1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694
  695
  696
  697
  698
  699
  700
  701
  702
  703
  704
  705
  706
  707
  708
  709
  710
  711
  712
  713
  714
  715
  716
  717
  718
  719
  720
  721
  722
  723
  724
  725
  726
  727
  728
  729
  730
  731
  732
  733
  734
  735
  736
  737
  738
  739
  740
  741
  742
  743
  744
  745
  746
  747
  748
  749
  750
  751
  752
  753
  754
  755
  756
  757
  758
  759
  760
  761
  762
  763
  764
  765
  766
  767
  768
  769
  770
  771
  772
  773
  774
  775
  776
  777
  778
  779
  780
  781
  782
  783
  784
  785
  786
  787
  788
  789
  790
  791
  792
  793
  794
  795
  796
  797
  798
  799
  800
  801
  802
  803
  804
  805
  806
  807
  808
  809
  810
  811
  812
  813
  814
  815
  816
  817
  818
  819
  820
  821
  822
  823
  824
  825
  826
  827
  828
  829
  830
  831
  832
  833
  834
  835
  836
  837
  838
  839
  840
  841
  842
  843
  844
  845
  846
  847
  848
  849
  850
  851
  852
  853
  854
  855
  856
  857
  858
  859
  860
  861
  862
  863
  864
  865
  866
  867
  868
  869
  870
  871
  872
  873
  874
  875
  876
  877
  878
  879
  880
  881
  882
  883
  884
  885
  886
  887
  888
  889
  890
  891
  892
  893
  894
  895
  896
  897
  898
  899
  900
  901
  902
  903
  904
  905
  906
  907
  908
  909
  910
  911
  912
  913
  914
  915
  916
  917
  918
  919
  920
  921
  922
  923
  924
  925
  926
  927
  928
  929
  930
  931
  932
  933
  934
  935
  936
  937
  938
  939
  940
  941
  942
  943
  944
  945
  946
  947
  948
  949
  950
  951
  952
  953
  954
  955
  956
  957
  958
  959
  960
  961
  962
  963
  964
  965
  966
  967
  968
  969
  970
  971
  972
  973
  974
  975
  976
  977
  978
  979
  980
  981
  982
  983
  984
  985
  986
  987
  988
  989
  990
  991
  992
  993
  994
  995
  996
  997
  998
  999
 1000
 1001
 1002
 1003
 1004
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025
 1026
 1027
 1028
 1029
 1030
 1031
 1032
 1033
 1034
 1035
 1036
 1037
 1038
 1039
 1040
 1041
 1042
 1043
 1044
 1045
 1046
 1047
 1048
 1049
 1050
 1051
 1052
 1053
 1054
 1055
 1056
 1057
 1058
 1059
 1060
 1061
 1062
 1063
 1064
 1065
 1066
 1067
 1068
 1069
 1070
 1071
 1072
 1073
 1074
 1075
 1076
 1077
 1078
 1079
 1080
 1081
 1082
 1083
 1084
 1085
 1086
 1087
 1088
 1089
 1090
 1091
 1092
 1093
 1094
 1095
 1096
 1097
 1098
 1099
 1100
 1101
 1102
 1103
 1104
 1105
 1106
 1107
 1108
 1109
 1110
 1111
 1112
 1113
 1114
 1115
 1116
 1117
 1118
 1119
 1120
 1121
 1122
 1123
 1124
 1125
 1126
 1127
 1128
 1129
 1130
 1131
 1132
 1133
 1134
 1135
 1136
 1137

base / values.h [blame]

// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef BASE_VALUES_H_
#define BASE_VALUES_H_

#include <stddef.h>
#include <stdint.h>

#include <array>
#include <initializer_list>
#include <iosfwd>
#include <iterator>
#include <memory>
#include <optional>
#include <string>
#include <string_view>
#include <utility>
#include <vector>

