1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
base / third_party / double_conversion / double-conversion / bignum.cc [blame]
// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following
// disclaimer in the documentation and/or other materials provided
// with the distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived
// from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#include <algorithm>
#include <cstring>
#include "bignum.h"
#include "utils.h"
namespace double_conversion {
Bignum::Chunk& Bignum::RawBigit(const int index) {
DOUBLE_CONVERSION_ASSERT(static_cast<unsigned>(index) < kBigitCapacity);
return bigits_buffer_[index];
}
const Bignum::Chunk& Bignum::RawBigit(const int index) const {
DOUBLE_CONVERSION_ASSERT(static_cast<unsigned>(index) < kBigitCapacity);
return bigits_buffer_[index];
}
template<typename S>
static int BitSize(const S value) {
(void) value; // Mark variable as used.
return 8 * sizeof(value);
}
// Guaranteed to lie in one Bigit.
void Bignum::AssignUInt16(const uint16_t value) {
DOUBLE_CONVERSION_ASSERT(kBigitSize >= BitSize(value));
Zero();
if (value > 0) {
RawBigit(0) = value;
used_bigits_ = 1;
}
}
void Bignum::AssignUInt64(uint64_t value) {
Zero();
for(int i = 0; value > 0; ++i) {
RawBigit(i) = value & kBigitMask;
value >>= kBigitSize;
++used_bigits_;
}
}
void Bignum::AssignBignum(const Bignum& other) {
exponent_ = other.exponent_;
for (int i = 0; i < other.used_bigits_; ++i) {
RawBigit(i) = other.RawBigit(i);
}
used_bigits_ = other.used_bigits_;
}
static uint64_t ReadUInt64(const Vector<const char> buffer,
const int from,
const int digits_to_read) {
uint64_t result = 0;
for (int i = from; i < from + digits_to_read; ++i) {
const int digit = buffer[i] - '0';
DOUBLE_CONVERSION_ASSERT(0 <= digit && digit <= 9);
result = result * 10 + digit;
}
return result;
}
void Bignum::AssignDecimalString(const Vector<const char> value) {
// 2^64 = 18446744073709551616 > 10^19
static const int kMaxUint64DecimalDigits = 19;
Zero();
int length = value.length();
unsigned pos = 0;
// Let's just say that each digit needs 4 bits.
while (length >= kMaxUint64DecimalDigits) {
const uint64_t digits = ReadUInt64(value, pos, kMaxUint64DecimalDigits);
pos += kMaxUint64DecimalDigits;
length -= kMaxUint64DecimalDigits;
MultiplyByPowerOfTen(kMaxUint64DecimalDigits);
AddUInt64(digits);
}
const uint64_t digits = ReadUInt64(value, pos, length);
MultiplyByPowerOfTen(length);
AddUInt64(digits);
Clamp();
}
static uint64_t HexCharValue(const int c) {
if ('0' <= c && c <= '9') {
return c - '0';
}
if ('a' <= c && c <= 'f') {
return 10 + c - 'a';
}
DOUBLE_CONVERSION_ASSERT('A' <= c && c <= 'F');
return 10 + c - 'A';
}
// Unlike AssignDecimalString(), this function is "only" used
// for unit-tests and therefore not performance critical.
void Bignum::AssignHexString(Vector<const char> value) {
Zero();
// Required capacity could be reduced by ignoring leading zeros.
EnsureCapacity(((value.length() * 4) + kBigitSize - 1) / kBigitSize);
DOUBLE_CONVERSION_ASSERT(sizeof(uint64_t) * 8 >= kBigitSize + 4); // TODO: static_assert
// Accumulates converted hex digits until at least kBigitSize bits.
