1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
base / time / time_win.cc [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// Windows Timer Primer
//
// A good article: http://www.ddj.com/windows/184416651
// A good mozilla bug: http://bugzilla.mozilla.org/show_bug.cgi?id=363258
//
// The default windows timer, GetSystemTimePreciseAsFileTime is quite precise.
// However it is not always fast on some hardware and is slower than the
// performance counters.
//
// QueryPerformanceCounter is the logical choice for a high-precision timer.
// However, it is known to be buggy on some hardware. Specifically, it can
// sometimes "jump". On laptops, QPC can also be very expensive to call.
// It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower
// on laptops. A unittest exists which will show the relative cost of various
// timers on any system.
//
// The next logical choice is timeGetTime(). timeGetTime has a precision of
// 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other
// applications on the system. By default, precision is only 15.5ms.
// Unfortunately, we don't want to call timeBeginPeriod because we don't
// want to affect other applications. Further, on mobile platforms, use of
// faster multimedia timers can hurt battery life. See the intel
// article about this here:
// http://softwarecommunity.intel.com/articles/eng/1086.htm
//
// To work around all this, we're going to generally use timeGetTime(). We
// will only increase the system-wide timer if we're not running on battery
// power.
#include "base/time/time.h"
#include <windows.h>
#include <mmsystem.h>
#include <stdint.h>
#include <windows.foundation.h>
#include <atomic>
#include <ostream>
#include "base/bit_cast.h"
#include "base/check_op.h"
#include "base/cpu.h"
#include "base/notreached.h"
#include "base/synchronization/lock.h"
#include "base/threading/platform_thread.h"
#include "base/time/time_override.h"
#include "build/build_config.h"
namespace base {
namespace {
// From MSDN, FILETIME "Contains a 64-bit value representing the number of
// 100-nanosecond intervals since January 1, 1601 (UTC)."
int64_t FileTimeToMicroseconds(const FILETIME& ft) {
// Need to bit_cast to fix alignment, then divide by 10 to convert
// 100-nanoseconds to microseconds. This only works on little-endian
// machines.
return bit_cast<int64_t, FILETIME>(ft) / 10;
}
bool CanConvertToFileTime(int64_t us) {
return us >= 0 && us <= (std::numeric_limits<int64_t>::max() / 10);
}
FILETIME MicrosecondsToFileTime(int64_t us) {
DCHECK(CanConvertToFileTime(us)) << "Out-of-range: Cannot convert " << us
<< " microseconds to FILETIME units.";
// Multiply by 10 to convert microseconds to 100-nanoseconds. Bit_cast will
// handle alignment problems. This only works on little-endian machines.
return bit_cast<FILETIME, int64_t>(us * 10);
}
int64_t CurrentWallclockMicroseconds() {
FILETIME ft;
::GetSystemTimePreciseAsFileTime(&ft);
return FileTimeToMicroseconds(ft);
}
// Time between resampling the un-granular clock for this API.
constexpr TimeDelta kMaxTimeToAvoidDrift = Seconds(60);
int64_t g_initial_time = 0;
TimeTicks g_initial_ticks;
void InitializeClock() {
g_initial_ticks = subtle::TimeTicksNowIgnoringOverride();
g_initial_time = CurrentWallclockMicroseconds();
}
// Track the last value passed to timeBeginPeriod so that we can cancel that
// call by calling timeEndPeriod with the same value. A value of zero means that
// the timer frequency is not currently raised.
UINT g_last_interval_requested_ms = 0;
// Track if kMinTimerIntervalHighResMs or kMinTimerIntervalLowResMs is active.
// For most purposes this could also be named g_is_on_ac_power.
bool g_high_res_timer_enabled = false;
// How many times the high resolution timer has been called.
uint32_t g_high_res_timer_count = 0;
// Start time of the high resolution timer usage monitoring. This is needed
// to calculate the usage as percentage of the total elapsed time.
TimeTicks g_high_res_timer_usage_start;
// The cumulative time the high resolution timer has been in use since
// |g_high_res_timer_usage_start| moment.