#include "base/base_export.h"
#include "base/bit_cast.h"
#include "base/compiler_specific.h"
#include "base/containers/checked_iterators.h"
#include "base/containers/flat_map.h"
#include "base/containers/span.h"
#include "base/memory/raw_ref.h"
#include "base/trace_event/base_tracing_forward.h"
#include "base/value_iterators.h"
#include "third_party/abseil-cpp/absl/types/variant.h"

namespace base {

// The `Value` class is a variant type can hold one of the following types:
// - null
// - bool
// - int
// - double
// - string (internally UTF8-encoded)
// - binary data (i.e. a blob)
// - dictionary of string keys to `Value`s
// - list of `Value`s
//
// With the exception of binary blobs, `Value` is intended to be the C++ version
// of data types that can be represented in JSON.
//
// Warning: blob support may be removed in the future.
//
// ## Usage
//
// Do not use `Value` if a more specific type would be more appropriate.  For
// example, a function that only accepts dictionary values should have a
// `base::Value::Dict` parameter, not a `base::Value` parameter.
//
// Construction:
//
// `Value` is directly constructible from `bool`, `int`, `double`, binary blobs
// (`std::vector<uint8_t>`), `std::string_view`, `std::u16string_view`,
// `Value::Dict`, and `Value::List`.
//
// Copying:
//
// `Value` does not support C++ copy semantics to make it harder to accidentally
// copy large values. Instead, use `Clone()` to manually create a deep copy.
//
// Reading:
//
// `GetBool()`, GetInt()`, et cetera `CHECK()` that the `Value` has the correct
// subtype before returning the contained value. `bool`, `int`, `double` are
// returned by value. Binary blobs, `std::string`, `Value::Dict`, `Value::List`
// are returned by reference.
//
// `GetIfBool()`, `GetIfInt()`, et cetera return `std::nullopt`/`nullptr` if
// the `Value` does not have the correct subtype; otherwise, returns the value
// wrapped in an `std::optional` (for `bool`, `int`, `double`) or by pointer
// (for binary blobs, `std::string`, `Value::Dict`, `Value::List`).
//
// Note: both `GetDouble()` and `GetIfDouble()` still return a non-null result
// when the subtype is `Value::Type::INT`. In that case, the stored value is
// coerced to a double before being returned.
//
// Assignment:
//
// It is not possible to directly assign `bool`, `int`, et cetera to a `Value`.
// Instead, wrap the underlying type in `Value` before assigning.
//
// ## Dictionaries and Lists
//
// `Value` provides the `Value::Dict` and `Value::List` container types for
// working with dictionaries and lists of values respectively, rather than
// exposing the underlying container types directly. This allows the types to
// provide convenient helpers for dictionaries and lists, as well as giving
// greater flexibility for changing implementation details in the future.
//
// Both container types support enough STL-isms to be usable in range-based for
// loops and generic operations such as those from <algorithm>.
//
// Dictionaries support:
// - `empty()`, `size()`, `begin()`, `end()`, `cbegin()`, `cend()`,
//       `contains()`, `clear()`, `erase()`: Identical to the STL container
//       equivalents, with additional safety checks, e.g. iterators will
//       `CHECK()` if `end()` is dereferenced.
//
// - `Clone()`: Create a deep copy.
// - `Merge()`: Merge another dictionary into this dictionary.
// - `Find()`: Find a value by `std::string_view` key, returning nullptr if the
//       key is not present.
// - `FindBool()`, `FindInt()`, ...: Similar to `Find()`, but ensures that the
//       `Value` also has the correct subtype. Same return semantics as
//       `GetIfBool()`, `GetIfInt()`, et cetera, returning `std::nullopt` or
//       `nullptr` if the key is not present or the value has the wrong subtype.
// - `Set()`: Associate a value with a `std::string_view` key. Accepts `Value`
//       or any of the subtypes that `Value` can hold.
// - `Remove()`: Remove the key from this dictionary, if present.
// - `Extract()`: If the key is present in the dictionary, removes the key from
//       the dictionary and transfers ownership of `Value` to the caller.
//       Otherwise, returns `std::nullopt`.
//
// Dictionaries also support an additional set of helper methods that operate on
// "paths": `FindByDottedPath()`, `SetByDottedPath()`, `RemoveByDottedPath()`,
// and `ExtractByDottedPath()`. Dotted paths are a convenience method of naming
// intermediate nested dictionaries, separating the components of the path using
// '.' characters. For example, finding a string path on a `Value::Dict` using
// the dotted path:
//
//   "aaa.bbb.ccc"
//
// Will first look for a `Value::Type::DICT` associated with the key "aaa", then
// another `Value::Type::DICT` under the "aaa" dict associated with the
// key "bbb", and then a `Value::Type::STRING` under the "bbb" dict associated
// with the key "ccc".
//
// If a path only has one component (i.e. has no dots), please use the regular,
// non-path APIs.
//
// Lists support:
// - `empty()`, `size()`, `begin()`, `end()`, `cbegin()`, `cend()`,
//       `rbegin()`, `rend()`, `front()`, `back()`, `reserve()`, `operator[]`,
//       `clear()`, `erase()`: Identical to the STL container equivalents, with
//       additional safety checks, e.g. `operator[]` will `CHECK()` if the index
//       is out of range.
// - `Clone()`: Create a deep copy.
// - `Append()`: Append a value to the end of the list. Accepts `Value` or any
//       of the subtypes that `Value` can hold.
// - `Insert()`: Insert a `Value` at a specified point in the list.
// - `EraseValue()`: Erases all matching `Value`s from the list.
// - `EraseIf()`: Erase all `Value`s matching an arbitrary predicate from the
//       list.
class BASE_EXPORT GSL_OWNER Value {
 public:
  using BlobStorage = std::vector<uint8_t>;

