1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842

base / time / time_win.cc [blame]

// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// Windows Timer Primer
//
// A good article:  http://www.ddj.com/windows/184416651
// A good mozilla bug:  http://bugzilla.mozilla.org/show_bug.cgi?id=363258
//
// The default windows timer, GetSystemTimePreciseAsFileTime is quite precise.
// However it is not always fast on some hardware and is slower than the
// performance counters.
//
// QueryPerformanceCounter is the logical choice for a high-precision timer.
// However, it is known to be buggy on some hardware.  Specifically, it can
// sometimes "jump".  On laptops, QPC can also be very expensive to call.
// It's 3-4x slower than timeGetTime() on desktops, but can be 10x slower
// on laptops.  A unittest exists which will show the relative cost of various
// timers on any system.
//
// The next logical choice is timeGetTime().  timeGetTime has a precision of
// 1ms, but only if you call APIs (timeBeginPeriod()) which affect all other
// applications on the system.  By default, precision is only 15.5ms.
// Unfortunately, we don't want to call timeBeginPeriod because we don't
// want to affect other applications.  Further, on mobile platforms, use of
// faster multimedia timers can hurt battery life.  See the intel
// article about this here:
// http://softwarecommunity.intel.com/articles/eng/1086.htm
//
// To work around all this, we're going to generally use timeGetTime().  We
// will only increase the system-wide timer if we're not running on battery
// power.

#include "base/time/time.h"

#include <windows.h>

#include <mmsystem.h>
#include <stdint.h>
#include <windows.foundation.h>

#include <atomic>
#include <ostream>

#include "base/bit_cast.h"
#include "base/check_op.h"
#include "base/cpu.h"
#include "base/notreached.h"
#include "base/synchronization/lock.h"
#include "base/threading/platform_thread.h"
#include "base/time/time_override.h"
#include "build/build_config.h"

namespace base {

namespace {

// From MSDN, FILETIME "Contains a 64-bit value representing the number of
// 100-nanosecond intervals since January 1, 1601 (UTC)."
int64_t FileTimeToMicroseconds(const FILETIME& ft) {
  // Need to bit_cast to fix alignment, then divide by 10 to convert
  // 100-nanoseconds to microseconds. This only works on little-endian
  // machines.
  return bit_cast<int64_t, FILETIME>(ft) / 10;
}

bool CanConvertToFileTime(int64_t us) {
  return us >= 0 && us <= (std::numeric_limits<int64_t>::max() / 10);
}

FILETIME MicrosecondsToFileTime(int64_t us) {
  DCHECK(CanConvertToFileTime(us)) << "Out-of-range: Cannot convert " << us
                                   << " microseconds to FILETIME units.";

  // Multiply by 10 to convert microseconds to 100-nanoseconds. Bit_cast will
  // handle alignment problems. This only works on little-endian machines.
  return bit_cast<FILETIME, int64_t>(us * 10);
}

int64_t CurrentWallclockMicroseconds() {
  FILETIME ft;
  ::GetSystemTimePreciseAsFileTime(&ft);
  return FileTimeToMicroseconds(ft);
}

// Time between resampling the un-granular clock for this API.
constexpr TimeDelta kMaxTimeToAvoidDrift = Seconds(60);

int64_t g_initial_time = 0;
TimeTicks g_initial_ticks;

void InitializeClock() {
  g_initial_ticks = subtle::TimeTicksNowIgnoringOverride();
  g_initial_time = CurrentWallclockMicroseconds();
}

// Track the last value passed to timeBeginPeriod so that we can cancel that
// call by calling timeEndPeriod with the same value. A value of zero means that
// the timer frequency is not currently raised.
UINT g_last_interval_requested_ms = 0;
// Track if kMinTimerIntervalHighResMs or kMinTimerIntervalLowResMs is active.
// For most purposes this could also be named g_is_on_ac_power.
bool g_high_res_timer_enabled = false;
// How many times the high resolution timer has been called.
uint32_t g_high_res_timer_count = 0;
// Start time of the high resolution timer usage monitoring. This is needed
// to calculate the usage as percentage of the total elapsed time.
TimeTicks g_high_res_timer_usage_start;
// The cumulative time the high resolution timer has been in use since
// |g_high_res_timer_usage_start| moment.
TimeDelta g_high_res_timer_usage;
// Timestamp of the last activation change of the high resolution timer. This
// is used to calculate the cumulative usage.
TimeTicks g_high_res_timer_last_activation;
// The lock to control access to the above set of variables.
Lock* GetHighResLock() {
  static auto* lock = new Lock();
  return lock;
}

// The two values that ActivateHighResolutionTimer uses to set the systemwide
// timer interrupt frequency on Windows. These control how precise timers are
// but also have a big impact on battery life.

