1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636

base / trace_event / memory_usage_estimator.h [blame]

// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif

#ifndef BASE_TRACE_EVENT_MEMORY_USAGE_ESTIMATOR_H_
#define BASE_TRACE_EVENT_MEMORY_USAGE_ESTIMATOR_H_

#include <stdint.h>

#include <array>
#include <concepts>
#include <deque>
#include <list>
#include <map>
#include <memory>
#include <queue>
#include <set>
#include <stack>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <unordered_set>
#include <vector>

#include "base/base_export.h"
#include "base/containers/circular_deque.h"
#include "base/containers/flat_map.h"
#include "base/containers/flat_set.h"
#include "base/containers/heap_array.h"
#include "base/containers/linked_list.h"
#include "base/containers/lru_cache.h"
#include "base/containers/queue.h"
#include "base/containers/span.h"
#include "base/memory/raw_ptr.h"
#include "base/stl_util.h"
#include "base/types/always_false.h"

// Composable memory usage estimators.
//
// This file defines set of EstimateMemoryUsage(object) functions that return
// approximate dynamically allocated memory usage of their argument.
//
// The ultimate goal is to make memory usage estimation for a class simply a
// matter of aggregating EstimateMemoryUsage() results over all fields.
//
// That is achieved via composability: if EstimateMemoryUsage() is defined
// for T then EstimateMemoryUsage() is also defined for any combination of
// containers holding T (e.g. std::map<int, std::vector<T>>).
//
// There are two ways of defining EstimateMemoryUsage() for a type:
//
// 1. As a global function 'size_t EstimateMemoryUsage(T)' in
//    in base::trace_event namespace.
//
// 2. As 'size_t T::EstimateMemoryUsage() const' method. In this case
//    EstimateMemoryUsage(T) function in base::trace_event namespace is
//    provided automatically.
//
// Here is an example implementation:
//
// class MyClass {
//   ...
//   ...
//   size_t EstimateMemoryUsage() const {
//     return base::trace_event::EstimateMemoryUsage(set_) +
//            base::trace_event::EstimateMemoryUsage(name_) +
//            base::trace_event::EstimateMemoryUsage(foo_);
//   }
//   ...
//  private:
//   ...
//   std::set<int> set_;
//   std::string name_;
//   Foo foo_;
//   int id_;
//   bool success_;
// }
//
// The approach is simple: first call EstimateMemoryUsage() on all members,
// then recursively fix compilation errors that are caused by types not
// implementing EstimateMemoryUsage().
//
// Note that in the above example, the memory estimates for `id_` and `success_` are
// intentionally omitted. This is because these members do not allocate any _dynamic_ memory.
// If, for example, `MyClass` is declared as a heap-allocated `unique_ptr` member in some parent
// class, then `EstimateMemoryUsage` on the `unique_ptr` will automatically take into account
// `sizeof(MyClass)`.

namespace base {
namespace trace_event {

// Declarations

// If T declares 'EstimateMemoryUsage() const' member function, then
// global function EstimateMemoryUsage(T) is available, and just calls
// the member function.
template <class T>
auto EstimateMemoryUsage(const T& object)
    -> decltype(object.EstimateMemoryUsage());

// String

template <class C, class T, class A>
size_t EstimateMemoryUsage(const std::basic_string<C, T, A>& string);

// Arrays

template <class T, size_t N>
size_t EstimateMemoryUsage(const std::array<T, N>& array);

template <class T, size_t N>
size_t EstimateMemoryUsage(T (&array)[N]);

template <class T>
size_t EstimateMemoryUsage(const base::HeapArray<T>& array);

template <class T>
size_t EstimateMemoryUsage(base::span<T> array);

// std::unique_ptr

template <class T, class D>
size_t EstimateMemoryUsage(const std::unique_ptr<T, D>& ptr);

// std::shared_ptr

template <class T>
size_t EstimateMemoryUsage(const std::shared_ptr<T>& ptr);