TimeDelta g_high_res_timer_usage;
// Timestamp of the last activation change of the high resolution timer. This
// is used to calculate the cumulative usage.
TimeTicks g_high_res_timer_last_activation;
// The lock to control access to the above set of variables.
Lock* GetHighResLock() {
static auto* lock = new Lock();
return lock;
}
// The two values that ActivateHighResolutionTimer uses to set the systemwide
// timer interrupt frequency on Windows. These control how precise timers are
// but also have a big impact on battery life.
// Used when a faster timer has been requested (g_high_res_timer_count > 0) and
// the computer is running on AC power (plugged in) so that it's okay to go to
// the highest frequency.
constexpr UINT kMinTimerIntervalHighResMs = 1;
// Used when a faster timer has been requested (g_high_res_timer_count > 0) and
// the computer is running on DC power (battery) so that we don't want to raise
// the timer frequency as much.
constexpr UINT kMinTimerIntervalLowResMs = 8;
// Calculate the desired timer interrupt interval. Note that zero means that the
// system default should be used.
UINT GetIntervalMs() {
if (!g_high_res_timer_count)
return 0; // Use the default, typically 15.625
if (g_high_res_timer_enabled)
return kMinTimerIntervalHighResMs;
return kMinTimerIntervalLowResMs;
}
// Compare the currently requested timer interrupt interval to the last interval
// requested and update if necessary (by cancelling the old request and making a
// new request). If there is no change then do nothing.
void UpdateTimerIntervalLocked() {
UINT new_interval = GetIntervalMs();
if (new_interval == g_last_interval_requested_ms)
return;
if (g_last_interval_requested_ms) {
// Record how long the timer interrupt frequency was raised.
g_high_res_timer_usage += subtle::TimeTicksNowIgnoringOverride() -
g_high_res_timer_last_activation;
// Reset the timer interrupt back to the default.
timeEndPeriod(g_last_interval_requested_ms);
}
g_last_interval_requested_ms = new_interval;
if (g_last_interval_requested_ms) {
// Record when the timer interrupt was raised.
g_high_res_timer_last_activation = subtle::TimeTicksNowIgnoringOverride();
timeBeginPeriod(g_last_interval_requested_ms);
}
}
// Returns the current value of the performance counter.
int64_t QPCNowRaw() {
LARGE_INTEGER perf_counter_now = {};
// According to the MSDN documentation for QueryPerformanceCounter(), this
// will never fail on systems that run XP or later.
// https://msdn.microsoft.com/library/windows/desktop/ms644904.aspx
::QueryPerformanceCounter(&perf_counter_now);
return perf_counter_now.QuadPart;
}
#if !defined(ARCH_CPU_ARM64)
// Returns the performance frequency.
int64_t QPFRaw() {
LARGE_INTEGER perf_counter_frequency = {};
// According to the MSDN documentation for QueryPerformanceFrequency(), this
// will never fail on systems that run XP or later.
// https://learn.microsoft.com/en-us/windows/win32/api/profileapi/nf-profileapi-queryperformancefrequency
::QueryPerformanceFrequency(&perf_counter_frequency);
return perf_counter_frequency.QuadPart;
}
#endif
bool SafeConvertToWord(int in, WORD* out) {
CheckedNumeric<WORD> result = in;
*out = result.ValueOrDefault(std::numeric_limits<WORD>::max());
return result.IsValid();
}
} // namespace
// Time -----------------------------------------------------------------------
namespace subtle {
Time TimeNowIgnoringOverride() {
if (g_initial_time == 0)
InitializeClock();
// We implement time using the high-resolution timers so that we can get
// timeouts which likely are smaller than those if we just used
// CurrentWallclockMicroseconds().
//
// To make this work, we initialize the clock (g_initial_time) and the
// counter (initial_ctr). To compute the initial time, we can check
// the number of ticks that have elapsed, and compute the delta.
