1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
base / time / time_win_unittest.cc [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#include "base/time/time.h"
#include <windows.h>
#include <mmsystem.h>
#include <process.h>
#include <stdint.h>
#include <windows.foundation.h>
#include <algorithm>
#include <cmath>
#include <limits>
#include <vector>
#include "base/threading/platform_thread.h"
#include "base/win/registry.h"
#include "build/build_config.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace base {
namespace {
// For TimeDelta::ConstexprInitialization
constexpr int kExpectedDeltaInMilliseconds = 10;
constexpr TimeDelta kConstexprTimeDelta =
Milliseconds(kExpectedDeltaInMilliseconds);
class MockTimeTicks : public TimeTicks {
public:
static DWORD Ticker() {
return static_cast<int>(InterlockedIncrement(&ticker_));
}
static void InstallTicker() {
old_tick_function_ = SetMockTickFunction(&Ticker);
ticker_ = -5;
}
static void UninstallTicker() { SetMockTickFunction(old_tick_function_); }
private:
static volatile LONG ticker_;
static TickFunctionType old_tick_function_;
};
volatile LONG MockTimeTicks::ticker_;
MockTimeTicks::TickFunctionType MockTimeTicks::old_tick_function_;
HANDLE g_rollover_test_start;
unsigned __stdcall RolloverTestThreadMain(void* param) {
int64_t counter = reinterpret_cast<int64_t>(param);
DWORD rv = WaitForSingleObject(g_rollover_test_start, INFINITE);
EXPECT_EQ(rv, WAIT_OBJECT_0);
TimeTicks last = TimeTicks::Now();
for (int index = 0; index < counter; index++) {
TimeTicks now = TimeTicks::Now();
int64_t milliseconds = (now - last).InMilliseconds();
// This is a tight loop; we could have looped faster than our
// measurements, so the time might be 0 millis.
EXPECT_GE(milliseconds, 0);
EXPECT_LT(milliseconds, 250);
last = now;
}
return 0;
}
#if defined(_M_ARM64) && defined(__clang__)
#define ReadCycleCounter() _ReadStatusReg(ARM64_PMCCNTR_EL0)
#else
#define ReadCycleCounter() __rdtsc()
#endif
// Measure the performance of the CPU cycle counter so that we can compare it to
// the overhead of QueryPerformanceCounter. A hard-coded frequency is used
// because we don't care about the accuracy of the results, we just need to do
// the work. The amount of work is not exactly the same as in TimeTicks::Now
// (some steps are skipped) but that doesn't seem to materially affect the
// results.
TimeTicks GetTSC() {
// Using a fake cycle counter frequency for test purposes.
return TimeTicks() + Microseconds(ReadCycleCounter() *
Time::kMicrosecondsPerSecond / 10000000);
}
} // namespace
// This test spawns many threads, and can occasionally fail due to resource
// exhaustion in the presence of ASan.
#if defined(ADDRESS_SANITIZER)
#define MAYBE_WinRollover DISABLED_WinRollover
#else
#define MAYBE_WinRollover WinRollover
#endif
TEST(TimeTicks, MAYBE_WinRollover) {
// The internal counter rolls over at ~49days. We'll use a mock
// timer to test this case.
// Basic test algorithm:
// 1) Set clock to rollover - N
// 2) Create N threads
// 3) Start the threads
// 4) Each thread loops through TimeTicks() N times
// 5) Each thread verifies integrity of result.
const int kThreads = 8;
// Use int64_t so we can cast into a void* without a compiler warning.
const int64_t kChecks = 10;
// It takes a lot of iterations to reproduce the bug!
// (See bug 1081395)
for (int loop = 0; loop < 4096; loop++) {
// Setup
MockTimeTicks::InstallTicker();
g_rollover_test_start = CreateEvent(0, TRUE, FALSE, 0);
HANDLE threads[kThreads];
for (int index = 0; index < kThreads; index++) {
void* argument = reinterpret_cast<void*>(kChecks);
unsigned thread_id;
threads[index] = reinterpret_cast<HANDLE>(_beginthreadex(
NULL, 0, RolloverTestThreadMain, argument, 0, &thread_id));
EXPECT_NE((HANDLE)NULL, threads[index]);
}
// Start!