// Containers

template <class F, class S>
size_t EstimateMemoryUsage(const std::pair<F, S>& pair);

template <class T, class A>
size_t EstimateMemoryUsage(const std::vector<T, A>& vector);

template <class T, class A>
size_t EstimateMemoryUsage(const std::list<T, A>& list);

template <class T>
size_t EstimateMemoryUsage(const base::LinkedList<T>& list);

template <class T, class C, class A>
size_t EstimateMemoryUsage(const std::set<T, C, A>& set);

template <class T, class C, class A>
size_t EstimateMemoryUsage(const std::multiset<T, C, A>& set);

template <class K, class V, class C, class A>
size_t EstimateMemoryUsage(const std::map<K, V, C, A>& map);

template <class K, class V, class C, class A>
size_t EstimateMemoryUsage(const std::multimap<K, V, C, A>& map);

template <class T, class H, class KE, class A>
size_t EstimateMemoryUsage(const std::unordered_set<T, H, KE, A>& set);

template <class T, class H, class KE, class A>
size_t EstimateMemoryUsage(const std::unordered_multiset<T, H, KE, A>& set);

template <class K, class V, class H, class KE, class A>
size_t EstimateMemoryUsage(const std::unordered_map<K, V, H, KE, A>& map);

template <class K, class V, class H, class KE, class A>
size_t EstimateMemoryUsage(const std::unordered_multimap<K, V, H, KE, A>& map);

template <class T, class A>
size_t EstimateMemoryUsage(const std::deque<T, A>& deque);

template <class T, class C>
size_t EstimateMemoryUsage(const std::queue<T, C>& queue);

template <class T, class C>
size_t EstimateMemoryUsage(const std::priority_queue<T, C>& queue);

template <class T, class C>
size_t EstimateMemoryUsage(const std::stack<T, C>& stack);

template <class T>
size_t EstimateMemoryUsage(const base::circular_deque<T>& deque);

template <class T, class C>
size_t EstimateMemoryUsage(const base::flat_set<T, C>& set);

template <class K, class V, class C>
size_t EstimateMemoryUsage(const base::flat_map<K, V, C>& map);

template <class K, class V, class C>
size_t EstimateMemoryUsage(const base::LRUCache<K, V, C>& lru);

template <class K, class V, class C>
size_t EstimateMemoryUsage(const base::HashingLRUCache<K, V, C>& lru);

template <class V, class C>
size_t EstimateMemoryUsage(const base::LRUCacheSet<V, C>& lru);

template <class V, class C>
size_t EstimateMemoryUsage(const base::HashingLRUCacheSet<V, C>& lru);

// TODO(dskiba):
//   std::forward_list

// Definitions

namespace internal {

// HasEMU<T> is true iff EstimateMemoryUsage(const T&) is available.
template <typename T>
concept HasEMU = requires(const T& t) {
  { EstimateMemoryUsage(t) } -> std::same_as<size_t>;
};

template <typename I>
using IteratorValueType = typename std::iterator_traits<I>::value_type;

template <typename I, typename InstantiatedContainer>
concept IsIteratorOfInstantiatedContainer =
    (std::same_as<typename InstantiatedContainer::iterator, I> ||
     std::same_as<typename InstantiatedContainer::const_iterator, I> ||
     std::same_as<typename InstantiatedContainer::reverse_iterator, I> ||
     std::same_as<typename InstantiatedContainer::const_reverse_iterator, I>);

template <typename I, template <typename...> typename Container>
concept IsIteratorOfContainer =
    !std::is_pointer_v<I> &&
    IsIteratorOfInstantiatedContainer<I, Container<IteratorValueType<I>>>;

// std::array has an extra required template argument.
template <typename T>
using array_test_helper = std::array<T, 1>;

// TODO(dyaroshev): deal with maps iterators if there is a need.
// It requires to parse pairs into keys and values.
// TODO(dyaroshev): deal with unordered containers: they do not have reverse
// iterators.
template <typename T>
concept IsIteratorOfStandardContainer =
    IsIteratorOfContainer<T, array_test_helper> ||
    IsIteratorOfContainer<T, std::vector> ||
    IsIteratorOfContainer<T, std::deque> ||
    IsIteratorOfContainer<T, std::list> || IsIteratorOfContainer<T, std::set> ||
    IsIteratorOfContainer<T, std::multiset>;

template <typename T>
concept IsKnownNonAllocatingType =
    std::is_trivially_destructible_v<T> || base::IsRawPtr<T> ||
    IsIteratorOfStandardContainer<T>;

