1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422

base / third_party / double_conversion / double-conversion / ieee.h [blame]

// Copyright 2012 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
//       notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
//       copyright notice, this list of conditions and the following
//       disclaimer in the documentation and/or other materials provided
//       with the distribution.
//     * Neither the name of Google Inc. nor the names of its
//       contributors may be used to endorse or promote products derived
//       from this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

#ifndef DOUBLE_CONVERSION_DOUBLE_H_
#define DOUBLE_CONVERSION_DOUBLE_H_

#include "diy-fp.h"

namespace double_conversion {

// We assume that doubles and uint64_t have the same endianness.
static uint64_t double_to_uint64(double d) { return BitCast<uint64_t>(d); }
static double uint64_to_double(uint64_t d64) { return BitCast<double>(d64); }
static uint32_t float_to_uint32(float f) { return BitCast<uint32_t>(f); }
static float uint32_to_float(uint32_t d32) { return BitCast<float>(d32); }

// Helper functions for doubles.
class Double {
 public:
  static const uint64_t kSignMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x80000000, 00000000);
  static const uint64_t kExponentMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF00000, 00000000);
  static const uint64_t kSignificandMask = DOUBLE_CONVERSION_UINT64_2PART_C(0x000FFFFF, FFFFFFFF);
  static const uint64_t kHiddenBit = DOUBLE_CONVERSION_UINT64_2PART_C(0x00100000, 00000000);
  static const uint64_t kQuietNanBit = DOUBLE_CONVERSION_UINT64_2PART_C(0x00080000, 00000000);
  static const int kPhysicalSignificandSize = 52;  // Excludes the hidden bit.
  static const int kSignificandSize = 53;
  static const int kExponentBias = 0x3FF + kPhysicalSignificandSize;
  static const int kMaxExponent = 0x7FF - kExponentBias;

  Double() : d64_(0) {}
  explicit Double(double d) : d64_(double_to_uint64(d)) {}
  explicit Double(uint64_t d64) : d64_(d64) {}
  explicit Double(DiyFp diy_fp)
    : d64_(DiyFpToUint64(diy_fp)) {}

  // The value encoded by this Double must be greater or equal to +0.0.
  // It must not be special (infinity, or NaN).
  DiyFp AsDiyFp() const {
    DOUBLE_CONVERSION_ASSERT(Sign() > 0);
    DOUBLE_CONVERSION_ASSERT(!IsSpecial());
    return DiyFp(Significand(), Exponent());
  }

  // The value encoded by this Double must be strictly greater than 0.
  DiyFp AsNormalizedDiyFp() const {
    DOUBLE_CONVERSION_ASSERT(value() > 0.0);
    uint64_t f = Significand();
    int e = Exponent();

    // The current double could be a denormal.
    while ((f & kHiddenBit) == 0) {
      f <<= 1;
      e--;
    }
    // Do the final shifts in one go.
    f <<= DiyFp::kSignificandSize - kSignificandSize;
    e -= DiyFp::kSignificandSize - kSignificandSize;
    return DiyFp(f, e);
  }

  // Returns the double's bit as uint64.
  uint64_t AsUint64() const {
    return d64_;
  }

  // Returns the next greater double. Returns +infinity on input +infinity.
  double NextDouble() const {
    if (d64_ == kInfinity) return Double(kInfinity).value();
    if (Sign() < 0 && Significand() == 0) {
      // -0.0
      return 0.0;
    }
    if (Sign() < 0) {
      return Double(d64_ - 1).value();
    } else {
      return Double(d64_ + 1).value();
    }
  }

  double PreviousDouble() const {
    if (d64_ == (kInfinity | kSignMask)) return -Infinity();
    if (Sign() < 0) {
      return Double(d64_ + 1).value();
    } else {
      if (Significand() == 0) return -0.0;
      return Double(d64_ - 1).value();
    }
  }

  int Exponent() const {
    if (IsDenormal()) return kDenormalExponent;

    uint64_t d64 = AsUint64();
    int biased_e =
        static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize);
    return biased_e - kExponentBias;
  }

  uint64_t Significand() const {
    uint64_t d64 = AsUint64();
    uint64_t significand = d64 & kSignificandMask;
    if (!IsDenormal()) {
      return significand + kHiddenBit;
    } else {
      return significand;
    }
  }

  // Returns true if the double is a denormal.
  bool IsDenormal() const {
    uint64_t d64 = AsUint64();
    return (d64 & kExponentMask) == 0;
  }