SetEvent(g_rollover_test_start);
// Wait for threads to finish
for (int index = 0; index < kThreads; index++) {
DWORD rv = WaitForSingleObject(threads[index], INFINITE);
EXPECT_EQ(rv, WAIT_OBJECT_0);
// Since using _beginthreadex() (as opposed to _beginthread),
// an explicit CloseHandle() is supposed to be called.
CloseHandle(threads[index]);
}
CloseHandle(g_rollover_test_start);
// Teardown
MockTimeTicks::UninstallTicker();
}
}
TEST(TimeTicks, SubMillisecondTimers) {
// IsHighResolution() is false on some systems. Since the product still works
// even if it's false, it makes this entire test questionable.
if (!TimeTicks::IsHighResolution())
return;
// Run kRetries attempts to see a sub-millisecond timer.
constexpr int kRetries = 1000;
for (int index = 0; index < kRetries; index++) {
const TimeTicks start_time = TimeTicks::Now();
TimeDelta delta;
// Spin until the clock has detected a change.
do {
delta = TimeTicks::Now() - start_time;
} while (delta.is_zero());
if (!delta.InMilliseconds())
return;
}
ADD_FAILURE() << "Never saw a sub-millisecond timer.";
}
TEST(TimeTicks, TimeGetTimeCaps) {
// Test some basic assumptions that we expect about how timeGetDevCaps works.
TIMECAPS caps;
MMRESULT status = timeGetDevCaps(&caps, sizeof(caps));
ASSERT_EQ(static_cast<MMRESULT>(MMSYSERR_NOERROR), status);
EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1);
EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1);
EXPECT_GE(static_cast<int>(caps.wPeriodMin), 1);
EXPECT_GT(static_cast<int>(caps.wPeriodMax), 1);
printf("timeGetTime range is %d to %dms\n", caps.wPeriodMin, caps.wPeriodMax);
}
TEST(TimeTicks, QueryPerformanceFrequency) {
// Test some basic assumptions that we expect about QPF.
LARGE_INTEGER frequency;
BOOL rv;
rv = QueryPerformanceFrequency(&frequency);
EXPECT_EQ(TRUE, rv);
EXPECT_GT(frequency.QuadPart, 1000000); // Expect at least 1MHz
printf("QueryPerformanceFrequency is %5.2fMHz\n",
frequency.QuadPart / 1000000.0);
LARGE_INTEGER frequency_next;
rv = QueryPerformanceFrequency(&frequency_next);
EXPECT_EQ(TRUE, rv);
// Expect that the frequency doesn't change.
EXPECT_EQ(frequency_next.QuadPart, frequency.QuadPart);
}
TEST(TimeTicks, TimerPerformance) {
// Verify that various timer mechanisms can always complete quickly.
// Note: This is a somewhat arbitrary test.
const int kLoops = 500000;
typedef TimeTicks (*TestFunc)();
struct TestCase {
TestFunc func;
const char* description;
};
// Cheating a bit here: assumes sizeof(TimeTicks) == sizeof(Time)
// in order to create a single test case list.
static_assert(sizeof(TimeTicks) == sizeof(Time),
"TimeTicks and Time must be the same size");
std::vector<TestCase> cases;
cases.push_back({reinterpret_cast<TestFunc>(&Time::Now), "Time::Now"});
cases.push_back({&TimeTicks::Now, "TimeTicks::Now"});
cases.push_back({&GetTSC, "CPUCycleCounter"});
if (ThreadTicks::IsSupported()) {
ThreadTicks::WaitUntilInitialized();
cases.push_back(
{reinterpret_cast<TestFunc>(&ThreadTicks::Now), "ThreadTicks::Now"});
}
// Warm up the CPU to its full clock rate so that we get accurate timing
// information.
DWORD start_tick = GetTickCount();
const DWORD kWarmupMs = 50;
for (;;) {
DWORD elapsed = GetTickCount() - start_tick;
if (elapsed > kWarmupMs)
break;
}
for (const auto& test_case : cases) {
TimeTicks start = TimeTicks::Now();
for (int index = 0; index < kLoops; index++)
test_case.func();
TimeTicks stop = TimeTicks::Now();
// Turning off the check for acceptible delays. Without this check,
// the test really doesn't do much other than measure. But the
// measurements are still useful for testing timers on various platforms.
// The reason to remove the check is because the tests run on many
// buildbots, some of which are VMs. These machines can run horribly
// slow, and there is really no value for checking against a max timer.
