1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
base / threading / hang_watcher.h [blame]
// Copyright 2020 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_THREADING_HANG_WATCHER_H_
#define BASE_THREADING_HANG_WATCHER_H_
#include <atomic>
#include <cstdint>
#include <memory>
#include <type_traits>
#include <vector>
#include "base/auto_reset.h"
#include "base/base_export.h"
#include "base/bits.h"
#include "base/compiler_specific.h"
#include "base/dcheck_is_on.h"
#include "base/debug/crash_logging.h"
#include "base/functional/callback.h"
#include "base/functional/callback_forward.h"
#include "base/functional/callback_helpers.h"
#include "base/gtest_prod_util.h"
#include "base/memory/memory_pressure_listener.h"
#include "base/memory/raw_ptr.h"
#include "base/synchronization/lock.h"
#include "base/synchronization/waitable_event.h"
#include "base/thread_annotations.h"
#include "base/threading/platform_thread.h"
#include "base/threading/simple_thread.h"
#include "base/threading/thread_checker.h"
#include "base/time/tick_clock.h"
#include "base/time/time.h"
#include "build/build_config.h"
namespace base {
class WatchHangsInScope;
namespace internal {
class HangWatchState;
} // namespace internal
} // namespace base
namespace base {
// Instantiate a WatchHangsInScope in a code scope to register to be
// watched for hangs of more than |timeout| by the HangWatcher.
//
// Example usage:
//
// void FooBar(){
// WatchHangsInScope scope(base::Seconds(5));
// DoWork();
// }
//
// If DoWork() takes more than 5s to run and the HangWatcher
// inspects the thread state before Foobar returns a hang will be
// reported.
//
// WatchHangsInScopes are typically meant to live on the stack. In some
// cases it's necessary to keep a WatchHangsInScope instance as a class
// member but special care is required when doing so as a WatchHangsInScope
// that stays alive longer than intended will generate non-actionable hang
// reports.
class BASE_EXPORT [[maybe_unused, nodiscard]] WatchHangsInScope {
public:
// A good default value needs to be large enough to represent a significant
// hang and avoid noise while being small enough to not exclude too many
// hangs. The nature of the work that gets executed on the thread is also
// important. We can be much stricter when monitoring a UI thread compared to
// a ThreadPool thread for example.
static constexpr base::TimeDelta kDefaultHangWatchTime = base::Seconds(10);
// Constructing/destructing thread must be the same thread.
explicit WatchHangsInScope(TimeDelta timeout = kDefaultHangWatchTime);
~WatchHangsInScope();
WatchHangsInScope(const WatchHangsInScope&) = delete;
WatchHangsInScope& operator=(const WatchHangsInScope&) = delete;
private:
// Will be true if the object actually set a deadline and false if not.
bool took_effect_ = true;
// This object should always be constructed and destructed on the same thread.
THREAD_CHECKER(thread_checker_);
// The deadline set by the previous WatchHangsInScope created on this
// thread. Stored so it can be restored when this WatchHangsInScope is
// destroyed.
TimeTicks previous_deadline_;
// Indicates whether the kIgnoreCurrentWatchHangsInScope flag must be set upon
// exiting this WatchHangsInScope if a call to InvalidateActiveExpectations()
// previously suspended hang watching.
bool set_hangs_ignored_on_exit_ = false;
#if DCHECK_IS_ON()
// The previous WatchHangsInScope created on this thread.
raw_ptr<WatchHangsInScope> previous_watch_hangs_in_scope_;
#endif
};
// Monitors registered threads for hangs by inspecting their associated
// HangWatchStates for deadline overruns. This happens at a regular interval on
// a separate thread. Only one instance of HangWatcher can exist at a time
// within a single process. This instance must outlive all monitored threads.
class BASE_EXPORT HangWatcher : public DelegateSimpleThread::Delegate {
public:
// Describes the type of a process for logging purposes.
enum class ProcessType {
kUnknownProcess = 0,
kBrowserProcess = 1,
kGPUProcess = 2,
kRendererProcess = 3,
kUtilityProcess = 4,
kMax = kUtilityProcess
};
// Describes the type of a thread for logging purposes.
enum class ThreadType {
kIOThread = 0,
kMainThread = 1,
kThreadPoolThread = 2,
kMax = kThreadPoolThread
};
// Notes on lifetime:
// 1) The first invocation of the constructor will set the global instance
// accessible through GetInstance().
// 2) In production HangWatcher is always purposefuly leaked.
// 3) If not leaked HangWatcher is always constructed and destructed from
// the same thread.