// Works with non-factor-of-four kBigitSizes.
uint64_t tmp = 0; // Accumulates converted hex digits until at least
for (int cnt = 0; !value.is_empty(); value.pop_back()) {
tmp |= (HexCharValue(value.last()) << cnt);
if ((cnt += 4) >= kBigitSize) {
RawBigit(used_bigits_++) = (tmp & kBigitMask);
cnt -= kBigitSize;
tmp >>= kBigitSize;
}
}
if (tmp > 0) {
RawBigit(used_bigits_++) = tmp;
}
Clamp();
}
void Bignum::AddUInt64(const uint64_t operand) {
if (operand == 0) {
return;
}
Bignum other;
other.AssignUInt64(operand);
AddBignum(other);
}
void Bignum::AddBignum(const Bignum& other) {
DOUBLE_CONVERSION_ASSERT(IsClamped());
DOUBLE_CONVERSION_ASSERT(other.IsClamped());
// If this has a greater exponent than other append zero-bigits to this.
// After this call exponent_ <= other.exponent_.
Align(other);
// There are two possibilities:
// aaaaaaaaaaa 0000 (where the 0s represent a's exponent)
// bbbbb 00000000
// ----------------
// ccccccccccc 0000
// or
// aaaaaaaaaa 0000
// bbbbbbbbb 0000000
// -----------------
// cccccccccccc 0000
// In both cases we might need a carry bigit.
EnsureCapacity(1 + (std::max)(BigitLength(), other.BigitLength()) - exponent_);
Chunk carry = 0;
int bigit_pos = other.exponent_ - exponent_;
DOUBLE_CONVERSION_ASSERT(bigit_pos >= 0);
for (int i = used_bigits_; i < bigit_pos; ++i) {
RawBigit(i) = 0;
}
for (int i = 0; i < other.used_bigits_; ++i) {
const Chunk my = (bigit_pos < used_bigits_) ? RawBigit(bigit_pos) : 0;
const Chunk sum = my + other.RawBigit(i) + carry;
RawBigit(bigit_pos) = sum & kBigitMask;
carry = sum >> kBigitSize;
++bigit_pos;
}
while (carry != 0) {
const Chunk my = (bigit_pos < used_bigits_) ? RawBigit(bigit_pos) : 0;
const Chunk sum = my + carry;
RawBigit(bigit_pos) = sum & kBigitMask;
carry = sum >> kBigitSize;
++bigit_pos;
}
used_bigits_ = (std::max)(bigit_pos, static_cast<int>(used_bigits_));
DOUBLE_CONVERSION_ASSERT(IsClamped());
}
void Bignum::SubtractBignum(const Bignum& other) {
DOUBLE_CONVERSION_ASSERT(IsClamped());
DOUBLE_CONVERSION_ASSERT(other.IsClamped());
// We require this to be bigger than other.
DOUBLE_CONVERSION_ASSERT(LessEqual(other, *this));
Align(other);
const int offset = other.exponent_ - exponent_;
Chunk borrow = 0;
int i;
for (i = 0; i < other.used_bigits_; ++i) {
DOUBLE_CONVERSION_ASSERT((borrow == 0) || (borrow == 1));
const Chunk difference = RawBigit(i + offset) - other.RawBigit(i) - borrow;
RawBigit(i + offset) = difference & kBigitMask;
borrow = difference >> (kChunkSize - 1);
}
while (borrow != 0) {
const Chunk difference = RawBigit(i + offset) - borrow;
RawBigit(i + offset) = difference & kBigitMask;
borrow = difference >> (kChunkSize - 1);
++i;
}
Clamp();
}
void Bignum::ShiftLeft(const int shift_amount) {
if (used_bigits_ == 0) {
return;
}
exponent_ += (shift_amount / kBigitSize);
const int local_shift = shift_amount % kBigitSize;
EnsureCapacity(used_bigits_ + 1);
BigitsShiftLeft(local_shift);
}
void Bignum::MultiplyByUInt32(const uint32_t factor) {
if (factor == 1) {
return;
}
if (factor == 0) {
Zero();
return;
}
if (used_bigits_ == 0) {
return;
}
// The product of a bigit with the factor is of size kBigitSize + 32.