// const int kMaxTime = 35; // Maximum acceptible milliseconds for test.
// EXPECT_LT((stop - start).InMilliseconds(), kMaxTime);
printf("%s: %1.2fus per call\n", test_case.description,
(stop - start).InMillisecondsF() * 1000 / kLoops);
}
}
#if !defined(ARCH_CPU_ARM64)
// This test is disabled on Windows ARM64 systems because TSCTicksPerSecond is
// only used in Chromium for QueryThreadCycleTime, and QueryThreadCycleTime
// doesn't use a constant-rate timer on ARM64.
TEST(TimeTicks, TSCTicksPerSecond) {
if (time_internal::HasConstantRateTSC()) {
ThreadTicks::WaitUntilInitialized();
// Read the CPU frequency from the registry.
base::win::RegKey processor_key(
HKEY_LOCAL_MACHINE,
L"Hardware\\Description\\System\\CentralProcessor\\0", KEY_QUERY_VALUE);
ASSERT_TRUE(processor_key.Valid());
DWORD processor_mhz_from_registry;
ASSERT_EQ(ERROR_SUCCESS,
processor_key.ReadValueDW(L"~MHz", &processor_mhz_from_registry));
// Expect the measured TSC frequency to be similar to the processor
// frequency from the registry (0.5% error).
double tsc_mhz_measured = time_internal::TSCTicksPerSecond() / 1e6;
EXPECT_NEAR(tsc_mhz_measured, processor_mhz_from_registry,
0.005 * processor_mhz_from_registry);
}
}
#endif
TEST(TimeTicks, FromQPCValue) {
if (!TimeTicks::IsHighResolution())
return;
LARGE_INTEGER frequency;
ASSERT_TRUE(QueryPerformanceFrequency(&frequency));
const int64_t ticks_per_second = frequency.QuadPart;
ASSERT_GT(ticks_per_second, 0);
// Generate the tick values to convert, advancing the tick count by varying
// amounts. These values will ensure that both the fast and overflow-safe
// conversion logic in FromQPCValue() is tested, and across the entire range
// of possible QPC tick values.
std::vector<int64_t> test_cases;
test_cases.push_back(0);
// Build the test cases.
{
const int kNumAdvancements = 100;
int64_t ticks = 0;
int64_t ticks_increment = 10;
for (int i = 0; i < kNumAdvancements; ++i) {
test_cases.push_back(ticks);
ticks += ticks_increment;
ticks_increment = ticks_increment * 6 / 5;
}
test_cases.push_back(Time::kQPCOverflowThreshold - 1);
test_cases.push_back(Time::kQPCOverflowThreshold);
test_cases.push_back(Time::kQPCOverflowThreshold + 1);
ticks = Time::kQPCOverflowThreshold + 10;
ticks_increment = 10;
for (int i = 0; i < kNumAdvancements; ++i) {
test_cases.push_back(ticks);
ticks += ticks_increment;
ticks_increment = ticks_increment * 6 / 5;
}
test_cases.push_back(std::numeric_limits<int64_t>::max());
}
// Test that the conversions using FromQPCValue() match those computed here
// using simple floating-point arithmetic. The floating-point math provides
// enough precision for all reasonable values to confirm that the
// implementation is correct to the microsecond, and for "very large" values
// it confirms that the answer is very close to correct.
for (int64_t ticks : test_cases) {
const double expected_microseconds_since_origin =
(static_cast<double>(ticks) * Time::kMicrosecondsPerSecond) /
ticks_per_second;
const TimeTicks converted_value = TimeTicks::FromQPCValue(ticks);
const double converted_microseconds_since_origin =
(converted_value - TimeTicks()).InMicrosecondsF();
// When we test with very large numbers we end up in a range where adjacent
// double values are far apart - 512.0 apart in one test failure. In that
// situation it makes no sense for our epsilon to be 1.0 - it should be
// the difference between adjacent doubles.
double epsilon = nextafter(expected_microseconds_since_origin, INFINITY) -
expected_microseconds_since_origin;
// Epsilon must be at least 1.0 because converted_microseconds_since_origin
// comes from an integral value, and expected_microseconds_since_origin is
// a double that is expected to be up to 0.999 larger. In addition, due to
// multiple roundings in the double calculation the actual error can be
// slightly larger than 1.0, even when the converted value is perfect. This
// epsilon value was chosen because it is slightly larger than the error
// seen in a test failure caused by the double rounding.