// 4) There can never be more than one instance of HangWatcher at a time.
// The class is not base::Singleton derived because it needs to destroyed
// in tests.
HangWatcher();
// Clears the global instance for the class.
~HangWatcher() override;
HangWatcher(const HangWatcher&) = delete;
HangWatcher& operator=(const HangWatcher&) = delete;
static void CreateHangWatcherInstance();
// Returns a non-owning pointer to the global HangWatcher instance.
static HangWatcher* GetInstance();
// Initializes HangWatcher. Must be called once on the main thread during
// startup while single-threaded.
static void InitializeOnMainThread(ProcessType process_type,
bool emit_crashes);
// Returns the values that were set through InitializeOnMainThread() to their
// default value. Used for testing since in prod initialization should happen
// only once.
static void UnitializeOnMainThreadForTesting();
// Thread safe functions to verify if hang watching is activated. If called
// before InitializeOnMainThread returns the default value which is false.
static bool IsEnabled();
static bool IsThreadPoolHangWatchingEnabled();
static bool IsIOThreadHangWatchingEnabled();
// Returns true if crash dump reporting is configured for any thread type.
static bool IsCrashReportingEnabled();
// Use to avoid capturing hangs for operations known to take unbounded time
// like waiting for user input. WatchHangsInScope objects created after this
// call will take effect. To resume watching for hangs create a new
// WatchHangsInScope after the unbounded operation finishes.
//
// Example usage:
// {
// WatchHangsInScope scope_1;
// {
// WatchHangsInScope scope_2;
// InvalidateActiveExpectations();
// WaitForUserInput();
// }
//
// WatchHangsInScope scope_4;
// }
//
// WatchHangsInScope scope_5;
//
// In this example hang watching is disabled for WatchHangsInScopes 1 and 2
// since they were both active at the time of the invalidation.
// WatchHangsInScopes 4 and 5 are unaffected since they were created after the
// end of the WatchHangsInScope that was current at the time of invalidation.
//
static void InvalidateActiveExpectations();
// Marks the current process as "shutting down". This changes the histograms
// emitted every interval for all threads.
static void SetShuttingDown();
// Sets up the calling thread to be monitored for threads. Returns a
// ScopedClosureRunner that unregisters the thread. This closure has to be
// called from the registered thread before it's joined. Returns a null
// closure in the case where there is no HangWatcher instance to register the
// thread with.
[[nodiscard]] static ScopedClosureRunner RegisterThread(
ThreadType thread_type);
// Choose a closure to be run at the end of each call to Monitor(). Use only
// for testing. Reentering the HangWatcher in the closure must be done with
// care. It should only be done through certain testing functions because
// deadlocks are possible.
void SetAfterMonitorClosureForTesting(base::RepeatingClosure closure);
// Choose a closure to be run instead of recording the hang. Used to test
// that certain conditions hold true at the time of recording. Use only
// for testing. Reentering the HangWatcher in the closure must be done with
// care. It should only be done through certain testing functions because
// deadlocks are possible.
void SetOnHangClosureForTesting(base::RepeatingClosure closure);
// Set a monitoring period other than the default. Use only for
// testing.
void SetMonitoringPeriodForTesting(base::TimeDelta period);
// Choose a callback to invoke right after waiting to monitor in Wait(). Use
// only for testing.
void SetAfterWaitCallbackForTesting(
RepeatingCallback<void(TimeTicks)> callback);
// Force the monitoring loop to resume and evaluate whether to continue.
// This can trigger a call to Monitor() or not depending on why the
// HangWatcher thread is sleeping. Use only for testing.
void SignalMonitorEventForTesting();
// Call to make sure no more monitoring takes place. The
// function is thread-safe and can be called at anytime but won't stop
// monitoring that is currently taking place. Use only for testing.
static void StopMonitoringForTesting();
// Replace the clock used when calculating time spent
// sleeping. Use only for testing.
void SetTickClockForTesting(const base::TickClock* tick_clock);
// Use to block until the hang is recorded. Allows the caller to halt
// execution so it does not overshoot the hang watch target and result in a
// non-actionable stack trace in the crash recorded.
void BlockIfCaptureInProgress();
// Begin executing the monitoring loop on the HangWatcher thread.
void Start();
// Returns true if Start() has been called and Stop() has not been called
// since.
bool IsStarted() const { return thread_started_; }
// Returns the value of the crash key with the time since last system power
// resume.
std::string GetTimeSinceLastSystemPowerResumeCrashKeyValue() const;
private:
// See comment of ::RegisterThread() for details.