  class Dict;
  class List;

  enum class Type : unsigned char {
    NONE = 0,
    BOOLEAN,
    INTEGER,
    DOUBLE,
    STRING,
    BINARY,
    DICT,
    LIST,
    // Note: Do not add more types. See the file-level comment above for why.
  };

  // Adaptors for converting from the old way to the new way and vice versa.
  static Value FromUniquePtrValue(std::unique_ptr<Value> val);
  static std::unique_ptr<Value> ToUniquePtrValue(Value val);

  Value() noexcept;

  Value(Value&&) noexcept;
  Value& operator=(Value&&) noexcept;

  // Deleted to prevent accidental copying.
  Value(const Value&) = delete;
  Value& operator=(const Value&) = delete;

  // Creates a deep copy of this value.
  Value Clone() const;

  // Creates a `Value` of `type`. The data of the corresponding type will be
  // default constructed.
  explicit Value(Type type);

  // Constructor for `Value::Type::BOOLEAN`.
  explicit Value(bool value);

  // Prevent pointers from implicitly converting to bool. Another way to write
  // this would be to template the bool constructor and use SFINAE to only allow
  // use if `std::is_same_v<T, bool>` is true, but this has surprising behavior
  // with range-based for loops over a `std::vector<bool>` (which will
  // unintuitively match the int overload instead).
  //
  // The `const` is load-bearing; otherwise, a `char*` argument would prefer the
  // deleted overload due to requiring a qualification conversion.
  template <typename T>
  explicit Value(const T*) = delete;

  // Constructor for `Value::Type::INT`.
  explicit Value(int value);

  // Constructor for `Value::Type::DOUBLE`.
  explicit Value(double value);

  // Constructors for `Value::Type::STRING`.
  explicit Value(std::string_view value);
  explicit Value(std::u16string_view value);
  // `char*` and `char16_t*` are needed to provide a more specific overload than
  // the deleted `const T*` overload above.
  explicit Value(const char* value);
  explicit Value(const char16_t* value);
  // `std::string&&` allows for efficient move construction.
  explicit Value(std::string&& value) noexcept;

  // Constructors for `Value::Type::BINARY`.
  explicit Value(const std::vector<char>& value);
  explicit Value(base::span<const uint8_t> value);
  explicit Value(BlobStorage&& value) noexcept;

  // Constructor for `Value::Type::DICT`.
  explicit Value(Dict&& value) noexcept;

  // Constructor for `Value::Type::LIST`.
  explicit Value(List&& value) noexcept;

  ~Value();

  // Returns the name for a given `type`.
  static const char* GetTypeName(Type type);

  // Returns the type of the value stored by the current Value object.
  Type type() const { return static_cast<Type>(data_.index()); }

  // Returns true if the current object represents a given type.
  bool is_none() const { return type() == Type::NONE; }
  bool is_bool() const { return type() == Type::BOOLEAN; }
  bool is_int() const { return type() == Type::INTEGER; }
  bool is_double() const { return type() == Type::DOUBLE; }
  bool is_string() const { return type() == Type::STRING; }
  bool is_blob() const { return type() == Type::BINARY; }
  bool is_dict() const { return type() == Type::DICT; }
  bool is_list() const { return type() == Type::LIST; }

  // Returns the stored data if the type matches, or `std::nullopt`/`nullptr`
  // otherwise. `bool`, `int`, and `double` are returned in a wrapped
  // `std::optional`; blobs, `Value::Dict`, and `Value::List` are returned by
  // pointer.
  std::optional<bool> GetIfBool() const;
  std::optional<int> GetIfInt() const;
  // Returns a non-null value for both `Value::Type::DOUBLE` and
  // `Value::Type::INT`, converting the latter to a double.
  std::optional<double> GetIfDouble() const;
  const std::string* GetIfString() const;
  std::string* GetIfString();
  const BlobStorage* GetIfBlob() const;
  BlobStorage* GetIfBlob();
  const Dict* GetIfDict() const;
  Dict* GetIfDict();
  const List* GetIfList() const;
  List* GetIfList();