}  // namespace internal

// Estimates T's memory usage as follows:
// 1. Calls `EstimateMemoryUsage(T)` if it is available.
// 2. If `EstimateMemoryUsage(T)` is not available, but T has trivial dtor
//    (i.e. it's POD, integer, pointer, enum, etc.) then it returns 0. This is
//    useful for containers, which allocate memory regardless of T (also for
//    cases like std::map<int, MyClass>).
// 3. Otherwise, it triggers a `static_assert` with a helpful message.
//
// To be used by `EstimateMemoryUsage()` implementations for containers.
template <class T>
size_t EstimateItemMemoryUsage(const T& value) {
  if constexpr (internal::HasEMU<T>) {
    return EstimateMemoryUsage(value);
  } else if constexpr (!internal::IsKnownNonAllocatingType<T>) {
    static_assert(base::AlwaysFalse<T>,
                  "Neither global function 'size_t EstimateMemoryUsage(T)' "
                  "nor member function 'size_t T::EstimateMemoryUsage() const' "
                  "is defined for the type.");
  }
  return 0;
}

template <class I>
size_t EstimateIterableMemoryUsage(const I& iterable) {
  size_t memory_usage = 0;
  for (const auto& item : iterable) {
    memory_usage += EstimateItemMemoryUsage(item);
  }
  return memory_usage;
}

// Global EstimateMemoryUsage(T) that just calls T::EstimateMemoryUsage().
template <class T>
auto EstimateMemoryUsage(const T& object)
    -> decltype(object.EstimateMemoryUsage()) {
  static_assert(std::same_as<decltype(object.EstimateMemoryUsage()), size_t>,
                "'T::EstimateMemoryUsage() const' must return size_t.");
  return object.EstimateMemoryUsage();
}

// String

template <class C, class T, class A>
size_t EstimateMemoryUsage(const std::basic_string<C, T, A>& string) {
  using string_type = std::basic_string<C, T, A>;
  using value_type = typename string_type::value_type;
  // C++11 doesn't leave much room for implementors - std::string can
  // use short string optimization, but that's about it. We detect SSO
  // by checking that c_str() points inside |string|.
  const uint8_t* cstr = reinterpret_cast<const uint8_t*>(string.c_str());
  const uint8_t* inline_cstr = reinterpret_cast<const uint8_t*>(&string);
  if (cstr >= inline_cstr && cstr < inline_cstr + sizeof(string)) {
    // SSO string
    return 0;
  }
  return (string.capacity() + 1) * sizeof(value_type);
}

// Use explicit instantiations from the .cc file (reduces bloat).
extern template BASE_EXPORT size_t EstimateMemoryUsage(const std::string&);
extern template BASE_EXPORT size_t EstimateMemoryUsage(const std::u16string&);

// Arrays

template <class T, size_t N>
size_t EstimateMemoryUsage(const std::array<T, N>& array) {
  return EstimateIterableMemoryUsage(array);
}

template <class T, size_t N>
size_t EstimateMemoryUsage(T (&array)[N]) {
  return EstimateIterableMemoryUsage(array);
}

template <class T>
size_t EstimateMemoryUsage(const base::HeapArray<T>& array) {
  return sizeof(T) * array.size() + EstimateIterableMemoryUsage(array);
}

template <class T>
size_t EstimateMemoryUsage(base::span<T> array) {
  return sizeof(T) * array.size() + EstimateIterableMemoryUsage(array);
}

// std::unique_ptr

template <class T, class D>
size_t EstimateMemoryUsage(const std::unique_ptr<T, D>& ptr) {
  return ptr ? (sizeof(T) + EstimateItemMemoryUsage(*ptr)) : 0;
}

// std::shared_ptr

template <class T>
size_t EstimateMemoryUsage(const std::shared_ptr<T>& ptr) {
  auto use_count = ptr.use_count();
  if (use_count == 0) {
    return 0;
  }
  // Model shared_ptr after libc++,
  // see __shared_ptr_pointer from include/memory
  struct SharedPointer {
    raw_ptr<void> vtbl;
    long shared_owners;
    long shared_weak_owners;
    raw_ptr<T> value;
  };
  // If object of size S shared N > S times we prefer to (potentially)
  // overestimate than to return 0.
  return sizeof(SharedPointer) +
         (EstimateItemMemoryUsage(*ptr) + (use_count - 1)) / use_count;
}

// std::pair

template <class F, class S>
size_t EstimateMemoryUsage(const std::pair<F, S>& pair) {
  return EstimateItemMemoryUsage(pair.first) +
         EstimateItemMemoryUsage(pair.second);
}

// std::vector

template <class T, class A>
size_t EstimateMemoryUsage(const std::vector<T, A>& vector) {
  return sizeof(T) * vector.capacity() + EstimateIterableMemoryUsage(vector);
}