// Used when a faster timer has been requested (g_high_res_timer_count > 0) and
// the computer is running on AC power (plugged in) so that it's okay to go to
// the highest frequency.
constexpr UINT kMinTimerIntervalHighResMs = 1;

// Used when a faster timer has been requested (g_high_res_timer_count > 0) and
// the computer is running on DC power (battery) so that we don't want to raise
// the timer frequency as much.
constexpr UINT kMinTimerIntervalLowResMs = 8;

// Calculate the desired timer interrupt interval. Note that zero means that the
// system default should be used.
UINT GetIntervalMs() {
  if (!g_high_res_timer_count)
    return 0;  // Use the default, typically 15.625
  if (g_high_res_timer_enabled)
    return kMinTimerIntervalHighResMs;
  return kMinTimerIntervalLowResMs;
}

// Compare the currently requested timer interrupt interval to the last interval
// requested and update if necessary (by cancelling the old request and making a
// new request). If there is no change then do nothing.
void UpdateTimerIntervalLocked() {
  UINT new_interval = GetIntervalMs();
  if (new_interval == g_last_interval_requested_ms)
    return;
  if (g_last_interval_requested_ms) {
    // Record how long the timer interrupt frequency was raised.
    g_high_res_timer_usage += subtle::TimeTicksNowIgnoringOverride() -
                              g_high_res_timer_last_activation;
    // Reset the timer interrupt back to the default.
    timeEndPeriod(g_last_interval_requested_ms);
  }
  g_last_interval_requested_ms = new_interval;
  if (g_last_interval_requested_ms) {
    // Record when the timer interrupt was raised.
    g_high_res_timer_last_activation = subtle::TimeTicksNowIgnoringOverride();
    timeBeginPeriod(g_last_interval_requested_ms);
  }
}

// Returns the current value of the performance counter.
int64_t QPCNowRaw() {
  LARGE_INTEGER perf_counter_now = {};
  // According to the MSDN documentation for QueryPerformanceCounter(), this
  // will never fail on systems that run XP or later.
  // https://msdn.microsoft.com/library/windows/desktop/ms644904.aspx
  ::QueryPerformanceCounter(&perf_counter_now);
  return perf_counter_now.QuadPart;
}

#if !defined(ARCH_CPU_ARM64)
// Returns the performance frequency.
int64_t QPFRaw() {
  LARGE_INTEGER perf_counter_frequency = {};
  // According to the MSDN documentation for QueryPerformanceFrequency(), this
  // will never fail on systems that run XP or later.
  // https://learn.microsoft.com/en-us/windows/win32/api/profileapi/nf-profileapi-queryperformancefrequency
  ::QueryPerformanceFrequency(&perf_counter_frequency);
  return perf_counter_frequency.QuadPart;
}
#endif

bool SafeConvertToWord(int in, WORD* out) {
  CheckedNumeric<WORD> result = in;
  *out = result.ValueOrDefault(std::numeric_limits<WORD>::max());
  return result.IsValid();
}

}  // namespace

// Time -----------------------------------------------------------------------

namespace subtle {
Time TimeNowIgnoringOverride() {
  if (g_initial_time == 0)
    InitializeClock();

  // We implement time using the high-resolution timers so that we can get
  // timeouts which likely are smaller than those if we just used
  // CurrentWallclockMicroseconds().
  //
  // To make this work, we initialize the clock (g_initial_time) and the
  // counter (initial_ctr).  To compute the initial time, we can check
  // the number of ticks that have elapsed, and compute the delta.
  //
  // To avoid any drift, we periodically resync the counters to the system
  // clock.
  while (true) {
    TimeTicks ticks = TimeTicksNowIgnoringOverride();