  // Similar to the `GetIf...()` variants above, but fails with a `CHECK()` on a
  // type mismatch. `bool`, `int`, and `double` are returned by value; blobs,
  // `Value::Dict`, and `Value::List` are returned by reference.
  bool GetBool() const;
  int GetInt() const;
  // Returns a value for both `Value::Type::DOUBLE` and `Value::Type::INT`,
  // converting the latter to a double.
  double GetDouble() const;
  const std::string& GetString() const LIFETIME_BOUND;
  std::string& GetString() LIFETIME_BOUND;
  const BlobStorage& GetBlob() const LIFETIME_BOUND;
  BlobStorage& GetBlob() LIFETIME_BOUND;
  const Dict& GetDict() const LIFETIME_BOUND;
  Dict& GetDict() LIFETIME_BOUND;
  const List& GetList() const LIFETIME_BOUND;
  List& GetList() LIFETIME_BOUND;

  // Transfers ownership of the underlying value. Similarly to `Get...()`
  // variants above, fails with a `CHECK()` on a type mismatch. After
  // transferring the ownership `*this` is in a valid, but unspecified, state.
  // Prefer over `std::move(value.Get...())` so clang-tidy can warn about
  // potential use-after-move mistakes.
  std::string TakeString() &&;
  BlobStorage TakeBlob() &&;
  Dict TakeDict() &&;
  List TakeList() &&;

  // Represents a dictionary of string keys to Values.
  class BASE_EXPORT GSL_OWNER Dict {
   public:
    using iterator = detail::dict_iterator;
    using const_iterator = detail::const_dict_iterator;

    Dict();

    Dict(Dict&&) noexcept;
    Dict& operator=(Dict&&) noexcept;

    // Deleted to prevent accidental copying.
    Dict(const Dict&) = delete;
    Dict& operator=(const Dict&) = delete;

    // Takes move_iterators iterators that return std::pair<std::string, Value>,
    // and moves their values into a new Dict. Adding all entries at once
    // results in a faster initial sort operation. Takes move iterators to avoid
    // having to clone the input.
    template <class IteratorType>
    explicit Dict(std::move_iterator<IteratorType> first,
                  std::move_iterator<IteratorType> last) {
      // Need to move into a vector first, since `storage_` currently uses
      // unique_ptrs.
      std::vector<std::pair<std::string, std::unique_ptr<Value>>> values;
      for (auto current = first; current != last; ++current) {
        // With move iterators, no need to call Clone(), but do need to move
        // to a temporary first, as accessing either field individually will
        // directly from the iterator will delete the other field.
        auto value = *current;
        values.emplace_back(std::move(value.first),
                            std::make_unique<Value>(std::move(value.second)));
      }
      storage_ =
          flat_map<std::string, std::unique_ptr<Value>>(std::move(values));
    }

    ~Dict();

    // Returns true if there are no entries in this dictionary and false
    // otherwise.
    bool empty() const;

    // Returns the number of entries in this dictionary.
    size_t size() const;

    // Returns an iterator to the first entry in this dictionary.
    iterator begin();
    const_iterator begin() const;
    const_iterator cbegin() const;

    // Returns an iterator following the last entry in this dictionary. May not
    // be dereferenced.
    iterator end();
    const_iterator end() const;
    const_iterator cend() const;

    // Returns true if `key` is an entry in this dictionary.
    bool contains(std::string_view key) const;

    // Removes all entries from this dictionary.
    REINITIALIZES_AFTER_MOVE void clear();

    // Removes the entry referenced by `pos` in this dictionary and returns an
    // iterator to the entry following the removed entry.
    iterator erase(iterator pos);
    iterator erase(const_iterator pos);

    // Creates a deep copy of this dictionary.
    Dict Clone() const;

    // Merges the entries from `dict` into this dictionary. If an entry with the
    // same key exists in this dictionary and `dict`:
    // - if both entries are dictionaries, they will be recursively merged
    // - otherwise, the already-existing entry in this dictionary will be
    //   overwritten with the entry from `dict`.
    void Merge(Dict dict);