//
// To avoid any drift, we periodically resync the counters to the system
// clock.
while (true) {
TimeTicks ticks = TimeTicksNowIgnoringOverride();
// Calculate the time elapsed since we started our timer
TimeDelta elapsed = ticks - g_initial_ticks;
// Check if enough time has elapsed that we need to resync the clock.
if (elapsed > kMaxTimeToAvoidDrift) {
InitializeClock();
continue;
}
return Time() + elapsed + Microseconds(g_initial_time);
}
}
Time TimeNowFromSystemTimeIgnoringOverride() {
// Force resync.
InitializeClock();
return Time() + Microseconds(g_initial_time);
}
} // namespace subtle
// static
Time Time::FromFileTime(FILETIME ft) {
if (bit_cast<int64_t, FILETIME>(ft) == 0)
return Time();
if (ft.dwHighDateTime == std::numeric_limits<DWORD>::max() &&
ft.dwLowDateTime == std::numeric_limits<DWORD>::max())
return Max();
return Time(FileTimeToMicroseconds(ft));
}
FILETIME Time::ToFileTime() const {
if (is_null())
return bit_cast<FILETIME, int64_t>(0);
if (is_max()) {
FILETIME result;
result.dwHighDateTime = std::numeric_limits<DWORD>::max();
result.dwLowDateTime = std::numeric_limits<DWORD>::max();
return result;
}
return MicrosecondsToFileTime(us_);
}
// static
// Enable raising of the system-global timer interrupt frequency to 1 kHz (when
// enable is true, which happens when on AC power) or some lower frequency when
// on battery power (when enable is false). If the g_high_res_timer_enabled
// setting hasn't actually changed or if if there are no outstanding requests
// (if g_high_res_timer_count is zero) then do nothing.
// TL;DR - call this when going from AC to DC power or vice-versa.
void Time::EnableHighResolutionTimer(bool enable) {
AutoLock lock(*GetHighResLock());
g_high_res_timer_enabled = enable;
UpdateTimerIntervalLocked();
}
// static
// Request that the system-global Windows timer interrupt frequency be raised.
// How high the frequency is raised depends on the system's power state and
// possibly other options.
// TL;DR - call this at the beginning and end of a time period where you want
// higher frequency timer interrupts. Each call with activating=true must be
// paired with a subsequent activating=false call.
bool Time::ActivateHighResolutionTimer(bool activating) {
// We only do work on the transition from zero to one or one to zero so we
// can easily undo the effect (if necessary) when EnableHighResolutionTimer is
// called.
const uint32_t max = std::numeric_limits<uint32_t>::max();
AutoLock lock(*GetHighResLock());
if (activating) {
DCHECK_NE(g_high_res_timer_count, max);
++g_high_res_timer_count;
} else {
DCHECK_NE(g_high_res_timer_count, 0u);
--g_high_res_timer_count;
}
UpdateTimerIntervalLocked();
return true;
}
// static
// See if the timer interrupt interval has been set to the lowest value.
bool Time::IsHighResolutionTimerInUse() {
AutoLock lock(*GetHighResLock());
return g_last_interval_requested_ms == kMinTimerIntervalHighResMs;
}
// static
void Time::ResetHighResolutionTimerUsage() {
AutoLock lock(*GetHighResLock());
g_high_res_timer_usage = TimeDelta();
g_high_res_timer_usage_start = subtle::TimeTicksNowIgnoringOverride();
if (g_high_res_timer_count > 0)
g_high_res_timer_last_activation = g_high_res_timer_usage_start;
}
// static
double Time::GetHighResolutionTimerUsage() {
AutoLock lock(*GetHighResLock());
TimeTicks now = subtle::TimeTicksNowIgnoringOverride();
TimeDelta elapsed_time = now - g_high_res_timer_usage_start;
if (elapsed_time.is_zero()) {
// This is unexpected but possible if TimeTicks resolution is low and
// GetHighResolutionTimerUsage() is called promptly after
// ResetHighResolutionTimerUsage().
return 0.0;
}
TimeDelta used_time = g_high_res_timer_usage;
if (g_high_res_timer_count > 0) {
// If currently activated add the remainder of time since the last
// activation.
used_time += now - g_high_res_timer_last_activation;
}
return used_time / elapsed_time * 100;
}
// static
bool Time::FromExploded(bool is_local, const Exploded& exploded, Time* time) {
// Create the system struct representing our exploded time. It will either be
// in local time or UTC.If casting from int to WORD results in overflow,
// fail and return Time(0).
