLength() == other.BigitLength());

  // Both bignums are at the same length now.
  // Since other has more than 0 digits we know that the access to
  // RawBigit(used_bigits_ - 1) is safe.
  const Chunk this_bigit = RawBigit(used_bigits_ - 1);
  const Chunk other_bigit = other.RawBigit(other.used_bigits_ - 1);

  if (other.used_bigits_ == 1) {
    // Shortcut for easy (and common) case.
    int quotient = this_bigit / other_bigit;
    RawBigit(used_bigits_ - 1) = this_bigit - other_bigit * quotient;
    DOUBLE_CONVERSION_ASSERT(quotient < 0x10000);
    result += static_cast<uint16_t>(quotient);
    Clamp();
    return result;
  }

  const int division_estimate = this_bigit / (other_bigit + 1);
  DOUBLE_CONVERSION_ASSERT(division_estimate < 0x10000);
  result += static_cast<uint16_t>(division_estimate);
  SubtractTimes(other, division_estimate);

  if (other_bigit * (division_estimate + 1) > this_bigit) {
    // No need to even try to subtract. Even if other's remaining digits were 0
    // another subtraction would be too much.
    return result;
  }

  while (LessEqual(other, *this)) {
    SubtractBignum(other);
    result++;
  }
  return result;
}


template<typename S>
static int SizeInHexChars(S number) {
  DOUBLE_CONVERSION_ASSERT(number > 0);
  int result = 0;
  while (number != 0) {
    number >>= 4;
    result++;
  }
  return result;
}


static char HexCharOfValue(const int value) {
  DOUBLE_CONVERSION_ASSERT(0 <= value && value <= 16);
  if (value < 10) {
    return static_cast<char>(value + '0');
  }
  return static_cast<char>(value - 10 + 'A');
}


bool Bignum::ToHexString(char* buffer, const int buffer_size) const {
  DOUBLE_CONVERSION_ASSERT(IsClamped());
  // Each bigit must be printable as separate hex-character.
  DOUBLE_CONVERSION_ASSERT(kBigitSize % 4 == 0);
  static const int kHexCharsPerBigit = kBigitSize / 4;

  if (used_bigits_ == 0) {
    if (buffer_size < 2) {
      return false;
    }
    buffer[0] = '0';
    buffer[1] = '\0';
    return true;
  }
  // We add 1 for the terminating '\0' character.
  const int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
    SizeInHexChars(RawBigit(used_bigits_ - 1)) + 1;
  if (needed_chars > buffer_size) {
    return false;
  }
  int string_index = needed_chars - 1;
  buffer[string_index--] = '\0';
  for (int i = 0; i < exponent_; ++i) {
    for (int j = 0; j < kHexCharsPerBigit; ++j) {
      buffer[string_index--] = '0';
    }
  }
  for (int i = 0; i < used_bigits_ - 1; ++i) {
    Chunk current_bigit = RawBigit(i);
    for (int j = 0; j < kHexCharsPerBigit; ++j) {
      buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
      current_bigit >>= 4;
    }
  }
  // And finally the last bigit.
  Chunk most_significant_bigit = RawBigit(used_bigits_ - 1);
  while (most_significant_bigit != 0) {
    buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
    most_significant_bigit >>= 4;
  }
  return true;
}


Bignum::Chunk Bignum::BigitOrZero(const int index) const {
  if (index >= BigitLength()) {
    return 0;
  }
  if (index < exponent_) {
    return 0;
  }
  return RawBigit(index - exponent_);
}


int Bignum::Compare(const Bignum& a, const Bignum& b) {
  DOUBLE_CONVERSION_ASSERT(a.IsClamped());
  DOUBLE_CONVERSION_ASSERT(b.IsClamped());
  const int bigit_length_a = a.BigitLength();
  const int bigit_length_b = b.BigitLength();
  if (bigit_length_a < bigit_length_b) {
    return -1;
  }
  if (bigit_length_a > bigit_length_b) {
    return +1;
  }
  for (int i = bigit_length_a - 1; i >= (std::min)(a.exponent_, b.exponent_); --i) {
    const Chunk bigit_a = a.BigitOrZero(i);
    const Chunk bigit_b = b.BigitOrZero(i);
    if (bigit_a < bigit_b) {
      return -1;
    }
    if (bigit_a > bigit_b) {
      return +1;
    }
    // Otherwise they are equal up to this digit. Try the next digit.
  }
  return 0;
}


int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
  DOUBLE_CONVERSION_ASSERT(a.IsClamped());
  DOUBLE_CONVERSION_ASSERT(b.IsClamped());
  DOUBLE_CONVERSION_ASSERT(c.IsClamped());
  if (a.BigitLength() < b.BigitLength()) {
    return PlusCompare(b, a, c);
  }
  if (a.BigitLength() + 1 < c.BigitLength()) {
    return -1;
  }
  if (a.BigitLength() > c.BigitLength()) {
    return +1;
  }
  // The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
  // 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
  // of 'a'.
  if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
    return -1;
  }