// Assert that this number + 1 (for the carry) fits into double chunk.
DOUBLE_CONVERSION_ASSERT(kDoubleChunkSize >= kBigitSize + 32 + 1);
DoubleChunk carry = 0;
for (int i = 0; i < used_bigits_; ++i) {
const DoubleChunk product = static_cast<DoubleChunk>(factor) * RawBigit(i) + carry;
RawBigit(i) = static_cast<Chunk>(product & kBigitMask);
carry = (product >> kBigitSize);
}
while (carry != 0) {
EnsureCapacity(used_bigits_ + 1);
RawBigit(used_bigits_) = carry & kBigitMask;
used_bigits_++;
carry >>= kBigitSize;
}
}
void Bignum::MultiplyByUInt64(const uint64_t factor) {
if (factor == 1) {
return;
}
if (factor == 0) {
Zero();
return;
}
if (used_bigits_ == 0) {
return;
}
DOUBLE_CONVERSION_ASSERT(kBigitSize < 32);
uint64_t carry = 0;
const uint64_t low = factor & 0xFFFFFFFF;
const uint64_t high = factor >> 32;
for (int i = 0; i < used_bigits_; ++i) {
const uint64_t product_low = low * RawBigit(i);
const uint64_t product_high = high * RawBigit(i);
const uint64_t tmp = (carry & kBigitMask) + product_low;
RawBigit(i) = tmp & kBigitMask;
carry = (carry >> kBigitSize) + (tmp >> kBigitSize) +
(product_high << (32 - kBigitSize));
}
while (carry != 0) {
EnsureCapacity(used_bigits_ + 1);
RawBigit(used_bigits_) = carry & kBigitMask;
used_bigits_++;
carry >>= kBigitSize;
}
}
void Bignum::MultiplyByPowerOfTen(const int exponent) {
static const uint64_t kFive27 = DOUBLE_CONVERSION_UINT64_2PART_C(0x6765c793, fa10079d);
static const uint16_t kFive1 = 5;
static const uint16_t kFive2 = kFive1 * 5;
static const uint16_t kFive3 = kFive2 * 5;
static const uint16_t kFive4 = kFive3 * 5;
static const uint16_t kFive5 = kFive4 * 5;
static const uint16_t kFive6 = kFive5 * 5;
static const uint32_t kFive7 = kFive6 * 5;
static const uint32_t kFive8 = kFive7 * 5;
static const uint32_t kFive9 = kFive8 * 5;
static const uint32_t kFive10 = kFive9 * 5;
static const uint32_t kFive11 = kFive10 * 5;
static const uint32_t kFive12 = kFive11 * 5;
static const uint32_t kFive13 = kFive12 * 5;
static const uint32_t kFive1_to_12[] =
{ kFive1, kFive2, kFive3, kFive4, kFive5, kFive6,
kFive7, kFive8, kFive9, kFive10, kFive11, kFive12 };
DOUBLE_CONVERSION_ASSERT(exponent >= 0);
if (exponent == 0) {
return;
}
if (used_bigits_ == 0) {
return;
}
// We shift by exponent at the end just before returning.
int remaining_exponent = exponent;
while (remaining_exponent >= 27) {
MultiplyByUInt64(kFive27);
remaining_exponent -= 27;
}
while (remaining_exponent >= 13) {
MultiplyByUInt32(kFive13);
remaining_exponent -= 13;
}
if (remaining_exponent > 0) {
MultiplyByUInt32(kFive1_to_12[remaining_exponent - 1]);
}
ShiftLeft(exponent);
}
void Bignum::Square() {
DOUBLE_CONVERSION_ASSERT(IsClamped());
const int product_length = 2 * used_bigits_;
EnsureCapacity(product_length);
// Comba multiplication: compute each column separately.