SYSTEMTIME st;
if (!SafeConvertToWord(exploded.year, &st.wYear) ||
!SafeConvertToWord(exploded.month, &st.wMonth) ||
!SafeConvertToWord(exploded.day_of_week, &st.wDayOfWeek) ||
!SafeConvertToWord(exploded.day_of_month, &st.wDay) ||
!SafeConvertToWord(exploded.hour, &st.wHour) ||
!SafeConvertToWord(exploded.minute, &st.wMinute) ||
!SafeConvertToWord(exploded.second, &st.wSecond) ||
!SafeConvertToWord(exploded.millisecond, &st.wMilliseconds)) {
*time = Time(0);
return false;
}
FILETIME ft;
bool success = true;
// Ensure that it's in UTC.
if (is_local) {
SYSTEMTIME utc_st;
success = TzSpecificLocalTimeToSystemTime(nullptr, &st, &utc_st) &&
SystemTimeToFileTime(&utc_st, &ft);
} else {
success = !!SystemTimeToFileTime(&st, &ft);
}
*time = Time(success ? FileTimeToMicroseconds(ft) : 0);
return success;
}
void Time::Explode(bool is_local, Exploded* exploded) const {
if (!CanConvertToFileTime(us_)) {
// We are not able to convert it to FILETIME.
ZeroMemory(exploded, sizeof(*exploded));
return;
}
const FILETIME utc_ft = MicrosecondsToFileTime(us_);
// FILETIME in local time if necessary.
bool success = true;
// FILETIME in SYSTEMTIME (exploded).
SYSTEMTIME st = {0};
if (is_local) {
SYSTEMTIME utc_st;
// We don't use FileTimeToLocalFileTime here, since it uses the current
// settings for the time zone and daylight saving time. Therefore, if it is
// daylight saving time, it will take daylight saving time into account,
// even if the time you are converting is in standard time.
success = FileTimeToSystemTime(&utc_ft, &utc_st) &&
SystemTimeToTzSpecificLocalTime(nullptr, &utc_st, &st);
} else {
success = !!FileTimeToSystemTime(&utc_ft, &st);
}
if (!success) {
ZeroMemory(exploded, sizeof(*exploded));
return;
}
exploded->year = st.wYear;
exploded->month = st.wMonth;
exploded->day_of_week = st.wDayOfWeek;
exploded->day_of_month = st.wDay;
exploded->hour = st.wHour;
exploded->minute = st.wMinute;
exploded->second = st.wSecond;
exploded->millisecond = st.wMilliseconds;
}
// TimeTicks ------------------------------------------------------------------
namespace {
// We define a wrapper to adapt between the __stdcall and __cdecl call of the
// mock function, and to avoid a static constructor. Assigning an import to a
// function pointer directly would require setup code to fetch from the IAT.
DWORD timeGetTimeWrapper() {
return timeGetTime();
}
DWORD (*g_tick_function)(void) = &timeGetTimeWrapper;
// A structure holding the most significant bits of "last seen" and a
// "rollover" counter.
union LastTimeAndRolloversState {
// The state as a single 32-bit opaque value.
std::atomic<int32_t> as_opaque_32{0};
// The state as usable values.
struct {
// The top 8-bits of the "last" time. This is enough to check for rollovers
// and the small bit-size means fewer CompareAndSwap operations to store
// changes in state, which in turn makes for fewer retries.
uint8_t last_8;
// A count of the number of detected rollovers. Using this as bits 47-32
// of the upper half of a 64-bit value results in a 48-bit tick counter.