    // Calculate the time elapsed since we started our timer
    TimeDelta elapsed = ticks - g_initial_ticks;

    // Check if enough time has elapsed that we need to resync the clock.
    if (elapsed > kMaxTimeToAvoidDrift) {
      InitializeClock();
      continue;
    }

    return Time() + elapsed + Microseconds(g_initial_time);
  }
}

Time TimeNowFromSystemTimeIgnoringOverride() {
  // Force resync.
  InitializeClock();
  return Time() + Microseconds(g_initial_time);
}
}  // namespace subtle

// static
Time Time::FromFileTime(FILETIME ft) {
  if (bit_cast<int64_t, FILETIME>(ft) == 0)
    return Time();
  if (ft.dwHighDateTime == std::numeric_limits<DWORD>::max() &&
      ft.dwLowDateTime == std::numeric_limits<DWORD>::max())
    return Max();
  return Time(FileTimeToMicroseconds(ft));
}

FILETIME Time::ToFileTime() const {
  if (is_null())
    return bit_cast<FILETIME, int64_t>(0);
  if (is_max()) {
    FILETIME result;
    result.dwHighDateTime = std::numeric_limits<DWORD>::max();
    result.dwLowDateTime = std::numeric_limits<DWORD>::max();
    return result;
  }
  return MicrosecondsToFileTime(us_);
}

// static
// Enable raising of the system-global timer interrupt frequency to 1 kHz (when
// enable is true, which happens when on AC power) or some lower frequency when
// on battery power (when enable is false). If the g_high_res_timer_enabled
// setting hasn't actually changed or if if there are no outstanding requests
// (if g_high_res_timer_count is zero) then do nothing.
// TL;DR - call this when going from AC to DC power or vice-versa.
void Time::EnableHighResolutionTimer(bool enable) {
  AutoLock lock(*GetHighResLock());
  g_high_res_timer_enabled = enable;
  UpdateTimerIntervalLocked();
}

// static
// Request that the system-global Windows timer interrupt frequency be raised.
// How high the frequency is raised depends on the system's power state and
// possibly other options.
// TL;DR - call this at the beginning and end of a time period where you want
// higher frequency timer interrupts. Each call with activating=true must be
// paired with a subsequent activating=false call.
bool Time::ActivateHighResolutionTimer(bool activating) {
  // We only do work on the transition from zero to one or one to zero so we
  // can easily undo the effect (if necessary) when EnableHighResolutionTimer is
  // called.
  const uint32_t max = std::numeric_limits<uint32_t>::max();

  AutoLock lock(*GetHighResLock());
  if (activating) {
    DCHECK_NE(g_high_res_timer_count, max);
    ++g_high_res_timer_count;
  } else {
    DCHECK_NE(g_high_res_timer_count, 0u);
    --g_high_res_timer_count;
  }
  UpdateTimerIntervalLocked();
  return true;
}

// static
// See if the timer interrupt interval has been set to the lowest value.
bool Time::IsHighResolutionTimerInUse() {
  AutoLock lock(*GetHighResLock());
  return g_last_interval_requested_ms == kMinTimerIntervalHighResMs;
}

// static
void Time::ResetHighResolutionTimerUsage() {
  AutoLock lock(*GetHighResLock());
  g_high_res_timer_usage = TimeDelta();
  g_high_res_timer_usage_start = subtle::TimeTicksNowIgnoringOverride();
  if (g_high_res_timer_count > 0)
    g_high_res_timer_last_activation = g_high_res_timer_usage_start;
}

// static
double Time::GetHighResolutionTimerUsage() {
  AutoLock lock(*GetHighResLock());
  TimeTicks now = subtle::TimeTicksNowIgnoringOverride();
  TimeDelta elapsed_time = now - g_high_res_timer_usage_start;
  if (elapsed_time.is_zero()) {
    // This is unexpected but possible if TimeTicks resolution is low and
    // GetHighResolutionTimerUsage() is called promptly after
    // ResetHighResolutionTimerUsage().
    return 0.0;
  }
  TimeDelta used_time = g_high_res_timer_usage;
  if (g_high_res_timer_count > 0) {
    // If currently activated add the remainder of time since the last
    // activation.
    used_time += now - g_high_res_timer_last_activation;
  }
  return used_time / elapsed_time * 100;
}

