1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405

base / third_party / double_conversion / double-conversion / fixed-dtoa.cc [blame]

// Copyright 2010 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#include <cmath>

#include "fixed-dtoa.h"
#include "ieee.h"

namespace double_conversion {

// Represents a 128bit type. This class should be replaced by a native type on
// platforms that support 128bit integers.
class UInt128 {
 public:
  UInt128() : high_bits_(0), low_bits_(0) { }
  UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { }

  void Multiply(uint32_t multiplicand) {
    uint64_t accumulator;

    accumulator = (low_bits_ & kMask32) * multiplicand;
    uint32_t part = static_cast<uint32_t>(accumulator & kMask32);
    accumulator >>= 32;
    accumulator = accumulator + (low_bits_ >> 32) * multiplicand;
    low_bits_ = (accumulator << 32) + part;
    accumulator >>= 32;
    accumulator = accumulator + (high_bits_ & kMask32) * multiplicand;
    part = static_cast<uint32_t>(accumulator & kMask32);
    accumulator >>= 32;
    accumulator = accumulator + (high_bits_ >> 32) * multiplicand;
    high_bits_ = (accumulator << 32) + part;
    DOUBLE_CONVERSION_ASSERT((accumulator >> 32) == 0);
  }

  void Shift(int shift_amount) {
    DOUBLE_CONVERSION_ASSERT(-64 <= shift_amount && shift_amount <= 64);
    if (shift_amount == 0) {
      return;
    } else if (shift_amount == -64) {
      high_bits_ = low_bits_;
      low_bits_ = 0;
    } else if (shift_amount == 64) {
      low_bits_ = high_bits_;
      high_bits_ = 0;
    } else if (shift_amount <= 0) {
      high_bits_ <<= -shift_amount;
      high_bits_ += low_bits_ >> (64 + shift_amount);
      low_bits_ <<= -shift_amount;
    } else {
      low_bits_ >>= shift_amount;
      low_bits_ += high_bits_ << (64 - shift_amount);
      high_bits_ >>= shift_amount;
    }
  }

  // Modifies *this to *this MOD (2^power).
  // Returns *this DIV (2^power).
  int DivModPowerOf2(int power) {
    if (power >= 64) {
      int result = static_cast<int>(high_bits_ >> (power - 64));
      high_bits_ -= static_cast<uint64_t>(result) << (power - 64);
      return result;
    } else {
      uint64_t part_low = low_bits_ >> power;
      uint64_t part_high = high_bits_ << (64 - power);
      int result = static_cast<int>(part_low + part_high);
      high_bits_ = 0;
      low_bits_ -= part_low << power;
      return result;
    }
  }

  bool IsZero() const {
    return high_bits_ == 0 && low_bits_ == 0;
  }

  int BitAt(int position) const {
    if (position >= 64) {
      return static_cast<int>(high_bits_ >> (position - 64)) & 1;
    } else {
      return static_cast<int>(low_bits_ >> position) & 1;
    }
  }

 private:
  static const uint64_t kMask32 = 0xFFFFFFFF;
  // Value == (high_bits_ << 64) + low_bits_
  uint64_t high_bits_;
  uint64_t low_bits_;
};


static const int kDoubleSignificandSize = 53;  // Includes the hidden bit.


static void FillDigits32FixedLength(uint32_t number, int requested_length,
                                    Vector<char> buffer, int* length) {
  for (int i = requested_length - 1; i >= 0; --i) {
    buffer[(*length) + i] = '0' + number % 10;
    number /= 10;
  }
  *length += requested_length;
}


static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) {
  int number_length = 0;
  // We fill the digits in reverse order and exchange them afterwards.
  while (number != 0) {
    int digit = number % 10;
    number /= 10;
    buffer[(*length) + number_length] = static_cast<char>('0' + digit);
    number_length++;
  }
  // Exchange the digits.
  int i = *length;
  int j = *length + number_length - 1;
  while (i < j) {
    char tmp = buffer[i];
    buffer[i] = buffer[j];
    buffer[j] = tmp;
    i++;
    j--;
  }
  *length += number_length;
}


static void FillDigits64FixedLength(uint64_t number,
                                    Vector<char> buffer, int* length) {
  const uint32_t kTen7 = 10000000;
  // For efficiency cut the number into 3 uint32_t parts, and print those.
  uint32_t part2 = static_cast<uint32_t>(number % kTen7);
  number /= kTen7;
  uint32_t part1 = static_cast<uint32_t>(number % kTen7);
  uint32_t part0 = static_cast<uint32_t>(number / kTen7);