// This extends the total rollover period from about 49 days to about 8800
// years while still allowing it to be stored with last_8 in a single
// 32-bit value.
uint16_t rollovers;
} as_values;
};
std::atomic<int32_t> g_last_time_and_rollovers = 0;
static_assert(
sizeof(LastTimeAndRolloversState) <= sizeof(g_last_time_and_rollovers),
"LastTimeAndRolloversState does not fit in a single atomic word");
// We use timeGetTime() to implement TimeTicks::Now(). This can be problematic
// because it returns the number of milliseconds since Windows has started,
// which will roll over the 32-bit value every ~49 days. We try to track
// rollover ourselves, which works if TimeTicks::Now() is called at least every
// 48.8 days (not 49 days because only changes in the top 8 bits get noticed).
TimeTicks RolloverProtectedNow() {
LastTimeAndRolloversState state;
DWORD now; // DWORD is always unsigned 32 bits.
while (true) {
// Fetch the "now" and "last" tick values, updating "last" with "now" and
// incrementing the "rollovers" counter if the tick-value has wrapped back
// around. Atomic operations ensure that both "last" and "rollovers" are
// always updated together.
int32_t original =
g_last_time_and_rollovers.load(std::memory_order_acquire);
state.as_opaque_32 = original;
now = g_tick_function();
uint8_t now_8 = static_cast<uint8_t>(now >> 24);
if (now_8 < state.as_values.last_8)
++state.as_values.rollovers;
state.as_values.last_8 = now_8;
// If the state hasn't changed, exit the loop.
if (state.as_opaque_32 == original)
break;
// Save the changed state. If the existing value is unchanged from the
// original so that the operation is successful. Exit the loop.
bool success = g_last_time_and_rollovers.compare_exchange_strong(
original, state.as_opaque_32, std::memory_order_release);
if (success)
break;
// Another thread has done something in between so retry from the top.
}
return TimeTicks() +
Milliseconds(now +
(static_cast<uint64_t>(state.as_values.rollovers) << 32));
}
// Discussion of tick counter options on Windows:
//
// (1) CPU cycle counter. (Retrieved via RDTSC)
// The CPU counter provides the highest resolution time stamp and is the least
// expensive to retrieve. However, on older CPUs, two issues can affect its
// reliability: First it is maintained per processor and not synchronized
// between processors. Also, the counters will change frequency due to thermal
// and power changes, and stop in some states.
//
// (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
// resolution (<1 microsecond) time stamp. On most hardware running today, it
// auto-detects and uses the constant-rate RDTSC counter to provide extremely
// efficient and reliable time stamps.
//
// On older CPUs where RDTSC is unreliable, it falls back to using more
// expensive (20X to 40X more costly) alternate clocks, such as HPET or the ACPI
// PM timer, and can involve system calls; and all this is up to the HAL (with
// some help from ACPI). According to
// http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx, in the
// worst case, it gets the counter from the rollover interrupt on the
// programmable interrupt timer. In best cases, the HAL may conclude that the
// RDTSC counter runs at a constant frequency, then it uses that instead. On
// multiprocessor machines, it will try to verify the values returned from
// RDTSC on each processor are consistent with each other, and apply a handful
// of workarounds for known buggy hardware. In other words, QPC is supposed to
// give consistent results on a multiprocessor computer, but for older CPUs it
// can be unreliable due bugs in BIOS or HAL.
//
// (3) System time. The system time provides a low-resolution (from ~1 to ~15.6
// milliseconds) time stamp but is comparatively less expensive to retrieve and
// more reliable. Time::EnableHighResolutionTimer() and
// Time::ActivateHighResolutionTimer() can be called to alter the resolution of
// this timer; and also other Windows applications can alter it, affecting this
// one.