// static
bool Time::FromExploded(bool is_local, const Exploded& exploded, Time* time) {
  // Create the system struct representing our exploded time. It will either be
  // in local time or UTC.If casting from int to WORD results in overflow,
  // fail and return Time(0).
  SYSTEMTIME st;
  if (!SafeConvertToWord(exploded.year, &st.wYear) ||
      !SafeConvertToWord(exploded.month, &st.wMonth) ||
      !SafeConvertToWord(exploded.day_of_week, &st.wDayOfWeek) ||
      !SafeConvertToWord(exploded.day_of_month, &st.wDay) ||
      !SafeConvertToWord(exploded.hour, &st.wHour) ||
      !SafeConvertToWord(exploded.minute, &st.wMinute) ||
      !SafeConvertToWord(exploded.second, &st.wSecond) ||
      !SafeConvertToWord(exploded.millisecond, &st.wMilliseconds)) {
    *time = Time(0);
    return false;
  }

  FILETIME ft;
  bool success = true;
  // Ensure that it's in UTC.
  if (is_local) {
    SYSTEMTIME utc_st;
    success = TzSpecificLocalTimeToSystemTime(nullptr, &st, &utc_st) &&
              SystemTimeToFileTime(&utc_st, &ft);
  } else {
    success = !!SystemTimeToFileTime(&st, &ft);
  }

  *time = Time(success ? FileTimeToMicroseconds(ft) : 0);
  return success;
}

void Time::Explode(bool is_local, Exploded* exploded) const {
  if (!CanConvertToFileTime(us_)) {
    // We are not able to convert it to FILETIME.
    ZeroMemory(exploded, sizeof(*exploded));
    return;
  }

  const FILETIME utc_ft = MicrosecondsToFileTime(us_);

  // FILETIME in local time if necessary.
  bool success = true;
  // FILETIME in SYSTEMTIME (exploded).
  SYSTEMTIME st = {0};
  if (is_local) {
    SYSTEMTIME utc_st;
    // We don't use FileTimeToLocalFileTime here, since it uses the current
    // settings for the time zone and daylight saving time. Therefore, if it is
    // daylight saving time, it will take daylight saving time into account,
    // even if the time you are converting is in standard time.
    success = FileTimeToSystemTime(&utc_ft, &utc_st) &&
              SystemTimeToTzSpecificLocalTime(nullptr, &utc_st, &st);
  } else {
    success = !!FileTimeToSystemTime(&utc_ft, &st);
  }

  if (!success) {
    ZeroMemory(exploded, sizeof(*exploded));
    return;
  }

  exploded->year = st.wYear;
  exploded->month = st.wMonth;
  exploded->day_of_week = st.wDayOfWeek;
  exploded->day_of_month = st.wDay;
  exploded->hour = st.wHour;
  exploded->minute = st.wMinute;
  exploded->second = st.wSecond;
  exploded->millisecond = st.wMilliseconds;
}

// TimeTicks ------------------------------------------------------------------

namespace {

// We define a wrapper to adapt between the __stdcall and __cdecl call of the
// mock function, and to avoid a static constructor.  Assigning an import to a
// function pointer directly would require setup code to fetch from the IAT.
DWORD timeGetTimeWrapper() {
  return timeGetTime();
}

DWORD (*g_tick_function)(void) = &timeGetTimeWrapper;

// A structure holding the most significant bits of "last seen" and a
// "rollover" counter.
union LastTimeAndRolloversState {
  // The state as a single 32-bit opaque value.
  std::atomic<int32_t> as_opaque_32{0};

  // The state as usable values.
  struct {
    // The top 8-bits of the "last" time. This is enough to check for rollovers
    // and the small bit-size means fewer CompareAndSwap operations to store
    // changes in state, which in turn makes for fewer retries.
    uint8_t last_8;
    // A count of the number of detected rollovers. Using this as bits 47-32
    // of the upper half of a 64-bit value results in a 48-bit tick counter.
    // This extends the total rollover period from about 49 days to about 8800
    // years while still allowing it to be stored with last_8 in a single
    // 32-bit value.
    uint16_t rollovers;
  } as_values;
};
std::atomic<int32_t> g_last_time_and_rollovers = 0;
static_assert(
    sizeof(LastTimeAndRolloversState) <= sizeof(g_last_time_and_rollovers),
    "LastTimeAndRolloversState does not fit in a single atomic word");