epsilon = std::max(epsilon, 1.002);
EXPECT_NEAR(expected_microseconds_since_origin,
converted_microseconds_since_origin, epsilon)
<< "ticks=" << ticks << ", to be converted via logic path: "
<< (ticks < Time::kQPCOverflowThreshold ? "FAST" : "SAFE");
}
}
TEST(TimeDelta, ConstexprInitialization) {
// Make sure that TimeDelta works around crbug.com/635974
EXPECT_EQ(kExpectedDeltaInMilliseconds, kConstexprTimeDelta.InMilliseconds());
}
TEST(TimeDelta, FromFileTime) {
FILETIME ft;
ft.dwLowDateTime = 1001;
ft.dwHighDateTime = 0;
// 100100 ns ~= 100 us.
EXPECT_EQ(Microseconds(100), TimeDelta::FromFileTime(ft));
ft.dwLowDateTime = 0;
ft.dwHighDateTime = 1;
// 2^32 * 100 ns ~= 2^32 * 10 us.
EXPECT_EQ(Microseconds((1ull << 32) / 10), TimeDelta::FromFileTime(ft));
}
TEST(TimeDelta, FromWinrtDateTime) {
ABI::Windows::Foundation::DateTime dt;
dt.UniversalTime = 0;
// 0 UniversalTime = no delta since epoch.
EXPECT_EQ(TimeDelta(), TimeDelta::FromWinrtDateTime(dt));
dt.UniversalTime = 101;
// 101 * 100 ns ~= 10.1 microseconds.
EXPECT_EQ(Microseconds(10.1), TimeDelta::FromWinrtDateTime(dt));
}
TEST(TimeDelta, ToWinrtDateTime) {
auto time_delta = Seconds(0);
// No delta since epoch = 0 DateTime.
EXPECT_EQ(0, time_delta.ToWinrtDateTime().UniversalTime);
time_delta = Microseconds(10);
// 10 microseconds = 100 * 100 ns.
EXPECT_EQ(100, time_delta.ToWinrtDateTime().UniversalTime);
}
TEST(TimeDelta, FromWinrtTimeSpan) {
ABI::Windows::Foundation::TimeSpan ts;
ts.Duration = 0;
// 0.
EXPECT_EQ(TimeDelta(), TimeDelta::FromWinrtTimeSpan(ts));
ts.Duration = 101;
// 101 * 100 ns ~= 10.1 microseconds.
EXPECT_EQ(Microseconds(10.1), TimeDelta::FromWinrtTimeSpan(ts));
}
TEST(TimeDelta, ToWinrtTimeSpan) {
auto time_delta = Seconds(0);
// 0.
EXPECT_EQ(0, time_delta.ToWinrtTimeSpan().Duration);
time_delta = Microseconds(10);
// 10 microseconds = 100 * 100 ns.
EXPECT_EQ(100, time_delta.ToWinrtTimeSpan().Duration);
}
TEST(HighResolutionTimer, GetUsage) {
Time::ResetHighResolutionTimerUsage();
// 0% usage since the timer isn't activated regardless of how much time has
// elapsed.
EXPECT_EQ(0.0, Time::GetHighResolutionTimerUsage());
Sleep(10);
EXPECT_EQ(0.0, Time::GetHighResolutionTimerUsage());
Time::ActivateHighResolutionTimer(true);
Time::ResetHighResolutionTimerUsage();
Sleep(20);
// 100% usage since the timer has been activated entire time.
EXPECT_EQ(100.0, Time::GetHighResolutionTimerUsage());
Time::ActivateHighResolutionTimer(false);
Sleep(20);
double usage1 = Time::GetHighResolutionTimerUsage();
// usage1 should be about 50%.
EXPECT_LT(usage1, 100.0);
EXPECT_GT(usage1, 0.0);
Time::ActivateHighResolutionTimer(true);
Sleep(10);
Time::ActivateHighResolutionTimer(false);
double usage2 = Time::GetHighResolutionTimerUsage();
// usage2 should be about 60%.
EXPECT_LT(usage2, 100.0);
EXPECT_GT(usage2, usage1);
Time::ResetHighResolutionTimerUsage();
EXPECT_EQ(0.0, Time::GetHighResolutionTimerUsage());
}
} // namespace base