TimeTicks InitialNowFunction();
// See "threading notes" in InitializeNowFunctionPointer() for details on how
// concurrent reads/writes to these globals has been made safe.
std::atomic<TimeTicksNowFunction> g_time_ticks_now_ignoring_override_function{
&InitialNowFunction};
int64_t g_qpc_ticks_per_second = 0;
TimeDelta QPCValueToTimeDelta(LONGLONG qpc_value) {
// Ensure that the assignment to |g_qpc_ticks_per_second|, made in
// InitializeNowFunctionPointer(), has happened by this point.
std::atomic_thread_fence(std::memory_order_acquire);
DCHECK_GT(g_qpc_ticks_per_second, 0);
// If the QPC Value is below the overflow threshold, we proceed with
// simple multiply and divide.
if (qpc_value < Time::kQPCOverflowThreshold) {
return Microseconds(qpc_value * Time::kMicrosecondsPerSecond /
g_qpc_ticks_per_second);
}
// Otherwise, calculate microseconds in a round about manner to avoid
// overflow and precision issues.
int64_t whole_seconds = qpc_value / g_qpc_ticks_per_second;
int64_t leftover_ticks = qpc_value - (whole_seconds * g_qpc_ticks_per_second);
return Microseconds((whole_seconds * Time::kMicrosecondsPerSecond) +
((leftover_ticks * Time::kMicrosecondsPerSecond) /
g_qpc_ticks_per_second));
}
TimeTicks QPCNow() {
return TimeTicks() + QPCValueToTimeDelta(QPCNowRaw());
}
void InitializeNowFunctionPointer() {
LARGE_INTEGER ticks_per_sec = {};
if (!QueryPerformanceFrequency(&ticks_per_sec))
ticks_per_sec.QuadPart = 0;
// If Windows cannot provide a QPC implementation, TimeTicks::Now() must use
// the low-resolution clock.
//
// If the QPC implementation is expensive and/or unreliable, TimeTicks::Now()
// will still use the low-resolution clock. A CPU lacking a non-stop time
// counter will cause Windows to provide an alternate QPC implementation that
// works, but is expensive to use.
//
// Otherwise, Now uses the high-resolution QPC clock. As of 9 September 2024,
// ~97% of users fall within this category.
CPU cpu;
const TimeTicksNowFunction now_function =
(ticks_per_sec.QuadPart <= 0 || !cpu.has_non_stop_time_stamp_counter())
? &RolloverProtectedNow
: &QPCNow;
// Threading note 1: In an unlikely race condition, it's possible for two or
// more threads to enter InitializeNowFunctionPointer() in parallel. This is
// not a problem since all threads end up writing out the same values
// to the global variables, and those variable being atomic are safe to read
// from other threads.
//
// Threading note 2: A release fence is placed here to ensure, from the
// perspective of other threads using the function pointers, that the
// assignment to |g_qpc_ticks_per_second| happens before the function pointers
// are changed.
g_qpc_ticks_per_second = ticks_per_sec.QuadPart;
std::atomic_thread_fence(std::memory_order_release);
// Also set g_time_ticks_now_function to avoid the additional indirection via
// TimeTicksNowIgnoringOverride() for future calls to TimeTicks::Now(), only
// if it wasn't already overridden to a different value. memory_order_relaxed
// is sufficient since an explicit fence was inserted above.
base::TimeTicksNowFunction initial_time_ticks_now_function =
&subtle::TimeTicksNowIgnoringOverride;
internal::g_time_ticks_now_function.compare_exchange_strong(
initial_time_ticks_now_function, now_function, std::memory_order_relaxed);
g_time_ticks_now_ignoring_override_function.store(now_function,
std::memory_order_relaxed);
}
TimeTicks InitialNowFunction() {
InitializeNowFunctionPointer();
return g_time_ticks_now_ignoring_override_function.load(
std::memory_order_relaxed)();
}
} // namespace
// static
TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction(
TickFunctionType ticker) {
TickFunctionType old = g_tick_function;
g_tick_function = ticker;
g_last_time_and_rollovers.store(0, std::memory_order_relaxed);
return old;
}
namespace subtle {
TimeTicks TimeTicksNowIgnoringOverride() {
return g_time_ticks_now_ignoring_override_function.load(
std::memory_order_relaxed)();
}
TimeTicks TimeTicksLowResolutionNowIgnoringOverride() {
return RolloverProtectedNow();
}
} // namespace subtle
// static
bool TimeTicks::IsHighResolution() {
if (g_time_ticks_now_ignoring_override_function == &InitialNowFunction)
InitializeNowFunctionPointer();
return g_time_ticks_now_ignoring_override_function == &QPCNow;
}
// static
bool TimeTicks::IsConsistentAcrossProcesses() {
// According to Windows documentation [1] QPC is consistent post-Windows
// Vista. So if we are using QPC then we are consistent which is the same as
// being high resolution.
