1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
base / types / optional_ref.h [blame]
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_TYPES_OPTIONAL_REF_H_
#define BASE_TYPES_OPTIONAL_REF_H_
#include <memory>
#include <optional>
#include <type_traits>
#include "base/check.h"
#include "base/compiler_specific.h"
#include "base/memory/raw_ptr.h"
namespace base {
// `optional_ref<T>` is similar to `std::optional<T>`, except it does not own
// the underlying value.
//
// When passing an optional parameter, prefer `optional_ref` to `const
// std::optional<T>&` as the latter often results in hidden copies due to
// implicit conversions, e.g. given the function:
//
// void TakesOptionalString(const std::optional<std::string>& str);
//
// And a call to that looks like:
//
// std::string s = "Hello world!";
// TakesOptionalString(s);
//
// This copies `s` into a temporary `std::optional<std::string>` in order to
// call `TakesOptionalString()`.
//
// The C++ style guide recommends using `const T*` instead of `const
// std::optional<T>&` when `T` would normally be passed by reference. However
// `const T*` is not always a good substitute because:
//
// - `const T*` disallows the use of temporaries, since it is not possible to
// take the address of a temporary.
// - additional boilerplate (e.g. `OptionalToPtr`) is required to pass an
// `std::optional<T>` to a `const T*` function parameter.
//
// Like `span<T>`, mutability of `optional_ref<T>` is controlled by the template
// argument `T`; e.g. `optional_ref<const int>` only allows const access to the
// referenced `int` value.
//
// Thus, `optional_ref<const T>` can be constructed from:
// - `std::nullopt`
// - `const T*` or `T*`
// - `const T&` or `T&`
// ` `const std::optional<T>&` or `std::optional<T>&`
//
// While `optional_ref<T>` can only be constructed from:
// - `std::nullopt`
// - `T*`
// - `T&`
// - `std::optional<T>&`
//
// Implicit conversions are disallowed, e.g. this will not compile:
//
// [](base::optional_ref<std::string> s) {}("Hello world!");
//
// This restriction may be relaxed in the future if it proves too onerous.
//
// `optional_ref<T>` is lightweight and should be passed by value. It is copy
// constructible but not copy assignable, to reduce the risk of lifetime bugs.
template <typename T>
class optional_ref {
private:
// Disallowed because `std::optional` does not allow its template argument to
// be a reference type.
static_assert(!std::is_reference_v<T>,
"T must not be a reference type (use a pointer?)");
// Both checks are important here, as:
// - optional_ref does not allow silent implicit conversions between types,
// so the decayed types must match exactly.
// - unless the types differ only in const qualification, and T is at least as
// const-qualified as the incoming type U.
template <typename U>
static constexpr bool IsCompatibleV =
std::is_same_v<std::decay_t<T>, std::decay_t<U>> &&
std::is_convertible_v<U*, T*>;
public:
using value_type = T;
// Constructs an empty `optional_ref`.
constexpr optional_ref() = default;
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr optional_ref(std::nullopt_t) {}
// Constructs an `optional_ref` from an `std::optional`; the resulting
// `optional_ref` is empty iff `o` is empty.
//
// Note: when constructing from a const reference, `optional_ref`'s template
// argument must be const-qualified as well.
// Note 2: avoiding direct use of `T` prevents implicit conversions.
template <typename U>
requires(std::is_const_v<T> && IsCompatibleV<U>)
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr optional_ref(const std::optional<U>& o LIFETIME_BOUND)
: ptr_(o ? &*o : nullptr) {}
template <typename U>
requires(IsCompatibleV<U>)
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr optional_ref(std::optional<U>& o LIFETIME_BOUND)
: ptr_(o ? &*o : nullptr) {}
// Constructs an `optional_ref` from a pointer; the resulting `optional_ref`
// is empty iff `p` is null.
//
// Note: when constructing from a const pointer, `optional_ref`'s template
// argument must be const-qualified as well.
// Note 2: avoiding direct use of `T` prevents implicit conversions.
template <typename U>
requires(IsCompatibleV<U>)
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr optional_ref(U* p LIFETIME_BOUND) : ptr_(p) {}
// Constructs an `optional_ref` from a reference; the resulting `optional_ref`
// is never empty.
//
// Note: when constructing from a const reference, `optional_ref`'s template
// argument must be const-qualified as well.
// Note 2: avoiding direct use of `T` prevents implicit conversions.
template <typename U>
requires(IsCompatibleV<const U>)
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr optional_ref(const U& r LIFETIME_BOUND) : ptr_(std::addressof(r)) {}
template <typename U>
requires(IsCompatibleV<U>)
// NOLINTNEXTLINE(google-explicit-constructor)
constexpr optional_ref(U& r LIFETIME_BOUND) : ptr_(std::addressof(r)) {}
// An empty `optional_ref` must be constructed with `std::nullopt`, not
// `nullptr`. Otherwise, `optional_ref<T*>` constructed with `nullptr` would
// be ambiguous: is it empty or is it engaged with a value of `nullptr`?
constexpr optional_ref(std::nullptr_t) = delete;
// Constructs a `optional_ref<const T>` from a `optional_ref<T>`. Conversions
// in the reverse direction are disallowed.
// NOLINTNEXTLINE(google-explicit-constructor)
template <typename U = std::remove_const<T>>
requires(std::is_const_v<T>)
constexpr optional_ref(optional_ref<U> rhs) : ptr_(rhs.as_ptr()) {}
// Copy construction is allowed to make it possible to pass `optional_ref`s to
// another call. However, assignment is disallowed, as it makes it easy to
// violate lifetime bounds. Use `CopyAsOptional()` if an `optional_ref` needs
// to be persisted beyond the scope of a function call.
constexpr optional_ref(const optional_ref&) = default;
optional_ref& operator=(const optional_ref&) = delete;
// CHECKs if the `optional_ref` is empty.
constexpr T* operator->() const {
CHECK(ptr_);
return ptr_;
}
// CHECKs if the `optional_ref` is empty.
constexpr T& operator*() const {
CHECK(ptr_);
return *ptr_;
}
// Returns `true` iff the `optional_ref` is non-empty.
constexpr bool has_value() const { return ptr_; }
constexpr explicit operator bool() const { return has_value(); }
// CHECKs if the `optional_ref` is empty.
constexpr T& value() const {
CHECK(ptr_);
return *ptr_;
}
// Convenience method for turning an `optional_ref` into a pointer.
constexpr T* as_ptr() const { return ptr_; }
// Convenience method for turning a non-owning `optional_ref` into an owning
// `std::optional`. Incurs a copy; useful when saving an `optional_ref`
// function parameter as a field, et cetera.
template <typename U = std::decay_t<T>>
requires(std::constructible_from<U, T>)
constexpr std::optional<U> CopyAsOptional() const {
return ptr_ ? std::optional<U>(*ptr_) : std::nullopt;
}
private:
raw_ptr<T> const ptr_ = nullptr;
};
template <typename T>
optional_ref(const T&) -> optional_ref<const T>;
template <typename T>
optional_ref(T&) -> optional_ref<T>;
template <typename T>
optional_ref(const std::optional<T>&) -> optional_ref<const T>;
template <typename T>
optional_ref(std::optional<T>&) -> optional_ref<T>;
template <typename T>
optional_ref(T*) -> optional_ref<T>;
template <typename T>
constexpr bool operator==(std::nullopt_t, optional_ref<T> x) {
return !x.has_value();
}
template <typename T>
constexpr bool operator==(optional_ref<T> x, std::nullopt_t) {
return !x.has_value();
}
} // namespace base
#endif // BASE_TYPES_OPTIONAL_REF_H_