// Example: r = a2a1a0 * b2b1b0.
// r = 1 * a0b0 +
// 10 * (a1b0 + a0b1) +
// 100 * (a2b0 + a1b1 + a0b2) +
// 1000 * (a2b1 + a1b2) +
// 10000 * a2b2
//
// In the worst case we have to accumulate nb-digits products of digit*digit.
//
// Assert that the additional number of bits in a DoubleChunk are enough to
// sum up used_digits of Bigit*Bigit.
if ((1 << (2 * (kChunkSize - kBigitSize))) <= used_bigits_) {
DOUBLE_CONVERSION_UNIMPLEMENTED();
}
DoubleChunk accumulator = 0;
// First shift the digits so we don't overwrite them.
const int copy_offset = used_bigits_;
for (int i = 0; i < used_bigits_; ++i) {
RawBigit(copy_offset + i) = RawBigit(i);
}
// We have two loops to avoid some 'if's in the loop.
for (int i = 0; i < used_bigits_; ++i) {
// Process temporary digit i with power i.
// The sum of the two indices must be equal to i.
int bigit_index1 = i;
int bigit_index2 = 0;
// Sum all of the sub-products.
while (bigit_index1 >= 0) {
const Chunk chunk1 = RawBigit(copy_offset + bigit_index1);
const Chunk chunk2 = RawBigit(copy_offset + bigit_index2);
accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
bigit_index1--;
bigit_index2++;
}
RawBigit(i) = static_cast<Chunk>(accumulator) & kBigitMask;
accumulator >>= kBigitSize;
}
for (int i = used_bigits_; i < product_length; ++i) {
int bigit_index1 = used_bigits_ - 1;
int bigit_index2 = i - bigit_index1;
// Invariant: sum of both indices is again equal to i.
// Inner loop runs 0 times on last iteration, emptying accumulator.
while (bigit_index2 < used_bigits_) {
const Chunk chunk1 = RawBigit(copy_offset + bigit_index1);
const Chunk chunk2 = RawBigit(copy_offset + bigit_index2);
accumulator += static_cast<DoubleChunk>(chunk1) * chunk2;
bigit_index1--;
bigit_index2++;
}
// The overwritten RawBigit(i) will never be read in further loop iterations,
// because bigit_index1 and bigit_index2 are always greater
// than i - used_bigits_.
RawBigit(i) = static_cast<Chunk>(accumulator) & kBigitMask;
accumulator >>= kBigitSize;
}
// Since the result was guaranteed to lie inside the number the
// accumulator must be 0 now.
DOUBLE_CONVERSION_ASSERT(accumulator == 0);
// Don't forget to update the used_digits and the exponent.
used_bigits_ = product_length;
exponent_ *= 2;
Clamp();
}
void Bignum::AssignPowerUInt16(uint16_t base, const int power_exponent) {
DOUBLE_CONVERSION_ASSERT(base != 0);
DOUBLE_CONVERSION_ASSERT(power_exponent >= 0);
if (power_exponent == 0) {
AssignUInt16(1);
return;
}
Zero();
int shifts = 0;
// We expect base to be in range 2-32, and most often to be 10.
// It does not make much sense to implement different algorithms for counting
// the bits.
while ((base & 1) == 0) {
base >>= 1;
shifts++;
}
int bit_size = 0;
int tmp_base = base;
while (tmp_base != 0) {
tmp_base >>= 1;
bit_size++;
}
const int final_size = bit_size * power_exponent;
// 1 extra bigit for the shifting, and one for rounded final_size.
EnsureCapacity(final_size / kBigitSize + 2);
// Left to Right exponentiation.
int mask = 1;
while (power_exponent >= mask) mask <<= 1;
// The mask is now pointing to the bit above the most significant 1-bit of
// power_exponent.