[[nodiscard]] ScopedClosureRunner RegisterThreadInternal(
ThreadType thread_type) LOCKS_EXCLUDED(watch_state_lock_);
// Use to assert that functions are called on the monitoring thread.
THREAD_CHECKER(hang_watcher_thread_checker_);
// Use to assert that functions are called on the constructing thread.
THREAD_CHECKER(constructing_thread_checker_);
// Invoked on memory pressure signal.
void OnMemoryPressure(
base::MemoryPressureListener::MemoryPressureLevel memory_pressure_level);
#if !BUILDFLAG(IS_NACL)
// Returns a ScopedCrashKeyString that sets the crash key with the time since
// last critical memory pressure signal.
[[nodiscard]] debug::ScopedCrashKeyString
GetTimeSinceLastCriticalMemoryPressureCrashKey();
#endif
// Invoke base::debug::DumpWithoutCrashing() insuring that the stack frame
// right under it in the trace belongs to HangWatcher for easier attribution.
NOINLINE static void RecordHang();
using HangWatchStates =
std::vector<std::unique_ptr<internal::HangWatchState>>;
// Used to save a snapshots of the state of hang watching during capture.
// Only the state of hung threads is retained.
class BASE_EXPORT WatchStateSnapShot {
public:
struct WatchStateCopy {
base::TimeTicks deadline;
uint64_t thread_id;
};
WatchStateSnapShot();
WatchStateSnapShot(const WatchStateSnapShot& other);
~WatchStateSnapShot();
// Initialize the snapshot from provided data. |snapshot_time| can be
// different than now() to be coherent with other operations recently done
// on |watch_states|. |hung_watch_state_copies_| can be empty after
// initialization for a number of reasons:
// 1. If any deadline in |watch_states| is before
// |deadline_ignore_threshold|.
// 2. If some of the hung threads could not be marked as blocking on
// capture.
// 3. If none of the hung threads are of a type configured to trigger a
// crash dump.
//
// This function cannot be called more than once without an associated call
// to Clear().
void Init(const HangWatchStates& watch_states,
base::TimeTicks deadline_ignore_threshold,
base::TimeDelta monitoring_period);
// Reset the snapshot object to be reused. Can only be called after Init().
void Clear();
// Returns a string that contains the ids of the hung threads separated by a
// '|'. The size of the string is capped at debug::CrashKeySize::Size256. If
// no threads are hung returns an empty string. Can only be invoked if
// IsActionable(). Can only be called after Init().
std::string PrepareHungThreadListCrashKey() const;
// Return the highest deadline included in this snapshot. Can only be called
// if IsActionable(). Can only be called after Init().
base::TimeTicks GetHighestDeadline() const;
// Returns true if the snapshot can be used to record an actionable hang
// report and false if not. Can only be called after Init().
bool IsActionable() const;
private:
bool initialized_ = false;
std::vector<WatchStateCopy> hung_watch_state_copies_;
};
// Return a watch state snapshot taken Now() to be inspected in tests.
// NO_THREAD_SAFETY_ANALYSIS is needed because the analyzer can't figure out
// that calls to this function done from |on_hang_closure_| are properly
// locked.
WatchStateSnapShot GrabWatchStateSnapshotForTesting() const
NO_THREAD_SAFETY_ANALYSIS;
// Inspects the state of all registered threads to check if they are hung and
// invokes the appropriate closure if so.
void Monitor() LOCKS_EXCLUDED(watch_state_lock_);
// Record the hang crash dump and perform the necessary housekeeping before
// and after.
void DoDumpWithoutCrashing(const WatchStateSnapShot& watch_state_snapshot)
EXCLUSIVE_LOCKS_REQUIRED(watch_state_lock_) LOCKS_EXCLUDED(capture_lock_);
// Stop all monitoring and join the HangWatcher thread.
void Stop();
// Wait until it's time to monitor.
void Wait();
// Run the loop that periodically monitors the registered thread at a
// set time interval.
void Run() override;
base::TimeDelta monitoring_period_;
// Use to make the HangWatcher thread wake or sleep to schedule the
// appropriate monitoring frequency.
WaitableEvent should_monitor_;
bool IsWatchListEmpty() LOCKS_EXCLUDED(watch_state_lock_);
// Stops hang watching on the calling thread by removing the entry from the
// watch list.
void UnregisterThread() LOCKS_EXCLUDED(watch_state_lock_);
Lock watch_state_lock_;
std::vector<std::unique_ptr<internal::HangWatchState>> watch_states_
GUARDED_BY(watch_state_lock_);
// Snapshot to be reused across hang captures. The point of keeping it
// around is reducing allocations during capture.