//
// [1] https://msdn.microsoft.com/en-us/library/windows/desktop/dn553408(v=vs.85).aspx
//
// "In general, the performance counter results are consistent across all
// processors in multi-core and multi-processor systems, even when measured on
// different threads or processes. Here are some exceptions to this rule:
// - Pre-Windows Vista operating systems that run on certain processors might
// violate this consistency because of one of these reasons:
// 1. The hardware processors have a non-invariant TSC and the BIOS
// doesn't indicate this condition correctly.
// 2. The TSC synchronization algorithm that was used wasn't suitable for
// systems with large numbers of processors."
return IsHighResolution();
}
// static
TimeTicks::Clock TimeTicks::GetClock() {
return IsHighResolution() ? Clock::WIN_QPC
: Clock::WIN_ROLLOVER_PROTECTED_TIME_GET_TIME;
}
// LiveTicks ------------------------------------------------------------------
namespace subtle {
LiveTicks LiveTicksNowIgnoringOverride() {
ULONGLONG unbiased_interrupt_time;
QueryUnbiasedInterruptTimePrecise(&unbiased_interrupt_time);
// QueryUnbiasedInterruptTimePrecise gets the interrupt time in system time
// units of 100 nanoseconds.
return LiveTicks() + Nanoseconds(unbiased_interrupt_time * 100);
}
} // namespace subtle
// ThreadTicks ----------------------------------------------------------------
namespace subtle {
ThreadTicks ThreadTicksNowIgnoringOverride() {
return ThreadTicks::GetForThread(PlatformThread::CurrentHandle());
}
} // namespace subtle
// static
ThreadTicks ThreadTicks::GetForThread(
const PlatformThreadHandle& thread_handle) {
DCHECK(IsSupported());
#if defined(ARCH_CPU_ARM64)
// QueryThreadCycleTime versus TSCTicksPerSecond doesn't have much relation to
// actual elapsed time on Windows on Arm, because QueryThreadCycleTime is
// backed by the actual number of CPU cycles executed, rather than a
// constant-rate timer like Intel. To work around this, use GetThreadTimes
// (which isn't as accurate but is meaningful as a measure of elapsed
// per-thread time).
FILETIME creation_time, exit_time, kernel_time, user_time;
::GetThreadTimes(thread_handle.platform_handle(), &creation_time, &exit_time,
&kernel_time, &user_time);
const int64_t us = FileTimeToMicroseconds(user_time);
#else
// Get the number of TSC ticks used by the current thread.
ULONG64 thread_cycle_time = 0;
::QueryThreadCycleTime(thread_handle.platform_handle(), &thread_cycle_time);
// Get the frequency of the TSC.
const double tsc_ticks_per_second = time_internal::TSCTicksPerSecond();
if (tsc_ticks_per_second == 0)
return ThreadTicks();
// Return the CPU time of the current thread.
const double thread_time_seconds = thread_cycle_time / tsc_ticks_per_second;
const int64_t us =
static_cast<int64_t>(thread_time_seconds * Time::kMicrosecondsPerSecond);
#endif
return ThreadTicks(us);
}
// static
bool ThreadTicks::IsSupportedWin() {
#if defined(ARCH_CPU_ARM64)
// The Arm implementation does not use QueryThreadCycleTime and therefore does
// not care about the time stamp counter.