// std::list

template <class T, class A>
size_t EstimateMemoryUsage(const std::list<T, A>& list) {
  using value_type = typename std::list<T, A>::value_type;
  struct Node {
    raw_ptr<Node> prev;
    raw_ptr<Node> next;
    value_type value;
  };
  return sizeof(Node) * list.size() +
         EstimateIterableMemoryUsage(list);
}

template <class T>
size_t EstimateMemoryUsage(const base::LinkedList<T>& list) {
  size_t memory_usage = 0u;
  for (base::LinkNode<T>* node = list.head(); node != list.end();
       node = node->next()) {
    // Since we increment by calling node = node->next() we know that node
    // isn't nullptr.
    memory_usage += EstimateMemoryUsage(*node->value()) + sizeof(T);
  }
  return memory_usage;
}

// Tree containers

template <class V>
size_t EstimateTreeMemoryUsage(size_t size) {
  // Tree containers are modeled after libc++
  // (__tree_node from include/__tree)
  struct Node {
    raw_ptr<Node> left;
    raw_ptr<Node> right;
    raw_ptr<Node> parent;
    bool is_black;
    V value;
  };
  return sizeof(Node) * size;
}

template <class T, class C, class A>
size_t EstimateMemoryUsage(const std::set<T, C, A>& set) {
  using value_type = typename std::set<T, C, A>::value_type;
  return EstimateTreeMemoryUsage<value_type>(set.size()) +
         EstimateIterableMemoryUsage(set);
}

template <class T, class C, class A>
size_t EstimateMemoryUsage(const std::multiset<T, C, A>& set) {
  using value_type = typename std::multiset<T, C, A>::value_type;
  return EstimateTreeMemoryUsage<value_type>(set.size()) +
         EstimateIterableMemoryUsage(set);
}

template <class K, class V, class C, class A>
size_t EstimateMemoryUsage(const std::map<K, V, C, A>& map) {
  using value_type = typename std::map<K, V, C, A>::value_type;
  return EstimateTreeMemoryUsage<value_type>(map.size()) +
         EstimateIterableMemoryUsage(map);
}

template <class K, class V, class C, class A>
size_t EstimateMemoryUsage(const std::multimap<K, V, C, A>& map) {
  using value_type = typename std::multimap<K, V, C, A>::value_type;
  return EstimateTreeMemoryUsage<value_type>(map.size()) +
         EstimateIterableMemoryUsage(map);
}

// HashMap containers

namespace internal {

// While hashtable containers model doesn't depend on STL implementation, one
// detail still crept in: bucket_count. It's used in size estimation, but its
// value after inserting N items is not predictable.
// This function is specialized by unittests to return constant value, thus
// excluding bucket_count from testing.
template <class V>
size_t HashMapBucketCountForTesting(size_t bucket_count) {
  return bucket_count;
}

template <class LruCacheType>
size_t DoEstimateMemoryUsageForLruCache(const LruCacheType& lru_cache) {
  return EstimateMemoryUsage(lru_cache.ordering_) +
         EstimateMemoryUsage(lru_cache.index_);
}

}  // namespace internal

template <class V>
size_t EstimateHashMapMemoryUsage(size_t bucket_count, size_t size) {
  // Hashtable containers are modeled after libc++
  // (__hash_node from include/__hash_table)
  struct Node {
    raw_ptr<void> next;
    size_t hash;
    V value;
  };
  using Bucket = void*;
  bucket_count = internal::HashMapBucketCountForTesting<V>(bucket_count);
  return sizeof(Bucket) * bucket_count + sizeof(Node) * size;
}

template <class K, class H, class KE, class A>
size_t EstimateMemoryUsage(const std::unordered_set<K, H, KE, A>& set) {
  using value_type = typename std::unordered_set<K, H, KE, A>::value_type;
  return EstimateHashMapMemoryUsage<value_type>(set.bucket_count(),
                                                set.size()) +
         EstimateIterableMemoryUsage(set);
}

template <class K, class H, class KE, class A>
size_t EstimateMemoryUsage(const std::unordered_multiset<K, H, KE, A>& set) {
  using value_type = typename std::unordered_multiset<K, H, KE, A>::value_type;
  return EstimateHashMapMemoryUsage<value_type>(set.bucket_count(),
                                                set.size()) +
         EstimateIterableMemoryUsage(set);
}

template <class K, class V, class H, class KE, class A>
size_t EstimateMemoryUsage(const std::unordered_map<K, V, H, KE, A>& map) {
  using value_type = typename std::unordered_map<K, V, H, KE, A>::value_type;
  return EstimateHashMapMemoryUsage<value_type>(map.bucket_count(),
                                                map.size()) +
         EstimateIterableMemoryUsage(map);
}

template <class K, class V, class H, class KE, class A>
size_t EstimateMemoryUsage(const std::unordered_multimap<K, V, H, KE, A>& map) {
  using value_type =
      typename std::unordered_multimap<K, V, H, KE, A>::value_type;
  return EstimateHashMapMemoryUsage<value_type>(map.bucket_count(),
                                                map.size()) +
         EstimateIterableMemoryUsage(map);
}

// std::deque

template <class T, class A>
size_t EstimateMemoryUsage(const std::deque<T, A>& deque) {
// Since std::deque implementations are wildly different
// (see crbug.com/674287), we can't have one "good enough"
// way to estimate.