// Get rid of first 1-bit;
mask >>= 2;
uint64_t this_value = base;
bool delayed_multiplication = false;
const uint64_t max_32bits = 0xFFFFFFFF;
while (mask != 0 && this_value <= max_32bits) {
this_value = this_value * this_value;
// Verify that there is enough space in this_value to perform the
// multiplication. The first bit_size bits must be 0.
if ((power_exponent & mask) != 0) {
DOUBLE_CONVERSION_ASSERT(bit_size > 0);
const uint64_t base_bits_mask =
~((static_cast<uint64_t>(1) << (64 - bit_size)) - 1);
const bool high_bits_zero = (this_value & base_bits_mask) == 0;
if (high_bits_zero) {
this_value *= base;
} else {
delayed_multiplication = true;
}
}
mask >>= 1;
}
AssignUInt64(this_value);
if (delayed_multiplication) {
MultiplyByUInt32(base);
}
// Now do the same thing as a bignum.
while (mask != 0) {
Square();
if ((power_exponent & mask) != 0) {
MultiplyByUInt32(base);
}
mask >>= 1;
}
// And finally add the saved shifts.
ShiftLeft(shifts * power_exponent);
}
// Precondition: this/other < 16bit.
uint16_t Bignum::DivideModuloIntBignum(const Bignum& other) {
DOUBLE_CONVERSION_ASSERT(IsClamped());
DOUBLE_CONVERSION_ASSERT(other.IsClamped());
DOUBLE_CONVERSION_ASSERT(other.used_bigits_ > 0);
// Easy case: if we have less digits than the divisor than the result is 0.
// Note: this handles the case where this == 0, too.
if (BigitLength() < other.BigitLength()) {
return 0;
}
Align(other);
uint16_t result = 0;
// Start by removing multiples of 'other' until both numbers have the same
// number of digits.
while (BigitLength() > other.BigitLength()) {
// This naive approach is extremely inefficient if `this` divided by other
// is big. This function is implemented for doubleToString where
// the result should be small (less than 10).
DOUBLE_CONVERSION_ASSERT(other.RawBigit(other.used_bigits_ - 1) >= ((1 << kBigitSize) / 16));
DOUBLE_CONVERSION_ASSERT(RawBigit(used_bigits_ - 1) < 0x10000);
// Remove the multiples of the first digit.
// Example this = 23 and other equals 9. -> Remove 2 multiples.
result += static_cast<uint16_t>(RawBigit(used_bigits_ - 1));
SubtractTimes(other, RawBigit(used_bigits_ - 1));
}
DOUBLE_CONVERSION_ASSERT(BigitLength() == other.BigitLength());
// Both bignums are at the same length now.
// Since other has more than 0 digits we know that the access to
// RawBigit(used_bigits_ - 1) is safe.
const Chunk this_bigit = RawBigit(used_bigits_ - 1);
const Chunk other_bigit = other.RawBigit(other.used_bigits_ - 1);
if (other.used_bigits_ == 1) {
// Shortcut for easy (and common) case.
int quotient = this_bigit / other_bigit;
RawBigit(used_bigits_ - 1) = this_bigit - other_bigit * quotient;
DOUBLE_CONVERSION_ASSERT(quotient < 0x10000);
result += static_cast<uint16_t>(quotient);
Clamp();
return result;
}
const int division_estimate = this_bigit / (other_bigit + 1);
DOUBLE_CONVERSION_ASSERT(division_estimate < 0x10000);
result += static_cast<uint16_t>(division_estimate);
SubtractTimes(other, division_estimate);
if (other_bigit * (division_estimate + 1) > this_bigit) {
// No need to even try to subtract. Even if other's remaining digits were 0
// another subtraction would be too much.
return result;
}
while (LessEqual(other, *this)) {
SubtractBignum(other);
result++;
}
return result;
}
template<typename S>
static int SizeInHexChars(S number) {
DOUBLE_CONVERSION_ASSERT(number > 0);
int result = 0;
while (number != 0) {
number >>= 4;
result++;
}
return result;
}
static char HexCharOfValue(const int value) {
DOUBLE_CONVERSION_ASSERT(0 <= value && value <= 16);
if (value < 10) {
return static_cast<char>(value + '0');
}
return static_cast<char>(value - 10 + 'A');
}
bool Bignum::ToHexString(char* buffer, const int buffer_size) const {
DOUBLE_CONVERSION_ASSERT(IsClamped());
// Each bigit must be printable as separate hex-character.