// We use timeGetTime() to implement TimeTicks::Now().  This can be problematic
// because it returns the number of milliseconds since Windows has started,
// which will roll over the 32-bit value every ~49 days.  We try to track
// rollover ourselves, which works if TimeTicks::Now() is called at least every
// 48.8 days (not 49 days because only changes in the top 8 bits get noticed).
TimeTicks RolloverProtectedNow() {
  LastTimeAndRolloversState state;
  DWORD now;  // DWORD is always unsigned 32 bits.

  while (true) {
    // Fetch the "now" and "last" tick values, updating "last" with "now" and
    // incrementing the "rollovers" counter if the tick-value has wrapped back
    // around. Atomic operations ensure that both "last" and "rollovers" are
    // always updated together.
    int32_t original =
        g_last_time_and_rollovers.load(std::memory_order_acquire);
    state.as_opaque_32 = original;
    now = g_tick_function();
    uint8_t now_8 = static_cast<uint8_t>(now >> 24);
    if (now_8 < state.as_values.last_8)
      ++state.as_values.rollovers;
    state.as_values.last_8 = now_8;

    // If the state hasn't changed, exit the loop.
    if (state.as_opaque_32 == original)
      break;

    // Save the changed state. If the existing value is unchanged from the
    // original so that the operation is successful. Exit the loop.
    bool success = g_last_time_and_rollovers.compare_exchange_strong(
        original, state.as_opaque_32, std::memory_order_release);
    if (success)
      break;

    // Another thread has done something in between so retry from the top.
  }

  return TimeTicks() +
         Milliseconds(now +
                      (static_cast<uint64_t>(state.as_values.rollovers) << 32));
}

// Discussion of tick counter options on Windows:
//
// (1) CPU cycle counter. (Retrieved via RDTSC)
// The CPU counter provides the highest resolution time stamp and is the least
// expensive to retrieve. However, on older CPUs, two issues can affect its
// reliability: First it is maintained per processor and not synchronized
// between processors. Also, the counters will change frequency due to thermal
// and power changes, and stop in some states.
//
// (2) QueryPerformanceCounter (QPC). The QPC counter provides a high-
// resolution (<1 microsecond) time stamp. On most hardware running today, it
// auto-detects and uses the constant-rate RDTSC counter to provide extremely
// efficient and reliable time stamps.
//
// On older CPUs where RDTSC is unreliable, it falls back to using more
// expensive (20X to 40X more costly) alternate clocks, such as HPET or the ACPI
// PM timer, and can involve system calls; and all this is up to the HAL (with
// some help from ACPI). According to
// http://blogs.msdn.com/oldnewthing/archive/2005/09/02/459952.aspx, in the
// worst case, it gets the counter from the rollover interrupt on the
// programmable interrupt timer. In best cases, the HAL may conclude that the
// RDTSC counter runs at a constant frequency, then it uses that instead. On
// multiprocessor machines, it will try to verify the values returned from
// RDTSC on each processor are consistent with each other, and apply a handful
// of workarounds for known buggy hardware. In other words, QPC is supposed to
// give consistent results on a multiprocessor computer, but for older CPUs it
// can be unreliable due bugs in BIOS or HAL.
//
// (3) System time. The system time provides a low-resolution (from ~1 to ~15.6
// milliseconds) time stamp but is comparatively less expensive to retrieve and
// more reliable. Time::EnableHighResolutionTimer() and
// Time::ActivateHighResolutionTimer() can be called to alter the resolution of
// this timer; and also other Windows applications can alter it, affecting this
// one.