// kBlockSize      - minimum size of a block, in bytes
// kMinBlockLength - number of elements in a block
//                   if sizeof(T) > kBlockSize
#if defined(_LIBCPP_VERSION)
  size_t kBlockSize = 4096;
  size_t kMinBlockLength = 16;
#elif defined(__GLIBCXX__)
  size_t kBlockSize = 512;
  size_t kMinBlockLength = 1;
#elif defined(_MSC_VER)
  size_t kBlockSize = 16;
  size_t kMinBlockLength = 1;
#else
  size_t kBlockSize = 0;
  size_t kMinBlockLength = 1;
#endif

  size_t block_length =
      (sizeof(T) > kBlockSize) ? kMinBlockLength : kBlockSize / sizeof(T);

  size_t blocks = (deque.size() + block_length - 1) / block_length;

#if defined(__GLIBCXX__)
  // libstdc++: deque always has at least one block
  if (!blocks)
    blocks = 1;
#endif

#if defined(_LIBCPP_VERSION)
  // libc++: deque keeps at most two blocks when it shrinks,
  // so even if the size is zero, deque might be holding up
  // to 4096 * 2 bytes. One way to know whether deque has
  // ever allocated (and hence has 1 or 2 blocks) is to check
  // iterator's pointer. Non-zero value means that deque has
  // at least one block.
  if (!blocks && deque.begin().operator->())
    blocks = 1;
#endif

  return (blocks * block_length * sizeof(T)) +
         EstimateIterableMemoryUsage(deque);
}

// Container adapters

template <class T, class C>
size_t EstimateMemoryUsage(const std::queue<T, C>& queue) {
  return EstimateMemoryUsage(GetUnderlyingContainer(queue));
}

template <class T, class C>
size_t EstimateMemoryUsage(const std::priority_queue<T, C>& queue) {
  return EstimateMemoryUsage(GetUnderlyingContainer(queue));
}

template <class T, class C>
size_t EstimateMemoryUsage(const std::stack<T, C>& stack) {
  return EstimateMemoryUsage(GetUnderlyingContainer(stack));
}

// base::circular_deque

template <class T>
size_t EstimateMemoryUsage(const base::circular_deque<T>& deque) {
  return sizeof(T) * deque.capacity() + EstimateIterableMemoryUsage(deque);
}

// Flat containers

template <class T, class C>
size_t EstimateMemoryUsage(const base::flat_set<T, C>& set) {
  using value_type = typename base::flat_set<T, C>::value_type;
  return sizeof(value_type) * set.capacity() + EstimateIterableMemoryUsage(set);
}

template <class K, class V, class C>
size_t EstimateMemoryUsage(const base::flat_map<K, V, C>& map) {
  using value_type = typename base::flat_map<K, V, C>::value_type;
  return sizeof(value_type) * map.capacity() + EstimateIterableMemoryUsage(map);
}

template <class K, class V, class C>
size_t EstimateMemoryUsage(const LRUCache<K, V, C>& lru_cache) {
  return internal::DoEstimateMemoryUsageForLruCache(lru_cache);
}

template <class K, class V, class C>
size_t EstimateMemoryUsage(const HashingLRUCache<K, V, C>& lru_cache) {
  return internal::DoEstimateMemoryUsageForLruCache(lru_cache);
}

template <class V, class C>
size_t EstimateMemoryUsage(const LRUCacheSet<V, C>& lru_cache) {
  return internal::DoEstimateMemoryUsageForLruCache(lru_cache);
}

template <class V, class C>
size_t EstimateMemoryUsage(const HashingLRUCacheSet<V, C>& lru_cache) {
  return internal::DoEstimateMemoryUsageForLruCache(lru_cache);
}

}  // namespace trace_event
}  // namespace base

#endif  // BASE_TRACE_EVENT_MEMORY_USAGE_ESTIMATOR_H_