  FillDigits32FixedLength(part0, 3, buffer, length);
  FillDigits32FixedLength(part1, 7, buffer, length);
  FillDigits32FixedLength(part2, 7, buffer, length);
}


static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) {
  const uint32_t kTen7 = 10000000;
  // For efficiency cut the number into 3 uint32_t parts, and print those.
  uint32_t part2 = static_cast<uint32_t>(number % kTen7);
  number /= kTen7;
  uint32_t part1 = static_cast<uint32_t>(number % kTen7);
  uint32_t part0 = static_cast<uint32_t>(number / kTen7);

  if (part0 != 0) {
    FillDigits32(part0, buffer, length);
    FillDigits32FixedLength(part1, 7, buffer, length);
    FillDigits32FixedLength(part2, 7, buffer, length);
  } else if (part1 != 0) {
    FillDigits32(part1, buffer, length);
    FillDigits32FixedLength(part2, 7, buffer, length);
  } else {
    FillDigits32(part2, buffer, length);
  }
}


static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) {
  // An empty buffer represents 0.
  if (*length == 0) {
    buffer[0] = '1';
    *decimal_point = 1;
    *length = 1;
    return;
  }
  // Round the last digit until we either have a digit that was not '9' or until
  // we reached the first digit.
  buffer[(*length) - 1]++;
  for (int i = (*length) - 1; i > 0; --i) {
    if (buffer[i] != '0' + 10) {
      return;
    }
    buffer[i] = '0';
    buffer[i - 1]++;
  }
  // If the first digit is now '0' + 10, we would need to set it to '0' and add
  // a '1' in front. However we reach the first digit only if all following
  // digits had been '9' before rounding up. Now all trailing digits are '0' and
  // we simply switch the first digit to '1' and update the decimal-point
  // (indicating that the point is now one digit to the right).
  if (buffer[0] == '0' + 10) {
    buffer[0] = '1';
    (*decimal_point)++;
  }
}


// The given fractionals number represents a fixed-point number with binary
// point at bit (-exponent).
// Preconditions:
//   -128 <= exponent <= 0.
//   0 <= fractionals * 2^exponent < 1
//   The buffer holds the result.
// The function will round its result. During the rounding-process digits not
// generated by this function might be updated, and the decimal-point variable
// might be updated. If this function generates the digits 99 and the buffer
// already contained "199" (thus yielding a buffer of "19999") then a
// rounding-up will change the contents of the buffer to "20000".
static void FillFractionals(uint64_t fractionals, int exponent,
                            int fractional_count, Vector<char> buffer,
                            int* length, int* decimal_point) {
  DOUBLE_CONVERSION_ASSERT(-128 <= exponent && exponent <= 0);
  // 'fractionals' is a fixed-point number, with binary point at bit
  // (-exponent). Inside the function the non-converted remainder of fractionals
  // is a fixed-point number, with binary point at bit 'point'.
  if (-exponent <= 64) {
    // One 64 bit number is sufficient.
    DOUBLE_CONVERSION_ASSERT(fractionals >> 56 == 0);
    int point = -exponent;
    for (int i = 0; i < fractional_count; ++i) {
      if (fractionals == 0) break;
      // Instead of multiplying by 10 we multiply by 5 and adjust the point
      // location. This way the fractionals variable will not overflow.
      // Invariant at the beginning of the loop: fractionals < 2^point.
      // Initially we have: point <= 64 and fractionals < 2^56
      // After each iteration the point is decremented by one.
      // Note that 5^3 = 125 < 128 = 2^7.
      // Therefore three iterations of this loop will not overflow fractionals
      // (even without the subtraction at the end of the loop body). At this
      // time point will satisfy point <= 61 and therefore fractionals < 2^point
      // and any further multiplication of fractionals by 5 will not overflow.
      fractionals *= 5;
      point--;
      int digit = static_cast<int>(fractionals >> point);
      DOUBLE_CONVERSION_ASSERT(digit <= 9);
      buffer[*length] = static_cast<char>('0' + digit);
      (*length)++;
      fractionals -= static_cast<uint64_t>(digit) << point;
    }
    // If the first bit after the point is set we have to round up.
    DOUBLE_CONVERSION_ASSERT(fractionals == 0 || point - 1 >= 0);
    if ((fractionals != 0) && ((fractionals >> (point - 1)) & 1) == 1) {
      RoundUp(buffer, length, decimal_point);
    }
  } else {  // We need 128 bits.
    DOUBLE_CONVERSION_ASSERT(64 < -exponent && -exponent <= 128);
    UInt128 fractionals128 = UInt128(fractionals, 0);
    fractionals128.Shift(-exponent - 64);
    int point = 128;
    for (int i = 0; i < fractional_count; ++i) {
      if (fractionals128.IsZero()) break;
      // As before: instead of multiplying by 10 we multiply by 5 and adjust the
      // point location.
      // This multiplication will not overflow for the same reasons as before.
      fractionals128.Multiply(5);
      point--;
      int digit = fractionals128.DivModPowerOf2(point);
      DOUBLE_CONVERSION_ASSERT(digit <= 9);
      buffer[*length] = static_cast<char>('0' + digit);
      (*length)++;
    }
    if (fractionals128.BitAt(point - 1) == 1) {
      RoundUp(buffer, length, decimal_point);
    }
  }
}