TimeTicks InitialNowFunction();

// See "threading notes" in InitializeNowFunctionPointer() for details on how
// concurrent reads/writes to these globals has been made safe.
std::atomic<TimeTicksNowFunction> g_time_ticks_now_ignoring_override_function{
    &InitialNowFunction};
int64_t g_qpc_ticks_per_second = 0;

TimeDelta QPCValueToTimeDelta(LONGLONG qpc_value) {
  // Ensure that the assignment to |g_qpc_ticks_per_second|, made in
  // InitializeNowFunctionPointer(), has happened by this point.
  std::atomic_thread_fence(std::memory_order_acquire);

  DCHECK_GT(g_qpc_ticks_per_second, 0);

  // If the QPC Value is below the overflow threshold, we proceed with
  // simple multiply and divide.
  if (qpc_value < Time::kQPCOverflowThreshold) {
    return Microseconds(qpc_value * Time::kMicrosecondsPerSecond /
                        g_qpc_ticks_per_second);
  }
  // Otherwise, calculate microseconds in a round about manner to avoid
  // overflow and precision issues.
  int64_t whole_seconds = qpc_value / g_qpc_ticks_per_second;
  int64_t leftover_ticks = qpc_value - (whole_seconds * g_qpc_ticks_per_second);
  return Microseconds((whole_seconds * Time::kMicrosecondsPerSecond) +
                      ((leftover_ticks * Time::kMicrosecondsPerSecond) /
                       g_qpc_ticks_per_second));
}

TimeTicks QPCNow() {
  return TimeTicks() + QPCValueToTimeDelta(QPCNowRaw());
}

void InitializeNowFunctionPointer() {
  LARGE_INTEGER ticks_per_sec = {};
  if (!QueryPerformanceFrequency(&ticks_per_sec))
    ticks_per_sec.QuadPart = 0;

  // If Windows cannot provide a QPC implementation, TimeTicks::Now() must use
  // the low-resolution clock.
  //
  // If the QPC implementation is expensive and/or unreliable, TimeTicks::Now()
  // will still use the low-resolution clock. A CPU lacking a non-stop time
  // counter will cause Windows to provide an alternate QPC implementation that
  // works, but is expensive to use.
  //
  // Otherwise, Now uses the high-resolution QPC clock. As of 9 September 2024,
  // ~97% of users fall within this category.
  CPU cpu;
  const TimeTicksNowFunction now_function =
      (ticks_per_sec.QuadPart <= 0 || !cpu.has_non_stop_time_stamp_counter())
          ? &RolloverProtectedNow
          : &QPCNow;

  // Threading note 1: In an unlikely race condition, it's possible for two or
  // more threads to enter InitializeNowFunctionPointer() in parallel. This is
  // not a problem since all threads end up writing out the same values
  // to the global variables, and those variable being atomic are safe to read
  // from other threads.
  //
  // Threading note 2: A release fence is placed here to ensure, from the
  // perspective of other threads using the function pointers, that the
  // assignment to |g_qpc_ticks_per_second| happens before the function pointers
  // are changed.
  g_qpc_ticks_per_second = ticks_per_sec.QuadPart;
  std::atomic_thread_fence(std::memory_order_release);
  // Also set g_time_ticks_now_function to avoid the additional indirection via
  // TimeTicksNowIgnoringOverride() for future calls to TimeTicks::Now(), only
  // if it wasn't already overridden to a different value. memory_order_relaxed
  // is sufficient since an explicit fence was inserted above.
  base::TimeTicksNowFunction initial_time_ticks_now_function =
      &subtle::TimeTicksNowIgnoringOverride;
  internal::g_time_ticks_now_function.compare_exchange_strong(
      initial_time_ticks_now_function, now_function, std::memory_order_relaxed);
  g_time_ticks_now_ignoring_override_function.store(now_function,
                                                    std::memory_order_relaxed);
}

TimeTicks InitialNowFunction() {
  InitializeNowFunctionPointer();
  return g_time_ticks_now_ignoring_override_function.load(
      std::memory_order_relaxed)();
}

}  // namespace

// static
TimeTicks::TickFunctionType TimeTicks::SetMockTickFunction(
    TickFunctionType ticker) {
  TickFunctionType old = g_tick_function;
  g_tick_function = ticker;
  g_last_time_and_rollovers.store(0, std::memory_order_relaxed);
  return old;
}

namespace subtle {
TimeTicks TimeTicksNowIgnoringOverride() {
  return g_time_ticks_now_ignoring_override_function.load(
      std::memory_order_relaxed)();
}

TimeTicks TimeTicksLowResolutionNowIgnoringOverride() {
  return RolloverProtectedNow();
}
}  // namespace subtle

