1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
base / timer / lap_timer.cc [blame]
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "base/timer/lap_timer.h"
#include "base/check_op.h"
namespace base {
namespace {
// Default values.
constexpr TimeDelta kDefaultTimeLimit = Seconds(3);
constexpr int kDefaultWarmupRuns = 5;
constexpr int kDefaultTimeCheckInterval = 10;
} // namespace
LapTimer::LapTimer(int warmup_laps,
TimeDelta time_limit,
int check_interval,
LapTimer::TimerMethod method)
: warmup_laps_(warmup_laps),
time_limit_(time_limit),
check_interval_(check_interval),
method_(method) {
DETACH_FROM_SEQUENCE(sequence_checker_);
DCHECK_GT(check_interval, 0);
Reset();
}
LapTimer::LapTimer(LapTimer::TimerMethod method)
: LapTimer(kDefaultWarmupRuns,
kDefaultTimeLimit,
kDefaultTimeCheckInterval,
method) {}
void LapTimer::Reset() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
if (ThreadTicks::IsSupported() && method_ == TimerMethod::kUseThreadTicks)
ThreadTicks::WaitUntilInitialized();
num_laps_ = 0;
remaining_warmups_ = warmup_laps_;
remaining_no_check_laps_ = check_interval_;
Start();
}
void LapTimer::Start() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK_EQ(num_laps_, 0);
// last_timed_ variables are initialized here (instead of in the constructor)
// because not all platforms support ThreadTicks.
if (method_ == TimerMethod::kUseThreadTicks) {
start_thread_ticks_ = ThreadTicks::Now();
last_timed_lap_end_thread_ticks_ = ThreadTicks::Now();
} else {
start_time_ticks_ = TimeTicks::Now();
last_timed_lap_end_ticks_ = TimeTicks::Now();
}
}
bool LapTimer::IsWarmedUp() const {
return remaining_warmups_ <= 0;
}
void LapTimer::NextLap() {
DCHECK_CALLED_ON_VALID_SEQUENCE(sequence_checker_);
DCHECK(!start_thread_ticks_.is_null() || !start_time_ticks_.is_null());
if (!IsWarmedUp()) {
--remaining_warmups_;
if (IsWarmedUp()) {
Start();
}
return;
}
++num_laps_;
--remaining_no_check_laps_;
if (!remaining_no_check_laps_) {
if (method_ == TimerMethod::kUseTimeTicks) {
last_timed_lap_end_ticks_ = TimeTicks::Now();
} else {
last_timed_lap_end_thread_ticks_ = ThreadTicks::Now();
}
remaining_no_check_laps_ = check_interval_;
}
}
TimeDelta LapTimer::GetAccumulatedTime() const {
if (method_ == TimerMethod::kUseTimeTicks) {
return last_timed_lap_end_ticks_ - start_time_ticks_;
}
return last_timed_lap_end_thread_ticks_ - start_thread_ticks_;
}
bool LapTimer::HasTimeLimitExpired() const {
return GetAccumulatedTime() >= time_limit_;
}
bool LapTimer::HasTimedAllLaps() const {
return num_laps_ && !(num_laps_ % check_interval_);
}
TimeDelta LapTimer::TimePerLap() const {
DCHECK(HasTimedAllLaps());
DCHECK_GT(num_laps_, 0);
return GetAccumulatedTime() / num_laps_;
}
float LapTimer::LapsPerSecond() const {
DCHECK(HasTimedAllLaps());
DCHECK_GT(num_laps_, 0);
return num_laps_ / GetAccumulatedTime().InSecondsF();
}
int LapTimer::NumLaps() const {
return num_laps_;
}
} // namespace base