  // We consider denormals not to be special.
  // Hence only Infinity and NaN are special.
  bool IsSpecial() const {
    uint64_t d64 = AsUint64();
    return (d64 & kExponentMask) == kExponentMask;
  }

  bool IsNan() const {
    uint64_t d64 = AsUint64();
    return ((d64 & kExponentMask) == kExponentMask) &&
        ((d64 & kSignificandMask) != 0);
  }

  bool IsQuietNan() const {
    return IsNan() && ((AsUint64() & kQuietNanBit) != 0);
  }

  bool IsSignalingNan() const {
    return IsNan() && ((AsUint64() & kQuietNanBit) == 0);
  }


  bool IsInfinite() const {
    uint64_t d64 = AsUint64();
    return ((d64 & kExponentMask) == kExponentMask) &&
        ((d64 & kSignificandMask) == 0);
  }

  int Sign() const {
    uint64_t d64 = AsUint64();
    return (d64 & kSignMask) == 0? 1: -1;
  }

  // Precondition: the value encoded by this Double must be greater or equal
  // than +0.0.
  DiyFp UpperBoundary() const {
    DOUBLE_CONVERSION_ASSERT(Sign() > 0);
    return DiyFp(Significand() * 2 + 1, Exponent() - 1);
  }

  // Computes the two boundaries of this.
  // The bigger boundary (m_plus) is normalized. The lower boundary has the same
  // exponent as m_plus.
  // Precondition: the value encoded by this Double must be greater than 0.
  void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
    DOUBLE_CONVERSION_ASSERT(value() > 0.0);
    DiyFp v = this->AsDiyFp();
    DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
    DiyFp m_minus;
    if (LowerBoundaryIsCloser()) {
      m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
    } else {
      m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
    }
    m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
    m_minus.set_e(m_plus.e());
    *out_m_plus = m_plus;
    *out_m_minus = m_minus;
  }

  bool LowerBoundaryIsCloser() const {
    // The boundary is closer if the significand is of the form f == 2^p-1 then
    // the lower boundary is closer.
    // Think of v = 1000e10 and v- = 9999e9.
    // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
    // at a distance of 1e8.
    // The only exception is for the smallest normal: the largest denormal is
    // at the same distance as its successor.
    // Note: denormals have the same exponent as the smallest normals.
    bool physical_significand_is_zero = ((AsUint64() & kSignificandMask) == 0);
    return physical_significand_is_zero && (Exponent() != kDenormalExponent);
  }

  double value() const { return uint64_to_double(d64_); }

  // Returns the significand size for a given order of magnitude.
  // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude.
  // This function returns the number of significant binary digits v will have
  // once it's encoded into a double. In almost all cases this is equal to
  // kSignificandSize. The only exceptions are denormals. They start with
  // leading zeroes and their effective significand-size is hence smaller.
  static int SignificandSizeForOrderOfMagnitude(int order) {
    if (order >= (kDenormalExponent + kSignificandSize)) {
      return kSignificandSize;
    }
    if (order <= kDenormalExponent) return 0;
    return order - kDenormalExponent;
  }

  static double Infinity() {
    return Double(kInfinity).value();
  }

  static double NaN() {
    return Double(kNaN).value();
  }

 private:
  static const int kDenormalExponent = -kExponentBias + 1;
  static const uint64_t kInfinity = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF00000, 00000000);
  static const uint64_t kNaN = DOUBLE_CONVERSION_UINT64_2PART_C(0x7FF80000, 00000000);

  const uint64_t d64_;

  static uint64_t DiyFpToUint64(DiyFp diy_fp) {
    uint64_t significand = diy_fp.f();
    int exponent = diy_fp.e();
    while (significand > kHiddenBit + kSignificandMask) {
      significand >>= 1;
      exponent++;
    }
    if (exponent >= kMaxExponent) {
      return kInfinity;
    }
    if (exponent < kDenormalExponent) {
      return 0;
    }
    while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) {
      significand <<= 1;
      exponent--;
    }
    uint64_t biased_exponent;
    if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) {
      biased_exponent = 0;
    } else {
      biased_exponent = static_cast<uint64_t>(exponent + kExponentBias);
    }
    return (significand & kSignificandMask) |
        (biased_exponent << kPhysicalSignificandSize);
  }

  DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(Double);
};

class Single {
 public:
  static const uint32_t kSignMask = 0x80000000;
  static const uint32_t kExponentMask = 0x7F800000;
  static const uint32_t kSignificandMask = 0x007FFFFF;
  static const uint32_t kHiddenBit = 0x00800000;
  static const uint32_t kQuietNanBit = 0x00400000;
  static const int kPhysicalSignificandSize = 23;  // Excludes the hidden bit.
  static const int kSignificandSize = 24;