WatchStateSnapShot watch_state_snapshot_
GUARDED_BY_CONTEXT(hang_watcher_thread_checker_);
base::DelegateSimpleThread thread_;
bool thread_started_ = false;
RepeatingClosure after_monitor_closure_for_testing_;
RepeatingClosure on_hang_closure_for_testing_;
RepeatingCallback<void(TimeTicks)> after_wait_callback_;
base::Lock capture_lock_ ACQUIRED_AFTER(watch_state_lock_);
std::atomic<bool> capture_in_progress_{false};
raw_ptr<const base::TickClock> tick_clock_;
// Registration to receive memory pressure signals.
base::MemoryPressureListener memory_pressure_listener_;
// The last time at which a critical memory pressure signal was received, or
// null if no signal was ever received. Atomic because it's set and read from
// different threads.
std::atomic<base::TimeTicks> last_critical_memory_pressure_{
base::TimeTicks()};
// The time after which all deadlines in |watch_states_| need to be for a hang
// to be reported.
base::TimeTicks deadline_ignore_threshold_;
FRIEND_TEST_ALL_PREFIXES(HangWatcherTest, NestedScopes);
FRIEND_TEST_ALL_PREFIXES(HangWatcherSnapshotTest, HungThreadIDs);
FRIEND_TEST_ALL_PREFIXES(HangWatcherSnapshotTest, NonActionableReport);
};
// Classes here are exposed in the header only for testing. They are not
// intended to be used outside of base.
namespace internal {
// Threadsafe class that manages a deadline of type TimeTicks alongside hang
// watching specific flags. The flags are stored in the higher bits of the
// underlying TimeTicks deadline. This enables setting the flags on thread T1 in
// a way that's resilient to concurrent deadline or flag changes from thread T2.
// Flags can be queried separately from the deadline and users of this class
// should not have to care about them when doing so.
class BASE_EXPORT HangWatchDeadline {
public:
// Masks to set flags by flipping a single bit in the TimeTicks value. There
// are two types of flags. Persistent flags remain set through a deadline
// change and non-persistent flags are cleared when the deadline changes.
enum class Flag : uint64_t {
// Minimum value for validation purposes. Not currently used.
kMinValue = bits::LeftmostBit<uint64_t>() >> 7,
// Persistent because if hang detection is disabled on a thread it should
// be re-enabled manually.
kIgnoreCurrentWatchHangsInScope = bits::LeftmostBit<uint64_t>() >> 1,
// Non-persistent because a new value means a new WatchHangsInScope started
// after the beginning of capture. It can't be implicated in the hang so we
// don't want it to block.
kShouldBlockOnHang = bits::LeftmostBit<uint64_t>() >> 0,
kMaxValue = kShouldBlockOnHang
};
HangWatchDeadline();
~HangWatchDeadline();
// HangWatchDeadline should never be copied. To keep a copy of the deadline or
// flags use the appropriate accessors.
HangWatchDeadline(const HangWatchDeadline&) = delete;
HangWatchDeadline& operator=(const HangWatchDeadline&) = delete;
// Returns the underlying TimeTicks deadline. WARNING: The deadline and flags
// can change concurrently. To inspect both, use GetFlagsAndDeadline() to get
// a coherent race-free view of the state.
TimeTicks GetDeadline() const;
// Returns a mask containing the flags and the deadline as a pair. Use to
// inspect the flags and deadline and then optionally call
// SetShouldBlockOnHang() .
std::pair<uint64_t, TimeTicks> GetFlagsAndDeadline() const;
// Returns true if the flag is set and false if not. WARNING: The deadline and
// flags can change concurrently. To inspect both, use GetFlagsAndDeadline()
// to get a coherent race-free view of the state.
bool IsFlagSet(Flag flag) const;
// Returns true if a flag is set in |flags| and false if not. Use to inspect
// the flags mask returned by GetFlagsAndDeadline(). WARNING: The deadline and
// flags can change concurrently. If you need to inspect both you need to use
// GetFlagsAndDeadline() to get a coherent race-free view of the state.
static bool IsFlagSet(Flag flag, uint64_t flags);
// Replace the deadline value. |new_value| needs to be within [0,
// Max()]. This function can never fail.