    // Finds the entry corresponding to `key` in this dictionary. Returns
    // nullptr if there is no such entry.
    const Value* Find(std::string_view key) const;
    Value* Find(std::string_view key);

    // Similar to `Find()` above, but returns `std::nullopt`/`nullptr` if the
    // type of the entry does not match. `bool`, `int`, and `double` are
    // returned in a wrapped `std::optional`; blobs, `Value::Dict`, and
    // `Value::List` are returned by pointer.
    std::optional<bool> FindBool(std::string_view key) const;
    std::optional<int> FindInt(std::string_view key) const;
    // Returns a non-null value for both `Value::Type::DOUBLE` and
    // `Value::Type::INT`, converting the latter to a double.
    std::optional<double> FindDouble(std::string_view key) const;
    const std::string* FindString(std::string_view key) const;
    std::string* FindString(std::string_view key);
    const BlobStorage* FindBlob(std::string_view key) const;
    BlobStorage* FindBlob(std::string_view key);
    const Dict* FindDict(std::string_view key) const;
    Dict* FindDict(std::string_view key);
    const List* FindList(std::string_view key) const;
    List* FindList(std::string_view key);

    // If there's a value of the specified type at `key` in this dictionary,
    // returns it. Otherwise, creates an empty container of the specified type,
    // inserts it at `key`, and returns it. If there's a value of some other
    // type at `key`, will overwrite that entry.
    Dict* EnsureDict(std::string_view key);
    List* EnsureList(std::string_view key);

    // Sets an entry with `key` and `value` in this dictionary, overwriting any
    // existing entry with the same `key`. Returns a pointer to the set `value`.
    Value* Set(std::string_view key, Value&& value) &;
    Value* Set(std::string_view key, bool value) &;
    template <typename T>
    Value* Set(std::string_view, const T*) & = delete;
    Value* Set(std::string_view key, int value) &;
    Value* Set(std::string_view key, double value) &;
    Value* Set(std::string_view key, std::string_view value) &;
    Value* Set(std::string_view key, std::u16string_view value) &;
    Value* Set(std::string_view key, const char* value) &;
    Value* Set(std::string_view key, const char16_t* value) &;
    Value* Set(std::string_view key, std::string&& value) &;
    Value* Set(std::string_view key, BlobStorage&& value) &;
    Value* Set(std::string_view key, Dict&& value) &;
    Value* Set(std::string_view key, List&& value) &;

    // Rvalue overrides of the `Set` methods, which allow you to construct
    // a `Value::Dict` builder-style:
    //
    // Value::Dict result =
    //     Value::Dict()
    //         .Set("key-1", "first value")
    //         .Set("key-2", 2)
    //         .Set("key-3", true)
    //         .Set("nested-dictionary", Value::Dict()
    //                                       .Set("nested-key-1", "value")
    //                                       .Set("nested-key-2", true))
    //         .Set("nested-list", Value::List()
    //                                 .Append("nested-list-value")
    //                                 .Append(5)
    //                                 .Append(true));
    //
    // Each method returns a rvalue reference to `this`, so this is as efficient
    // as stand-alone calls to `Set`, while also making it harder to
    // accidentally insert items in the wrong dictionary.
    //
    // The equivalent code without using these builder-style methods:
    //
    // Value::Dict no_builder_example;
    // no_builder_example.Set("key-1", "first value")
    // no_builder_example.Set("key-2", 2)
    // no_builder_example.Set("key-3", true)
    // Value::Dict nested_dictionary;
    // nested_dictionary.Set("nested-key-1", "value");
    // nested_dictionary.Set("nested-key-2", true);
    // no_builder_example.Set("nested_dictionary",
    //                        std::move(nested_dictionary));
    // Value::List nested_list;
    // nested_list.Append("nested-list-value");
    // nested_list.Append(5);
    // nested_list.Append(true);
    // no_builder_example.Set("nested-list", std::move(nested_list));
    //
    // Sometimes `git cl format` does a less than perfect job formatting these
    // chained `Set` calls. In these cases you can use a trailing empty comment
    // to influence the code formatting:
    //
    // Value::Dict result = Value::Dict().Set(
    //     "nested",
    //     base::Value::Dict().Set("key", "value").Set("other key", "other"));
    //
    // Value::Dict result = Value::Dict().Set("nested",
    //                                        base::Value::Dict() //
    //                                           .Set("key", "value")
    //                                           .Set("other key", "value"));
    //
    Dict&& Set(std::string_view key, Value&& value) &&;
    Dict&& Set(std::string_view key, bool value) &&;
    template <typename T>
    Dict&& Set(std::string_view, const T*) && = delete;
    Dict&& Set(std::string_view key, int value) &&;
    Dict&& Set(std::string_view key, double value) &&;
    Dict&& Set(std::string_view key, std::string_view value) &&;
    Dict&& Set(std::string_view key, std::u16string_view value) &&;
    Dict&& Set(std::string_view key, const char* value) &&;
    Dict&& Set(std::string_view key, const char16_t* value) &&;
    Dict&& Set(std::string_view key, std::string&& value) &&;
    Dict&& Set(std::string_view key, BlobStorage&& value) &&;
    Dict&& Set(std::string_view key, Dict&& value) &&;
    Dict&& Set(std::string_view key, List&& value) &&;