// static
bool TimeTicks::IsHighResolution() {
  if (g_time_ticks_now_ignoring_override_function == &InitialNowFunction)
    InitializeNowFunctionPointer();
  return g_time_ticks_now_ignoring_override_function == &QPCNow;
}

// static
bool TimeTicks::IsConsistentAcrossProcesses() {
  // According to Windows documentation [1] QPC is consistent post-Windows
  // Vista. So if we are using QPC then we are consistent which is the same as
  // being high resolution.
  //
  // [1] https://msdn.microsoft.com/en-us/library/windows/desktop/dn553408(v=vs.85).aspx
  //
  // "In general, the performance counter results are consistent across all
  // processors in multi-core and multi-processor systems, even when measured on
  // different threads or processes. Here are some exceptions to this rule:
  // - Pre-Windows Vista operating systems that run on certain processors might
  // violate this consistency because of one of these reasons:
  //     1. The hardware processors have a non-invariant TSC and the BIOS
  //     doesn't indicate this condition correctly.
  //     2. The TSC synchronization algorithm that was used wasn't suitable for
  //     systems with large numbers of processors."
  return IsHighResolution();
}

// static
TimeTicks::Clock TimeTicks::GetClock() {
  return IsHighResolution() ? Clock::WIN_QPC
                            : Clock::WIN_ROLLOVER_PROTECTED_TIME_GET_TIME;
}

// LiveTicks ------------------------------------------------------------------

namespace subtle {
LiveTicks LiveTicksNowIgnoringOverride() {
  ULONGLONG unbiased_interrupt_time;
  QueryUnbiasedInterruptTimePrecise(&unbiased_interrupt_time);
  // QueryUnbiasedInterruptTimePrecise gets the interrupt time in system time
  // units of 100 nanoseconds.
  return LiveTicks() + Nanoseconds(unbiased_interrupt_time * 100);
}
}  // namespace subtle

// ThreadTicks ----------------------------------------------------------------

namespace subtle {
ThreadTicks ThreadTicksNowIgnoringOverride() {
  return ThreadTicks::GetForThread(PlatformThread::CurrentHandle());
}
}  // namespace subtle

// static
ThreadTicks ThreadTicks::GetForThread(
    const PlatformThreadHandle& thread_handle) {
  DCHECK(IsSupported());

#if defined(ARCH_CPU_ARM64)
  // QueryThreadCycleTime versus TSCTicksPerSecond doesn't have much relation to
  // actual elapsed time on Windows on Arm, because QueryThreadCycleTime is
  // backed by the actual number of CPU cycles executed, rather than a
  // constant-rate timer like Intel. To work around this, use GetThreadTimes
  // (which isn't as accurate but is meaningful as a measure of elapsed
  // per-thread time).
  FILETIME creation_time, exit_time, kernel_time, user_time;
  ::GetThreadTimes(thread_handle.platform_handle(), &creation_time, &exit_time,
                   &kernel_time, &user_time);

  const int64_t us = FileTimeToMicroseconds(user_time);
#else
  // Get the number of TSC ticks used by the current thread.
  ULONG64 thread_cycle_time = 0;
  ::QueryThreadCycleTime(thread_handle.platform_handle(), &thread_cycle_time);

  // Get the frequency of the TSC.
  const double tsc_ticks_per_second = time_internal::TSCTicksPerSecond();
  if (tsc_ticks_per_second == 0)
    return ThreadTicks();

  // Return the CPU time of the current thread.
  const double thread_time_seconds = thread_cycle_time / tsc_ticks_per_second;
  const int64_t us =
      static_cast<int64_t>(thread_time_seconds * Time::kMicrosecondsPerSecond);
#endif

  return ThreadTicks(us);
}

// static
bool ThreadTicks::IsSupportedWin() {
#if defined(ARCH_CPU_ARM64)
  // The Arm implementation does not use QueryThreadCycleTime and therefore does
  // not care about the time stamp counter.
  return true;
#else
  return time_internal::HasConstantRateTSC();
#endif
}

// static
void ThreadTicks::WaitUntilInitializedWin() {
#if !defined(ARCH_CPU_ARM64)
  while (time_internal::TSCTicksPerSecond() == 0)
    ::Sleep(10);
#endif
}