return true;
#else
return time_internal::HasConstantRateTSC();
#endif
}
// static
void ThreadTicks::WaitUntilInitializedWin() {
#if !defined(ARCH_CPU_ARM64)
while (time_internal::TSCTicksPerSecond() == 0)
::Sleep(10);
#endif
}
// static
TimeTicks TimeTicks::FromQPCValue(LONGLONG qpc_value) {
return TimeTicks() + QPCValueToTimeDelta(qpc_value);
}
// TimeDelta ------------------------------------------------------------------
// static
TimeDelta TimeDelta::FromQPCValue(LONGLONG qpc_value) {
return QPCValueToTimeDelta(qpc_value);
}
// static
TimeDelta TimeDelta::FromFileTime(FILETIME ft) {
return Microseconds(FileTimeToMicroseconds(ft));
}
// static
TimeDelta TimeDelta::FromWinrtDateTime(ABI::Windows::Foundation::DateTime dt) {
// UniversalTime is 100 ns intervals since January 1, 1601 (UTC)
return Microseconds(dt.UniversalTime / 10);
}
ABI::Windows::Foundation::DateTime TimeDelta::ToWinrtDateTime() const {
ABI::Windows::Foundation::DateTime date_time;
date_time.UniversalTime = InMicroseconds() * 10;
return date_time;
}
// static
TimeDelta TimeDelta::FromWinrtTimeSpan(ABI::Windows::Foundation::TimeSpan ts) {
// Duration is 100 ns intervals
return Microseconds(ts.Duration / 10);
}
ABI::Windows::Foundation::TimeSpan TimeDelta::ToWinrtTimeSpan() const {
ABI::Windows::Foundation::TimeSpan time_span;
time_span.Duration = InMicroseconds() * 10;
return time_span;
}
#if !defined(ARCH_CPU_ARM64)
namespace time_internal {
bool HasConstantRateTSC() {
static bool is_supported = CPU().has_non_stop_time_stamp_counter();
return is_supported;
}
double TSCTicksPerSecond() {
DCHECK(HasConstantRateTSC());
// The value returned by QueryPerformanceFrequency() cannot be used as the TSC
// frequency, because there is no guarantee that the TSC frequency is equal to
// the performance counter frequency.
// The TSC frequency is cached in a static variable because it takes some time
// to compute it.
static double tsc_ticks_per_second = 0;
if (tsc_ticks_per_second != 0)
return tsc_ticks_per_second;
// Increase the thread priority to reduces the chances of having a context
// switch during a reading of the TSC and the performance counter.
const int previous_priority = ::GetThreadPriority(::GetCurrentThread());
::SetThreadPriority(::GetCurrentThread(), THREAD_PRIORITY_HIGHEST);
// The first time that this function is called, make an initial reading of the
// TSC and the performance counter.
static const uint64_t tsc_initial = __rdtsc();
static const int64_t perf_counter_initial = QPCNowRaw();
static const int64_t perf_counter_frequency = QPFRaw();
// Make a another reading of the TSC and the performance counter every time
// that this function is called.
const uint64_t tsc_now = __rdtsc();
const int64_t perf_counter_now = QPCNowRaw();
// Reset the thread priority.
::SetThreadPriority(::GetCurrentThread(), previous_priority);
// Make sure that at least 50 ms elapsed between the 2 readings. The first
// time that this function is called, we don't expect this to be the case.
// Note: The longer the elapsed time between the 2 readings is, the more
// accurate the computed TSC frequency will be. The 50 ms value was
// chosen because local benchmarks show that it allows us to get a
// stddev of less than 1 tick/us between multiple runs.
DCHECK_GE(perf_counter_now, perf_counter_initial);
const int64_t perf_counter_ticks = perf_counter_now - perf_counter_initial;
const double elapsed_time_seconds =
perf_counter_ticks / static_cast<double>(perf_counter_frequency);
constexpr double kMinimumEvaluationPeriodSeconds = 0.05;
if (elapsed_time_seconds < kMinimumEvaluationPeriodSeconds)
return 0;
// Compute the frequency of the TSC.
DCHECK_GE(tsc_now, tsc_initial);
const uint64_t tsc_ticks = tsc_now - tsc_initial;
tsc_ticks_per_second = tsc_ticks / elapsed_time_seconds;
return tsc_ticks_per_second;
}
} // namespace time_internal
#endif // defined(ARCH_CPU_ARM64)
} // namespace base