    // Removes the entry corresponding to `key` from this dictionary. Returns
    // true if an entry was removed or false otherwise.
    bool Remove(std::string_view key);

    // Similar to `Remove()`, but returns the value corresponding to the removed
    // entry or `std::nullopt` otherwise.
    std::optional<Value> Extract(std::string_view key);

    // Equivalent to the above methods but operating on paths instead of keys.
    // A path is shorthand syntax for referring to a key nested inside
    // intermediate dictionaries, with components delimited by ".". Paths may
    // not be empty.
    //
    // Prefer the non-path methods above when possible. Paths that have only one
    // component (i.e. no dots in the path) should never use the path-based
    // methods.
    //
    // Originally, the path-based APIs were the only way of specifying a key, so
    // there are likely to be many legacy (and unnecessary) uses of the path
    // APIs that do not actually require traversing nested dictionaries.
    const Value* FindByDottedPath(std::string_view path) const;
    Value* FindByDottedPath(std::string_view path);

    std::optional<bool> FindBoolByDottedPath(std::string_view path) const;
    std::optional<int> FindIntByDottedPath(std::string_view path) const;
    // Returns a non-null value for both `Value::Type::DOUBLE` and
    // `Value::Type::INT`, converting the latter to a double.
    std::optional<double> FindDoubleByDottedPath(std::string_view path) const;
    const std::string* FindStringByDottedPath(std::string_view path) const;
    std::string* FindStringByDottedPath(std::string_view path);
    const BlobStorage* FindBlobByDottedPath(std::string_view path) const;
    BlobStorage* FindBlobByDottedPath(std::string_view path);
    const Dict* FindDictByDottedPath(std::string_view path) const;
    Dict* FindDictByDottedPath(std::string_view path);
    const List* FindListByDottedPath(std::string_view path) const;
    List* FindListByDottedPath(std::string_view path);

    // Creates a new entry with a dictionary for any non-last component that is
    // missing an entry while performing the path traversal. Will fail if any
    // non-last component of the path refers to an already-existing entry that
    // is not a dictionary. Returns `nullptr` on failure.
    //
    // Warning: repeatedly using this API to enter entries in the same nested
    // dictionary is inefficient, so please do not write the following:
    //
    // bad_example.SetByDottedPath("a.nested.dictionary.field_1", 1);
    // bad_example.SetByDottedPath("a.nested.dictionary.field_2", "value");
    // bad_example.SetByDottedPath("a.nested.dictionary.field_3", 1);
    //
    Value* SetByDottedPath(std::string_view path, Value&& value) &;
    Value* SetByDottedPath(std::string_view path, bool value) &;
    template <typename T>
    Value* SetByDottedPath(std::string_view, const T*) & = delete;
    Value* SetByDottedPath(std::string_view path, int value) &;
    Value* SetByDottedPath(std::string_view path, double value) &;
    Value* SetByDottedPath(std::string_view path, std::string_view value) &;
    Value* SetByDottedPath(std::string_view path, std::u16string_view value) &;
    Value* SetByDottedPath(std::string_view path, const char* value) &;
    Value* SetByDottedPath(std::string_view path, const char16_t* value) &;
    Value* SetByDottedPath(std::string_view path, std::string&& value) &;
    Value* SetByDottedPath(std::string_view path, BlobStorage&& value) &;
    Value* SetByDottedPath(std::string_view path, Dict&& value) &;
    Value* SetByDottedPath(std::string_view path, List&& value) &;