void SetDeadline(TimeTicks new_value);
// Sets the kShouldBlockOnHang flag and returns true if current flags and
// deadline are still equal to |old_flags| and |old_deadline|. Otherwise does
// not set the flag and returns false.
bool SetShouldBlockOnHang(uint64_t old_flags, TimeTicks old_deadline);
// Sets the kIgnoreCurrentWatchHangsInScope flag.
void SetIgnoreCurrentWatchHangsInScope();
// Clears the kIgnoreCurrentWatchHangsInScope flag.
void UnsetIgnoreCurrentWatchHangsInScope();
// Use to simulate the value of |bits_| changing between the calling a
// Set* function and the moment of atomically switching the values. The
// callback should return a value containing the desired flags and deadline
// bits. The flags that are already set will be preserved upon applying. Use
// only for testing.
void SetSwitchBitsClosureForTesting(
RepeatingCallback<uint64_t(void)> closure);
// Remove the deadline modification callback for when testing is done. Use
// only for testing.
void ResetSwitchBitsClosureForTesting();
private:
using TimeTicksInternalRepresentation =
std::invoke_result<decltype(&TimeTicks::ToInternalValue),
TimeTicks>::type;
static_assert(std::is_same_v<TimeTicksInternalRepresentation, int64_t>,
"Bit manipulations made by HangWatchDeadline need to be"
"adapted if internal representation of TimeTicks changes.");
// Replace the bits with the ones provided through the callback. Preserves the
// flags that were already set. Returns the switched in bits. Only call if
// |switch_bits_callback_for_testing_| is installed.
uint64_t SwitchBitsForTesting();
// Atomically sets persitent flag |flag|. Cannot fail.
void SetPersistentFlag(Flag flag);
// Atomically clears persitent flag |flag|. Cannot fail.
void ClearPersistentFlag(Flag flag);
// Converts bits to TimeTicks with some sanity checks. Use to return the
// deadline outside of this class.
static TimeTicks DeadlineFromBits(uint64_t bits);
// Returns the largest representable deadline.
static TimeTicks Max();
// Extract the flag bits from |bits|.
static uint64_t ExtractFlags(uint64_t bits);
// Extract the deadline bits from |bits|.
static uint64_t ExtractDeadline(uint64_t bits);
// BitsType is uint64_t. This type is chosen for having
// std::atomic<BitsType>{}.is_lock_free() true on many platforms and having no
// undefined behaviors with regards to bit shift operations. Throughout this
// class this is the only type that is used to store, retrieve and manipulate
// the bits. When returning a TimeTicks value outside this class it's
// necessary to run the proper checks to insure correctness of the conversion
// that has to go through int_64t. (See DeadlineFromBits()).
using BitsType = uint64_t;
static_assert(std::is_same_v<std::underlying_type<Flag>::type, BitsType>,
"Flag should have the same underlying type as bits_ to "
"simplify thinking about bit operations");
// Holds the bits of both the flags and the TimeTicks deadline.
// TimeTicks values represent a count of microseconds since boot which may or
// may not include suspend time depending on the platform. Using the seven
// highest order bits and the sign bit to store flags still enables the
// storing of TimeTicks values that can represent up to ~1142 years of uptime
// in the remaining bits. Should never be directly accessed from outside the
// class. Starts out at Max() to provide a base-line deadline that will not be
// reached during normal execution.
//
// Binary format: 0xFFDDDDDDDDDDDDDDDD
// F = Flags
// D = Deadline
std::atomic<BitsType> bits_{static_cast<uint64_t>(Max().ToInternalValue())};
RepeatingCallback<uint64_t(void)> switch_bits_callback_for_testing_;
THREAD_CHECKER(thread_checker_);
FRIEND_TEST_ALL_PREFIXES(HangWatchDeadlineTest, BitsPreservedThroughExtract);
};
// Contains the information necessary for hang watching a specific
// thread. Instances of this class are accessed concurrently by the associated
// thread and the HangWatcher. The HangWatcher owns instances of this
// class and outside of it they are accessed through
// GetHangWatchStateForCurrentThread().
class BASE_EXPORT HangWatchState {
public:
// |thread_type| is the type of thread the watch state will
// be associated with. It's the responsibility of the creating
// code to choose the correct type.
explicit HangWatchState(HangWatcher::ThreadType thread_type);
~HangWatchState();
HangWatchState(const HangWatchState&) = delete;
HangWatchState& operator=(const HangWatchState&) = delete;
// Allocates a new state object bound to the calling thread and returns an
// owning pointer to it.
static std::unique_ptr<HangWatchState> CreateHangWatchStateForCurrentThread(
HangWatcher::ThreadType thread_type);
// Retrieves the hang watch state associated with the calling thread.
