1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214

base / time / time_apple.mm [blame]

// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "base/time/time.h"

#import <Foundation/Foundation.h>
#include <mach/mach.h>
#include <mach/mach_time.h>
#include <stddef.h>
#include <stdint.h>
#include <sys/sysctl.h>
#include <sys/time.h>
#include <sys/types.h>
#include <time.h>

#include "base/apple/mach_logging.h"
#include "base/apple/scoped_cftyperef.h"
#include "base/apple/scoped_mach_port.h"
#include "base/logging.h"
#include "base/numerics/safe_conversions.h"
#include "base/time/time_override.h"
#include "build/build_config.h"

namespace {

// Returns a pointer to the initialized Mach timebase info struct.
mach_timebase_info_data_t* MachTimebaseInfo() {
  static mach_timebase_info_data_t timebase_info = [] {
    mach_timebase_info_data_t info;
    kern_return_t kr = mach_timebase_info(&info);
    MACH_DCHECK(kr == KERN_SUCCESS, kr) << "mach_timebase_info";
    DCHECK(info.numer);
    DCHECK(info.denom);
    return info;
  }();
  return &timebase_info;
}

int64_t MachTimeToMicroseconds(uint64_t mach_time) {
  // timebase_info gives us the conversion factor between absolute time tick
  // units and nanoseconds.
  mach_timebase_info_data_t* timebase_info = MachTimebaseInfo();

  // Take the fast path when the conversion is 1:1. The result will for sure fit
  // into an int_64 because we're going from nanoseconds to microseconds.
  if (timebase_info->numer == timebase_info->denom) {
    return static_cast<int64_t>(mach_time /
                                base::Time::kNanosecondsPerMicrosecond);
  }

  uint64_t microseconds = 0;
  const uint64_t divisor =
      timebase_info->denom * base::Time::kNanosecondsPerMicrosecond;

  // Microseconds is mach_time * timebase.numer /
  // (timebase.denom * kNanosecondsPerMicrosecond). Divide first to reduce
  // the chance of overflow. Also stash the remainder right now, a likely
  // byproduct of the division.
  microseconds = mach_time / divisor;
  const uint64_t mach_time_remainder = mach_time % divisor;

  // Now multiply, keeping an eye out for overflow.
  CHECK(!__builtin_umulll_overflow(microseconds, timebase_info->numer,
                                   µseconds));

  // By dividing first we lose precision. Regain it by adding back the
  // microseconds from the remainder, with an eye out for overflow.
  uint64_t least_significant_microseconds =
      (mach_time_remainder * timebase_info->numer) / divisor;
  CHECK(!__builtin_uaddll_overflow(microseconds, least_significant_microseconds,
                                   µseconds));

  // Don't bother with the rollover handling that the Windows version does.
  // The returned time in microseconds is enough for 292,277 years (starting
  // from 2^63 because the returned int64_t is signed,
  // 9223372036854775807 / (1e6 * 60 * 60 * 24 * 365.2425) = 292,277).
  return base::checked_cast<int64_t>(microseconds);
}

// Returns monotonically growing number of ticks in microseconds since some
// unspecified starting point.
int64_t ComputeCurrentTicks() {
  // mach_absolute_time is it when it comes to ticks on the Mac.  Other calls
  // with less precision (such as TickCount) just call through to
  // mach_absolute_time.
  return MachTimeToMicroseconds(mach_absolute_time());
}

int64_t ComputeThreadTicks() {
  struct timespec ts = {};
  CHECK(clock_gettime(CLOCK_THREAD_CPUTIME_ID, &ts) == 0);
  base::CheckedNumeric<int64_t> absolute_micros(ts.tv_sec);
  absolute_micros *= base::Time::kMicrosecondsPerSecond;
  absolute_micros += (ts.tv_nsec / base::Time::kNanosecondsPerMicrosecond);
  return absolute_micros.ValueOrDie();
}

}  // namespace

namespace base {

// The Time routines in this file use Mach and CoreFoundation APIs, since the
// POSIX definition of time_t in macOS wraps around after 2038--and
// there are already cookie expiration dates, etc., past that time out in
// the field.  Using CFDate prevents that problem, and using mach_absolute_time
// for TimeTicks gives us nice high-resolution interval timing.