    // Rvalue overrides of the `SetByDottedPath` methods, which allow you to
    // construct a `Value::Dict` builder-style:
    //
    // Value::Dict result =
    //     Value::Dict()
    //         .SetByDottedPath("a.nested.dictionary.with.key-1", "first value")
    //         .Set("local-key-1", 2));
    //
    // Each method returns a rvalue reference to `this`, so this is as efficient
    // as (and less mistake-prone than) stand-alone calls to `Set`.
    //
    // Warning: repeatedly using this API to enter entries in the same nested
    // dictionary is inefficient, so do not write this:
    //
    // Value::Dict bad_example =
    //   Value::Dict()
    //     .SetByDottedPath("nested.dictionary.key-1", "first value")
    //     .SetByDottedPath("nested.dictionary.key-2", "second value")
    //     .SetByDottedPath("nested.dictionary.key-3", "third value");
    //
    // Instead, simply write this
    //
    // Value::Dict good_example =
    //   Value::Dict()
    //     .Set("nested",
    //          base::Value::Dict()
    //            .Set("dictionary",
    //                 base::Value::Dict()
    //                   .Set(key-1", "first value")
    //                   .Set(key-2", "second value")
    //                   .Set(key-3", "third value")));
    //
    //
    Dict&& SetByDottedPath(std::string_view path, Value&& value) &&;
    Dict&& SetByDottedPath(std::string_view path, bool value) &&;
    template <typename T>
    Dict&& SetByDottedPath(std::string_view, const T*) && = delete;
    Dict&& SetByDottedPath(std::string_view path, int value) &&;
    Dict&& SetByDottedPath(std::string_view path, double value) &&;
    Dict&& SetByDottedPath(std::string_view path, std::string_view value) &&;
    Dict&& SetByDottedPath(std::string_view path, std::u16string_view value) &&;
    Dict&& SetByDottedPath(std::string_view path, const char* value) &&;
    Dict&& SetByDottedPath(std::string_view path, const char16_t* value) &&;
    Dict&& SetByDottedPath(std::string_view path, std::string&& value) &&;
    Dict&& SetByDottedPath(std::string_view path, BlobStorage&& value) &&;
    Dict&& SetByDottedPath(std::string_view path, Dict&& value) &&;
    Dict&& SetByDottedPath(std::string_view path, List&& value) &&;

    bool RemoveByDottedPath(std::string_view path);

    std::optional<Value> ExtractByDottedPath(std::string_view path);

    // Estimates dynamic memory usage. Requires tracing support
    // (enable_base_tracing gn flag), otherwise always returns 0. See
    // base/trace_event/memory_usage_estimator.h for more info.
    size_t EstimateMemoryUsage() const;

    // Serializes to a string for logging and debug purposes.
    std::string DebugString() const;

#if BUILDFLAG(ENABLE_BASE_TRACING)
    // Write this object into a trace.
    void WriteIntoTrace(perfetto::TracedValue) const;
#endif  // BUILDFLAG(ENABLE_BASE_TRACING)

   private:
    BASE_EXPORT friend bool operator==(const Dict& lhs, const Dict& rhs);
    BASE_EXPORT friend bool operator!=(const Dict& lhs, const Dict& rhs);
    BASE_EXPORT friend bool operator<(const Dict& lhs, const Dict& rhs);
    BASE_EXPORT friend bool operator>(const Dict& lhs, const Dict& rhs);
    BASE_EXPORT friend bool operator<=(const Dict& lhs, const Dict& rhs);
    BASE_EXPORT friend bool operator>=(const Dict& lhs, const Dict& rhs);

    // TODO(dcheng): Replace with `flat_map<std::string, Value>` once no caller
    // relies on stability of pointers anymore.
    flat_map<std::string, std::unique_ptr<Value>> storage_;
  };

  // Represents a list of Values.
  class BASE_EXPORT GSL_OWNER List {
   public:
    using iterator = CheckedContiguousIterator<Value>;
    using const_iterator = CheckedContiguousConstIterator<Value>;
    using reverse_iterator = std::reverse_iterator<iterator>;
    using const_reverse_iterator = std::reverse_iterator<const_iterator>;
    using value_type = Value;

    // Creates a list with the given capacity reserved.
    // Correctly using this will greatly reduce the code size and improve
    // performance when creating a list whose size is known up front.
    static List with_capacity(size_t capacity);

    List();

    List(List&&) noexcept;
    List& operator=(List&&) noexcept;

    // Deleted to prevent accidental copying.
    List(const List&) = delete;
    List& operator=(const List&) = delete;

    ~List();

    // Returns true if there are no values in this list and false otherwise.
    bool empty() const;