  Chunk borrow = 0;
  // Starting at min_exponent all digits are == 0. So no need to compare them.
  const int min_exponent = (std::min)((std::min)(a.exponent_, b.exponent_), c.exponent_);
  for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
    const Chunk chunk_a = a.BigitOrZero(i);
    const Chunk chunk_b = b.BigitOrZero(i);
    const Chunk chunk_c = c.BigitOrZero(i);
    const Chunk sum = chunk_a + chunk_b;
    if (sum > chunk_c + borrow) {
      return +1;
    } else {
      borrow = chunk_c + borrow - sum;
      if (borrow > 1) {
        return -1;
      }
      borrow <<= kBigitSize;
    }
  }
  if (borrow == 0) {
    return 0;
  }
  return -1;
}


void Bignum::Clamp() {
  while (used_bigits_ > 0 && RawBigit(used_bigits_ - 1) == 0) {
    used_bigits_--;
  }
  if (used_bigits_ == 0) {
    // Zero.
    exponent_ = 0;
  }
}


void Bignum::Align(const Bignum& other) {
  if (exponent_ > other.exponent_) {
    // If "X" represents a "hidden" bigit (by the exponent) then we are in the
    // following case (a == this, b == other):
    // a:  aaaaaaXXXX   or a:   aaaaaXXX
    // b:     bbbbbbX      b: bbbbbbbbXX
    // We replace some of the hidden digits (X) of a with 0 digits.
    // a:  aaaaaa000X   or a:   aaaaa0XX
    const int zero_bigits = exponent_ - other.exponent_;
    EnsureCapacity(used_bigits_ + zero_bigits);
    for (int i = used_bigits_ - 1; i >= 0; --i) {
      RawBigit(i + zero_bigits) = RawBigit(i);
    }
    for (int i = 0; i < zero_bigits; ++i) {
      RawBigit(i) = 0;
    }
    used_bigits_ += zero_bigits;
    exponent_ -= zero_bigits;

    DOUBLE_CONVERSION_ASSERT(used_bigits_ >= 0);
    DOUBLE_CONVERSION_ASSERT(exponent_ >= 0);
  }
}


void Bignum::BigitsShiftLeft(const int shift_amount) {
  DOUBLE_CONVERSION_ASSERT(shift_amount < kBigitSize);
  DOUBLE_CONVERSION_ASSERT(shift_amount >= 0);
  Chunk carry = 0;
  for (int i = 0; i < used_bigits_; ++i) {
    const Chunk new_carry = RawBigit(i) >> (kBigitSize - shift_amount);
    RawBigit(i) = ((RawBigit(i) << shift_amount) + carry) & kBigitMask;
    carry = new_carry;
  }
  if (carry != 0) {
    RawBigit(used_bigits_) = carry;
    used_bigits_++;
  }
}


void Bignum::SubtractTimes(const Bignum& other, const int factor) {
  DOUBLE_CONVERSION_ASSERT(exponent_ <= other.exponent_);
  if (factor < 3) {
    for (int i = 0; i < factor; ++i) {
      SubtractBignum(other);
    }
    return;
  }
  Chunk borrow = 0;
  const int exponent_diff = other.exponent_ - exponent_;
  for (int i = 0; i < other.used_bigits_; ++i) {
    const DoubleChunk product = static_cast<DoubleChunk>(factor) * other.RawBigit(i);
    const DoubleChunk remove = borrow + product;
    const Chunk difference = RawBigit(i + exponent_diff) - (remove & kBigitMask);
    RawBigit(i + exponent_diff) = difference & kBigitMask;
    borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
                                (remove >> kBigitSize));
  }
  for (int i = other.used_bigits_ + exponent_diff; i < used_bigits_; ++i) {
    if (borrow == 0) {
      return;
    }
    const Chunk difference = RawBigit(i) - borrow;
    RawBigit(i) = difference & kBigitMask;
    borrow = difference >> (kChunkSize - 1);
  }
  Clamp();
}


}  // namespace double_conversion