1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
base / types / optional_util.h [blame]
// Copyright 2022 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef BASE_TYPES_OPTIONAL_UTIL_H_
#define BASE_TYPES_OPTIONAL_UTIL_H_
#include <concepts>
#include <functional>
#include <optional>
#include <utility>
#include "base/compiler_specific.h"
#include "base/types/expected.h"
namespace base {
// Helper for converting an `std::optional<T>` to a pointer suitable for
// passing as a function argument (alternatively, consider using
// `base::optional_ref`):
//
// void MaybeProcessData(const std::string* optional_data);
//
// class Example {
// public:
// void DoSomething() {
// MaybeProcessData(base::OptionalToPtr(data_));
// }
//
// private:
// std::optional<std::string> data_;
// };
//
// Rationale: per the C++ style guide, if `T` would normally be passed by
// reference, the optional version should be passed as `T*`, and *not* as
// `const std::optional<T>&`. Passing as `const std::optional<T>&` leads to
// implicit constructions and copies, e.g.:
//
// // BAD: a caller passing a `std::string` implicitly copies the entire string
// // to construct a temporary `std::optional<std::string>` to use for the
// // function argument.
// void BadMaybeProcessData(const std::optional<std::string>& optional_data);
//
// For more background, see https://abseil.io/tips/163. Also see
// `base/types/optional_ref.h` for an alternative approach to
// `const std::optional<T>&` that does not require the use of raw pointers.
template <class T>
const T* OptionalToPtr(const std::optional<T>& optional LIFETIME_BOUND) {
return optional.has_value() ? &optional.value() : nullptr;
}
template <class T>
T* OptionalToPtr(std::optional<T>& optional LIFETIME_BOUND) {
return optional.has_value() ? &optional.value() : nullptr;
}
// Helper for creating an `std::optional<T>` from a `T*` which may be null.
//
// This copies `T` into the `std::optional`. When you have control over the
// function that accepts the optional, and it currently expects a
// `std::optional<T>&` or `const std::optional<T>&`, consider changing it to
// accept a `base::optional_ref<T>` / `base::optional_ref<const T>` instead,
// which can be constructed from `T*` without copying.
template <class T>
std::optional<T> OptionalFromPtr(const T* value) {
return value ? std::optional<T>(*value) : std::nullopt;
}
// Helper for creating a `base::expected<U, F>` from an `std::optional<T>` and
// an error of type E, where T is convertible to U and E is convertible to F. If
// `opt` contains a value, this copies it into the `base::expected`, otherwise
// it moves `err` in.
template <class T, class E, class U = T, class F = E>
base::expected<U, F> OptionalToExpected(const std::optional<T>& opt, E&& err)
requires(std::convertible_to<T, U> && std::copyable<T> &&
std::convertible_to<E, F> && std::movable<E>)
{
if (opt.has_value()) {
return base::ok(opt.value());
}
return base::unexpected(std::move(err));
}
// As above, but copies `err` into the `base:expected` if `opt` doesn't contain
// a value.
template <class T, class E, class U = T, class F = E>
base::expected<U, F> OptionalToExpected(const std::optional<T>& opt,
const E& err)
requires(std::convertible_to<T, U> && std::copyable<T> &&
std::convertible_to<E, F> && std::copyable<E>)
{
if (opt.has_value()) {
return base::ok(opt.value());
}
return base::unexpected(err);
}
// Helper for creating an `std::optional<U>` from a `base::expected<T, E>`,
// where T is convertible to U. If `exp` contains a value, this copies it into
// the `std::optional`, otherwise it returns std::nullopt.
template <class T, class E, class U = T>
std::optional<U> OptionalFromExpected(const base::expected<T, E>& exp)
requires(std::convertible_to<T, U>)
{
if (exp.has_value()) {
return std::optional(exp.value());
}
return std::nullopt;
}
// Unwrap a `std::optional<T>` if it holds a value, and set `out` to the value
// in the optional. Returns true if the optional held a value which means `out`
// was assigned to. Returns false if the optional was empty, in which casse
// `out` will be unchanged (and the `proj` function will not be called).
//
// If a `proj` function is provided, it can modify the value in the optional,
// and `out` will instead be set to the value returned from the `proj` function.
// The `proj` may return any value or type, as long as its type matches or is
// assignable to `out`.
//
// If the optional is moved to this function as an rvalue, the unwrapped value
// will also be moved to assign to `out` as an rvalue (or moved into the `proj`
// function argument).
//
// # Examples
// Simple usage that unwraps the inner value into a variable or early outs:
// ```
// void maybe_do_stuff(std::optional<int> o) {
// int val = 0;
// if (!OptionalUnwrapTo(o, val)) {
// return;
// }
// do_stuff(val);
// }
// ```
//
// Unwraps the inner value and converts it to a different type:
// ```
// void maybe_do_stuff(std::optional<int> o) {
// MyType val;
// if (!OptionalUnwrapTo(o, val, [](int i) { return MyType::FromId(i); })) {
// return;
// }
// do_stuff(val);
// }
// ```
template <class T, class O, class P = std::identity>
requires(std::invocable<P, const T&>) &&
requires(O& out, std::invoke_result_t<P, const T&> val) { out = val; }
bool OptionalUnwrapTo(const std::optional<T>& optional, O& out, P proj = {}) {
if (optional) {
// Note: `proj` is received by value not by ref (unlike similar std
// functions) as we see a large binary size impact from the latter. So we
// unconditionally move it here while invoking.
out = std::invoke(std::move(proj), optional.value());
return true;
}
return false;
}
template <class T, class O, class P = std::identity>
requires(std::invocable<P, T &&>) &&
requires(O& out, std::invoke_result_t<P, T&&> val) { out = val; }
bool OptionalUnwrapTo(std::optional<T>&& optional, O& out, P proj = {}) {
if (optional) {
// Note: `proj` is received by value not by ref (unlike similar std
// functions) as we see a large binary size impact from the latter. So we
// unconditionally move it here while invoking.
out = std::invoke(std::move(proj), std::move(optional).value());
return true;
}
return false;
}
} // namespace base
#endif // BASE_TYPES_OPTIONAL_UTIL_H_