// Removes leading and trailing zeros.
// If leading zeros are removed then the decimal point position is adjusted.
static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) {
  while (*length > 0 && buffer[(*length) - 1] == '0') {
    (*length)--;
  }
  int first_non_zero = 0;
  while (first_non_zero < *length && buffer[first_non_zero] == '0') {
    first_non_zero++;
  }
  if (first_non_zero != 0) {
    for (int i = first_non_zero; i < *length; ++i) {
      buffer[i - first_non_zero] = buffer[i];
    }
    *length -= first_non_zero;
    *decimal_point -= first_non_zero;
  }
}


bool FastFixedDtoa(double v,
                   int fractional_count,
                   Vector<char> buffer,
                   int* length,
                   int* decimal_point) {
  const uint32_t kMaxUInt32 = 0xFFFFFFFF;
  uint64_t significand = Double(v).Significand();
  int exponent = Double(v).Exponent();
  // v = significand * 2^exponent (with significand a 53bit integer).
  // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we
  // don't know how to compute the representation. 2^73 ~= 9.5*10^21.
  // If necessary this limit could probably be increased, but we don't need
  // more.
  if (exponent > 20) return false;
  if (fractional_count > 20) return false;
  *length = 0;
  // At most kDoubleSignificandSize bits of the significand are non-zero.
  // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero
  // bits:  0..11*..0xxx..53*..xx
  if (exponent + kDoubleSignificandSize > 64) {
    // The exponent must be > 11.
    //
    // We know that v = significand * 2^exponent.
    // And the exponent > 11.
    // We simplify the task by dividing v by 10^17.
    // The quotient delivers the first digits, and the remainder fits into a 64
    // bit number.
    // Dividing by 10^17 is equivalent to dividing by 5^17*2^17.
    const uint64_t kFive17 = DOUBLE_CONVERSION_UINT64_2PART_C(0xB1, A2BC2EC5);  // 5^17
    uint64_t divisor = kFive17;
    int divisor_power = 17;
    uint64_t dividend = significand;
    uint32_t quotient;
    uint64_t remainder;
    // Let v = f * 2^e with f == significand and e == exponent.
    // Then need q (quotient) and r (remainder) as follows:
    //   v            = q * 10^17       + r
    //   f * 2^e      = q * 10^17       + r
    //   f * 2^e      = q * 5^17 * 2^17 + r
    // If e > 17 then
    //   f * 2^(e-17) = q * 5^17        + r/2^17
    // else
    //   f  = q * 5^17 * 2^(17-e) + r/2^e
    if (exponent > divisor_power) {
      // We only allow exponents of up to 20 and therefore (17 - e) <= 3
      dividend <<= exponent - divisor_power;
      quotient = static_cast<uint32_t>(dividend / divisor);
      remainder = (dividend % divisor) << divisor_power;
    } else {
      divisor <<= divisor_power - exponent;
      quotient = static_cast<uint32_t>(dividend / divisor);
      remainder = (dividend % divisor) << exponent;
    }
    FillDigits32(quotient, buffer, length);
    FillDigits64FixedLength(remainder, buffer, length);
    *decimal_point = *length;
  } else if (exponent >= 0) {
    // 0 <= exponent <= 11
    significand <<= exponent;
    FillDigits64(significand, buffer, length);
    *decimal_point = *length;
  } else if (exponent > -kDoubleSignificandSize) {
    // We have to cut the number.
    uint64_t integrals = significand >> -exponent;
    uint64_t fractionals = significand - (integrals << -exponent);
    if (integrals > kMaxUInt32) {
      FillDigits64(integrals, buffer, length);
    } else {
      FillDigits32(static_cast<uint32_t>(integrals), buffer, length);
    }
    *decimal_point = *length;
    FillFractionals(fractionals, exponent, fractional_count,
                    buffer, length, decimal_point);
  } else if (exponent < -128) {
    // This configuration (with at most 20 digits) means that all digits must be
    // 0.
    DOUBLE_CONVERSION_ASSERT(fractional_count <= 20);
    buffer[0] = '\0';
    *length = 0;
    *decimal_point = -fractional_count;
  } else {
    *decimal_point = 0;
    FillFractionals(significand, exponent, fractional_count,
                    buffer, length, decimal_point);
  }
  TrimZeros(buffer, length, decimal_point);
  buffer[*length] = '\0';
  if ((*length) == 0) {
    // The string is empty and the decimal_point thus has no importance. Mimick
    // Gay's dtoa and and set it to -fractional_count.
    *decimal_point = -fractional_count;
  }
  return true;
}

}  // namespace double_conversion