DOUBLE_CONVERSION_ASSERT(kBigitSize % 4 == 0);
static const int kHexCharsPerBigit = kBigitSize / 4;
if (used_bigits_ == 0) {
if (buffer_size < 2) {
return false;
}
buffer[0] = '0';
buffer[1] = '\0';
return true;
}
// We add 1 for the terminating '\0' character.
const int needed_chars = (BigitLength() - 1) * kHexCharsPerBigit +
SizeInHexChars(RawBigit(used_bigits_ - 1)) + 1;
if (needed_chars > buffer_size) {
return false;
}
int string_index = needed_chars - 1;
buffer[string_index--] = '\0';
for (int i = 0; i < exponent_; ++i) {
for (int j = 0; j < kHexCharsPerBigit; ++j) {
buffer[string_index--] = '0';
}
}
for (int i = 0; i < used_bigits_ - 1; ++i) {
Chunk current_bigit = RawBigit(i);
for (int j = 0; j < kHexCharsPerBigit; ++j) {
buffer[string_index--] = HexCharOfValue(current_bigit & 0xF);
current_bigit >>= 4;
}
}
// And finally the last bigit.
Chunk most_significant_bigit = RawBigit(used_bigits_ - 1);
while (most_significant_bigit != 0) {
buffer[string_index--] = HexCharOfValue(most_significant_bigit & 0xF);
most_significant_bigit >>= 4;
}
return true;
}
Bignum::Chunk Bignum::BigitOrZero(const int index) const {
if (index >= BigitLength()) {
return 0;
}
if (index < exponent_) {
return 0;
}
return RawBigit(index - exponent_);
}
int Bignum::Compare(const Bignum& a, const Bignum& b) {
DOUBLE_CONVERSION_ASSERT(a.IsClamped());
DOUBLE_CONVERSION_ASSERT(b.IsClamped());
const int bigit_length_a = a.BigitLength();
const int bigit_length_b = b.BigitLength();
if (bigit_length_a < bigit_length_b) {
return -1;
}
if (bigit_length_a > bigit_length_b) {
return +1;
}
for (int i = bigit_length_a - 1; i >= (std::min)(a.exponent_, b.exponent_); --i) {
const Chunk bigit_a = a.BigitOrZero(i);
const Chunk bigit_b = b.BigitOrZero(i);
if (bigit_a < bigit_b) {
return -1;
}
if (bigit_a > bigit_b) {
return +1;
}
// Otherwise they are equal up to this digit. Try the next digit.
}
return 0;
}
int Bignum::PlusCompare(const Bignum& a, const Bignum& b, const Bignum& c) {
DOUBLE_CONVERSION_ASSERT(a.IsClamped());
DOUBLE_CONVERSION_ASSERT(b.IsClamped());
DOUBLE_CONVERSION_ASSERT(c.IsClamped());
if (a.BigitLength() < b.BigitLength()) {
return PlusCompare(b, a, c);
}
if (a.BigitLength() + 1 < c.BigitLength()) {
return -1;
}
if (a.BigitLength() > c.BigitLength()) {
return +1;
}
// The exponent encodes 0-bigits. So if there are more 0-digits in 'a' than
// 'b' has digits, then the bigit-length of 'a'+'b' must be equal to the one
// of 'a'.
if (a.exponent_ >= b.BigitLength() && a.BigitLength() < c.BigitLength()) {
return -1;
}
Chunk borrow = 0;
// Starting at min_exponent all digits are == 0. So no need to compare them.