// static
TimeTicks TimeTicks::FromQPCValue(LONGLONG qpc_value) {
  return TimeTicks() + QPCValueToTimeDelta(qpc_value);
}

// TimeDelta ------------------------------------------------------------------

// static
TimeDelta TimeDelta::FromQPCValue(LONGLONG qpc_value) {
  return QPCValueToTimeDelta(qpc_value);
}

// static
TimeDelta TimeDelta::FromFileTime(FILETIME ft) {
  return Microseconds(FileTimeToMicroseconds(ft));
}

// static
TimeDelta TimeDelta::FromWinrtDateTime(ABI::Windows::Foundation::DateTime dt) {
  // UniversalTime is 100 ns intervals since January 1, 1601 (UTC)
  return Microseconds(dt.UniversalTime / 10);
}

ABI::Windows::Foundation::DateTime TimeDelta::ToWinrtDateTime() const {
  ABI::Windows::Foundation::DateTime date_time;
  date_time.UniversalTime = InMicroseconds() * 10;
  return date_time;
}

// static
TimeDelta TimeDelta::FromWinrtTimeSpan(ABI::Windows::Foundation::TimeSpan ts) {
  // Duration is 100 ns intervals
  return Microseconds(ts.Duration / 10);
}

ABI::Windows::Foundation::TimeSpan TimeDelta::ToWinrtTimeSpan() const {
  ABI::Windows::Foundation::TimeSpan time_span;
  time_span.Duration = InMicroseconds() * 10;
  return time_span;
}

#if !defined(ARCH_CPU_ARM64)
namespace time_internal {

bool HasConstantRateTSC() {
  static bool is_supported = CPU().has_non_stop_time_stamp_counter();
  return is_supported;
}

double TSCTicksPerSecond() {
  DCHECK(HasConstantRateTSC());
  // The value returned by QueryPerformanceFrequency() cannot be used as the TSC
  // frequency, because there is no guarantee that the TSC frequency is equal to
  // the performance counter frequency.
  // The TSC frequency is cached in a static variable because it takes some time
  // to compute it.
  static double tsc_ticks_per_second = 0;
  if (tsc_ticks_per_second != 0)
    return tsc_ticks_per_second;

  // Increase the thread priority to reduces the chances of having a context
  // switch during a reading of the TSC and the performance counter.
  const int previous_priority = ::GetThreadPriority(::GetCurrentThread());
  ::SetThreadPriority(::GetCurrentThread(), THREAD_PRIORITY_HIGHEST);

  // The first time that this function is called, make an initial reading of the
  // TSC and the performance counter.

  static const uint64_t tsc_initial = __rdtsc();
  static const int64_t perf_counter_initial = QPCNowRaw();
  static const int64_t perf_counter_frequency = QPFRaw();

  // Make a another reading of the TSC and the performance counter every time
  // that this function is called.
  const uint64_t tsc_now = __rdtsc();
  const int64_t perf_counter_now = QPCNowRaw();

  // Reset the thread priority.
  ::SetThreadPriority(::GetCurrentThread(), previous_priority);

  // Make sure that at least 50 ms elapsed between the 2 readings. The first
  // time that this function is called, we don't expect this to be the case.
  // Note: The longer the elapsed time between the 2 readings is, the more
  //   accurate the computed TSC frequency will be. The 50 ms value was
  //   chosen because local benchmarks show that it allows us to get a
  //   stddev of less than 1 tick/us between multiple runs.
  DCHECK_GE(perf_counter_now, perf_counter_initial);
  const int64_t perf_counter_ticks = perf_counter_now - perf_counter_initial;
  const double elapsed_time_seconds =
      perf_counter_ticks / static_cast<double>(perf_counter_frequency);

  constexpr double kMinimumEvaluationPeriodSeconds = 0.05;
  if (elapsed_time_seconds < kMinimumEvaluationPeriodSeconds)
    return 0;

  // Compute the frequency of the TSC.
  DCHECK_GE(tsc_now, tsc_initial);
  const uint64_t tsc_ticks = tsc_now - tsc_initial;
  tsc_ticks_per_second = tsc_ticks / elapsed_time_seconds;

  return tsc_ticks_per_second;
}

}  // namespace time_internal
#endif  // defined(ARCH_CPU_ARM64)

}  // namespace base