// Returns nullptr if no HangWatchState exists for the current thread (see
// CreateHangWatchStateForCurrentThread()).
static HangWatchState* GetHangWatchStateForCurrentThread();
// Returns the current deadline. Use this function if you need to
// store the value. To test if the deadline has expired use IsOverDeadline().
// WARNING: The deadline and flags can change concurrently. If you need to
// inspect both you need to use GetFlagsAndDeadline() to get a coherent
// race-free view of the state.
TimeTicks GetDeadline() const;
// Returns a mask containing the hang watching flags and the value as a pair.
// Use to inspect the flags and deadline and optionally call
// SetShouldBlockOnHang(flags, deadline).
std::pair<uint64_t, TimeTicks> GetFlagsAndDeadline() const;
// Sets the deadline to a new value.
void SetDeadline(TimeTicks deadline);
// Mark this thread as ignored for hang watching. This means existing
// WatchHangsInScope will not trigger hangs.
void SetIgnoreCurrentWatchHangsInScope();
// Reactivate hang watching on this thread. Should be called when all
// WatchHangsInScope instances that were ignored have completed.
void UnsetIgnoreCurrentWatchHangsInScope();
// Mark the current state as having to block in its destruction until hang
// capture completes.
bool SetShouldBlockOnHang(uint64_t old_flags, TimeTicks old_deadline);
// Returns true if |flag| is set and false if not. WARNING: The deadline and
// flags can change concurrently. If you need to inspect both you need to use
// GetFlagsAndDeadline() to get a coherent race-free view of the state.
bool IsFlagSet(HangWatchDeadline::Flag flag);
// Tests whether the associated thread's execution has gone over the deadline.
bool IsOverDeadline() const;
#if DCHECK_IS_ON()
// Saves the supplied WatchHangsInScope as the currently active
// WatchHangsInScope.
void SetCurrentWatchHangsInScope(WatchHangsInScope* scope);
// Retrieve the currently active scope.
WatchHangsInScope* GetCurrentWatchHangsInScope();
#endif
PlatformThreadId GetThreadID() const;
uint64_t GetSystemWideThreadID() const;
// Retrieve the current hang watch deadline directly. For testing only.
HangWatchDeadline* GetHangWatchDeadlineForTesting();
// Returns the current nesting level.
int nesting_level() { return nesting_level_; }
// Increase the nesting level by 1;
void IncrementNestingLevel();
// Reduce the nesting level by 1;
void DecrementNestingLevel();
// Returns the type of the thread under watch.
HangWatcher::ThreadType thread_type() const { return thread_type_; }
// Functions used to coordinate capture of the trace event per hung thread.
// These functions need to evolve if HangWatcher starts logging more than one
// trace event per hung thread.
bool TraceEventStarted() const;
void MarkTraceEventStarted(bool capturing);
private:
// The thread that creates the instance should be the class that updates
// the deadline.
THREAD_CHECKER(thread_checker_);
const AutoReset<HangWatchState*> resetter_;
// If the deadline fails to be updated before TimeTicks::Now() ever
// reaches the value contained in it this constistutes a hang.
HangWatchDeadline deadline_;
// A unique ID of the thread under watch. Used for logging in crash reports
// only.
PlatformThreadId thread_id_;
#if BUILDFLAG(IS_MAC)
// TODO(crbug.com/40187449): Remove this once macOS uses system-wide ids.
// On macOS the thread ids used by CrashPad are not the same as the ones
// provided by PlatformThread. Make sure to use the same for correct
// attribution.
uint64_t system_wide_thread_id_;
#endif
// Number of active HangWatchScopeEnables on this thread.
int nesting_level_ = 0;
// The type of the thread under watch.
const HangWatcher::ThreadType thread_type_;
bool trace_event_started_ = false;
#if DCHECK_IS_ON()
// Used to keep track of the current WatchHangsInScope and detect improper
// usage. Scopes should always be destructed in reverse order from the one
// they were constructed in. Example of improper use:
//
// {
// std::unique_ptr<Scope> scope = std::make_unique<Scope>(...);
// Scope other_scope;
// |scope| gets deallocated first, violating reverse destruction order.
// scope.reset();
// }
raw_ptr<WatchHangsInScope> current_watch_hangs_in_scope_{nullptr};
#endif
};
} // namespace internal
} // namespace base
#endif // BASE_THREADING_HANG_WATCHER_H_