const int min_exponent = (std::min)((std::min)(a.exponent_, b.exponent_), c.exponent_);
for (int i = c.BigitLength() - 1; i >= min_exponent; --i) {
const Chunk chunk_a = a.BigitOrZero(i);
const Chunk chunk_b = b.BigitOrZero(i);
const Chunk chunk_c = c.BigitOrZero(i);
const Chunk sum = chunk_a + chunk_b;
if (sum > chunk_c + borrow) {
return +1;
} else {
borrow = chunk_c + borrow - sum;
if (borrow > 1) {
return -1;
}
borrow <<= kBigitSize;
}
}
if (borrow == 0) {
return 0;
}
return -1;
}
void Bignum::Clamp() {
while (used_bigits_ > 0 && RawBigit(used_bigits_ - 1) == 0) {
used_bigits_--;
}
if (used_bigits_ == 0) {
// Zero.
exponent_ = 0;
}
}
void Bignum::Align(const Bignum& other) {
if (exponent_ > other.exponent_) {
// If "X" represents a "hidden" bigit (by the exponent) then we are in the
// following case (a == this, b == other):
// a: aaaaaaXXXX or a: aaaaaXXX
// b: bbbbbbX b: bbbbbbbbXX
// We replace some of the hidden digits (X) of a with 0 digits.
// a: aaaaaa000X or a: aaaaa0XX
const int zero_bigits = exponent_ - other.exponent_;
EnsureCapacity(used_bigits_ + zero_bigits);
for (int i = used_bigits_ - 1; i >= 0; --i) {
RawBigit(i + zero_bigits) = RawBigit(i);
}
for (int i = 0; i < zero_bigits; ++i) {
RawBigit(i) = 0;
}
used_bigits_ += zero_bigits;
exponent_ -= zero_bigits;
DOUBLE_CONVERSION_ASSERT(used_bigits_ >= 0);
DOUBLE_CONVERSION_ASSERT(exponent_ >= 0);
}
}
void Bignum::BigitsShiftLeft(const int shift_amount) {
DOUBLE_CONVERSION_ASSERT(shift_amount < kBigitSize);
DOUBLE_CONVERSION_ASSERT(shift_amount >= 0);
Chunk carry = 0;
for (int i = 0; i < used_bigits_; ++i) {
const Chunk new_carry = RawBigit(i) >> (kBigitSize - shift_amount);
RawBigit(i) = ((RawBigit(i) << shift_amount) + carry) & kBigitMask;
carry = new_carry;
}
if (carry != 0) {
RawBigit(used_bigits_) = carry;
used_bigits_++;
}
}
void Bignum::SubtractTimes(const Bignum& other, const int factor) {
DOUBLE_CONVERSION_ASSERT(exponent_ <= other.exponent_);
if (factor < 3) {
for (int i = 0; i < factor; ++i) {
SubtractBignum(other);
}
return;
}
Chunk borrow = 0;
const int exponent_diff = other.exponent_ - exponent_;
for (int i = 0; i < other.used_bigits_; ++i) {
const DoubleChunk product = static_cast<DoubleChunk>(factor) * other.RawBigit(i);
const DoubleChunk remove = borrow + product;
const Chunk difference = RawBigit(i + exponent_diff) - (remove & kBigitMask);
RawBigit(i + exponent_diff) = difference & kBigitMask;
borrow = static_cast<Chunk>((difference >> (kChunkSize - 1)) +
(remove >> kBigitSize));
}
for (int i = other.used_bigits_ + exponent_diff; i < used_bigits_; ++i) {
if (borrow == 0) {
return;
}
const Chunk difference = RawBigit(i) - borrow;
RawBigit(i) = difference & kBigitMask;
borrow = difference >> (kChunkSize - 1);
}
Clamp();
}
} // namespace double_conversion