  Single() : d32_(0) {}
  explicit Single(float f) : d32_(float_to_uint32(f)) {}
  explicit Single(uint32_t d32) : d32_(d32) {}

  // The value encoded by this Single must be greater or equal to +0.0.
  // It must not be special (infinity, or NaN).
  DiyFp AsDiyFp() const {
    DOUBLE_CONVERSION_ASSERT(Sign() > 0);
    DOUBLE_CONVERSION_ASSERT(!IsSpecial());
    return DiyFp(Significand(), Exponent());
  }

  // Returns the single's bit as uint64.
  uint32_t AsUint32() const {
    return d32_;
  }

  int Exponent() const {
    if (IsDenormal()) return kDenormalExponent;

    uint32_t d32 = AsUint32();
    int biased_e =
        static_cast<int>((d32 & kExponentMask) >> kPhysicalSignificandSize);
    return biased_e - kExponentBias;
  }

  uint32_t Significand() const {
    uint32_t d32 = AsUint32();
    uint32_t significand = d32 & kSignificandMask;
    if (!IsDenormal()) {
      return significand + kHiddenBit;
    } else {
      return significand;
    }
  }

  // Returns true if the single is a denormal.
  bool IsDenormal() const {
    uint32_t d32 = AsUint32();
    return (d32 & kExponentMask) == 0;
  }

  // We consider denormals not to be special.
  // Hence only Infinity and NaN are special.
  bool IsSpecial() const {
    uint32_t d32 = AsUint32();
    return (d32 & kExponentMask) == kExponentMask;
  }

  bool IsNan() const {
    uint32_t d32 = AsUint32();
    return ((d32 & kExponentMask) == kExponentMask) &&
        ((d32 & kSignificandMask) != 0);
  }

  bool IsQuietNan() const {
    return IsNan() && ((AsUint32() & kQuietNanBit) != 0);
  }

  bool IsSignalingNan() const {
    return IsNan() && ((AsUint32() & kQuietNanBit) == 0);
  }


  bool IsInfinite() const {
    uint32_t d32 = AsUint32();
    return ((d32 & kExponentMask) == kExponentMask) &&
        ((d32 & kSignificandMask) == 0);
  }

  int Sign() const {
    uint32_t d32 = AsUint32();
    return (d32 & kSignMask) == 0? 1: -1;
  }

  // Computes the two boundaries of this.
  // The bigger boundary (m_plus) is normalized. The lower boundary has the same
  // exponent as m_plus.
  // Precondition: the value encoded by this Single must be greater than 0.
  void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const {
    DOUBLE_CONVERSION_ASSERT(value() > 0.0);
    DiyFp v = this->AsDiyFp();
    DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1));
    DiyFp m_minus;
    if (LowerBoundaryIsCloser()) {
      m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2);
    } else {
      m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1);
    }
    m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e()));
    m_minus.set_e(m_plus.e());
    *out_m_plus = m_plus;
    *out_m_minus = m_minus;
  }

  // Precondition: the value encoded by this Single must be greater or equal
  // than +0.0.
  DiyFp UpperBoundary() const {
    DOUBLE_CONVERSION_ASSERT(Sign() > 0);
    return DiyFp(Significand() * 2 + 1, Exponent() - 1);
  }

  bool LowerBoundaryIsCloser() const {
    // The boundary is closer if the significand is of the form f == 2^p-1 then
    // the lower boundary is closer.
    // Think of v = 1000e10 and v- = 9999e9.
    // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but
    // at a distance of 1e8.
    // The only exception is for the smallest normal: the largest denormal is
    // at the same distance as its successor.
    // Note: denormals have the same exponent as the smallest normals.
    bool physical_significand_is_zero = ((AsUint32() & kSignificandMask) == 0);
    return physical_significand_is_zero && (Exponent() != kDenormalExponent);
  }

  float value() const { return uint32_to_float(d32_); }

  static float Infinity() {
    return Single(kInfinity).value();
  }

  static float NaN() {
    return Single(kNaN).value();
  }

 private:
  static const int kExponentBias = 0x7F + kPhysicalSignificandSize;
  static const int kDenormalExponent = -kExponentBias + 1;
  static const int kMaxExponent = 0xFF - kExponentBias;
  static const uint32_t kInfinity = 0x7F800000;
  static const uint32_t kNaN = 0x7FC00000;

  const uint32_t d32_;

  DOUBLE_CONVERSION_DISALLOW_COPY_AND_ASSIGN(Single);
};

}  // namespace double_conversion

#endif  // DOUBLE_CONVERSION_DOUBLE_H_