// Time -----------------------------------------------------------------------

namespace subtle {
Time TimeNowIgnoringOverride() {
  return Time::FromCFAbsoluteTime(CFAbsoluteTimeGetCurrent());
}

Time TimeNowFromSystemTimeIgnoringOverride() {
  // Just use TimeNowIgnoringOverride() because it returns the system time.
  return TimeNowIgnoringOverride();
}
}  // namespace subtle

// static
Time Time::FromCFAbsoluteTime(CFAbsoluteTime t) {
  static_assert(std::numeric_limits<CFAbsoluteTime>::has_infinity,
                "CFAbsoluteTime must have an infinity value");
  if (t == 0) {
    return Time();  // Consider 0 as a null Time.
  }
  return (t == std::numeric_limits<CFAbsoluteTime>::infinity())
             ? Max()
             : (UnixEpoch() +
                Seconds(double{t + kCFAbsoluteTimeIntervalSince1970}));
}

CFAbsoluteTime Time::ToCFAbsoluteTime() const {
  static_assert(std::numeric_limits<CFAbsoluteTime>::has_infinity,
                "CFAbsoluteTime must have an infinity value");
  if (is_null()) {
    return 0;  // Consider 0 as a null Time.
  }
  return is_max() ? std::numeric_limits<CFAbsoluteTime>::infinity()
                  : (CFAbsoluteTime{(*this - UnixEpoch()).InSecondsF()} -
                     kCFAbsoluteTimeIntervalSince1970);
}

// static
Time Time::FromNSDate(NSDate* date) {
  DCHECK(date);
  return FromCFAbsoluteTime(date.timeIntervalSinceReferenceDate);
}

NSDate* Time::ToNSDate() const {
  return [NSDate dateWithTimeIntervalSinceReferenceDate:ToCFAbsoluteTime()];
}

// TimeDelta ------------------------------------------------------------------

// static
TimeDelta TimeDelta::FromMachTime(uint64_t mach_time) {
  return Microseconds(MachTimeToMicroseconds(mach_time));
}

// TimeTicks ------------------------------------------------------------------

namespace subtle {
TimeTicks TimeTicksNowIgnoringOverride() {
  return TimeTicks() + Microseconds(ComputeCurrentTicks());
}

TimeTicks TimeTicksLowResolutionNowIgnoringOverride() {
  return TimeTicks() + Microseconds(MachTimeToMicroseconds(
                           clock_gettime_nsec_np(CLOCK_MONOTONIC_RAW_APPROX)));
}
}  // namespace subtle

// static
bool TimeTicks::IsHighResolution() {
  return true;
}

// static
bool TimeTicks::IsConsistentAcrossProcesses() {
  return true;
}

// static
TimeTicks TimeTicks::FromMachAbsoluteTime(uint64_t mach_absolute_time) {
  return TimeTicks(MachTimeToMicroseconds(mach_absolute_time));
}

// static
mach_timebase_info_data_t TimeTicks::SetMachTimebaseInfoForTesting(
    mach_timebase_info_data_t timebase) {
  mach_timebase_info_data_t orig_timebase = *MachTimebaseInfo();

  *MachTimebaseInfo() = timebase;

  return orig_timebase;
}

// static
TimeTicks::Clock TimeTicks::GetClock() {
  return Clock::MAC_MACH_ABSOLUTE_TIME;
}

// ThreadTicks ----------------------------------------------------------------

namespace subtle {
ThreadTicks ThreadTicksNowIgnoringOverride() {
  return ThreadTicks() + Microseconds(ComputeThreadTicks());
}
}  // namespace subtle

}  // namespace base