    // Returns the number of values in this list.
    size_t size() const;

    // Returns an iterator to the first value in this list.
    iterator begin();
    const_iterator begin() const;
    const_iterator cbegin() const;

    // Returns an iterator following the last value in this list. May not be
    // dereferenced.
    iterator end();
    const_iterator end() const;
    const_iterator cend() const;

    // Returns a reverse iterator preceding the first value in this list. May
    // not be dereferenced.
    reverse_iterator rend();
    const_reverse_iterator rend() const;

    // Returns a reverse iterator to the last value in this list.
    reverse_iterator rbegin();
    const_reverse_iterator rbegin() const;

    // Returns a reference to the first value in the container. Fails with
    // `CHECK()` if the list is empty.
    const Value& front() const LIFETIME_BOUND;
    Value& front() LIFETIME_BOUND;

    // Returns a reference to the last value in the container. Fails with
    // `CHECK()` if the list is empty.
    const Value& back() const LIFETIME_BOUND;
    Value& back() LIFETIME_BOUND;

    // Increase the capacity of the backing container, but does not change
    // the size. Assume all existing iterators will be invalidated.
    void reserve(size_t capacity);

    // Resizes the list.
    // If `new_size` is greater than current size, the extra elements in the
    // back will be destroyed.
    // If `new_size` is less than current size, new default-initialized elements
    // will be added to the back.
    // Assume all existing iterators will be invalidated.
    void resize(size_t new_size);

    // Returns a reference to the value at `index` in this list. Fails with a
    // `CHECK()` if `index >= size()`.
    const Value& operator[](size_t index) const;
    Value& operator[](size_t index);

    // Removes all value from this list.
    REINITIALIZES_AFTER_MOVE void clear();

    // Removes the value referenced by `pos` in this list and returns an
    // iterator to the value following the removed value.
    iterator erase(iterator pos);
    const_iterator erase(const_iterator pos);

    // Remove the values in the range [`first`, `last`). Returns iterator to the
    // first value following the removed range, which is `last`. If `first` ==
    // `last`, removes nothing and returns `last`.
    iterator erase(iterator first, iterator last);
    const_iterator erase(const_iterator first, const_iterator last);

    // Creates a deep copy of this dictionary.
    List Clone() const;

    // Appends `value` to the end of this list.
    void Append(Value&& value) &;
    void Append(bool value) &;
    template <typename T>
    void Append(const T*) & = delete;
    void Append(int value) &;
    void Append(double value) &;
    void Append(std::string_view value) &;
    void Append(std::u16string_view value) &;
    void Append(const char* value) &;
    void Append(const char16_t* value) &;
    void Append(std::string&& value) &;
    void Append(BlobStorage&& value) &;
    void Append(Dict&& value) &;
    void Append(List&& value) &;

    // Rvalue overrides of the `Append` methods, which allow you to construct
    // a `Value::List` builder-style:
    //
    // Value::List result =
    //   Value::List().Append("first value").Append(2).Append(true);
    //
    // Each method returns a rvalue reference to `this`, so this is as efficient
    // as stand-alone calls to `Append`, while at the same time making it harder
    // to accidentally append to the wrong list.
    //
    // The equivalent code without using these builder-style methods:
    //
    // Value::List no_builder_example;
    // no_builder_example.Append("first value");
    // no_builder_example.Append(2);
    // no_builder_example.Append(true);
    //
    List&& Append(Value&& value) &&;
    List&& Append(bool value) &&;
    template <typename T>
    List&& Append(const T*) && = delete;
    List&& Append(int value) &&;
    List&& Append(double value) &&;
    List&& Append(std::string_view value) &&;
    List&& Append(std::u16string_view value) &&;
    List&& Append(const char* value) &&;
    List&& Append(const char16_t* value) &&;
    List&& Append(std::string&& value) &&;
    List&& Append(BlobStorage&& value) &&;
    List&& Append(Dict&& value) &&;
    List&& Append(List&& value) &&;

    // Inserts `value` before `pos` in this list. Returns an iterator to the
    // inserted value.
    // TODO(dcheng): Should this provide the same set of overloads that Append()
    // does?
    iterator Insert(const_iterator pos, Value&& value);

    // Erases all values equal to `value` from this list.
    size_t EraseValue(const Value& value);

    // Erases all values for which `predicate` evaluates to true from this list.
    template <typename Predicate>
    size_t EraseIf(Predicate predicate) {
      return std::erase_if(storage_, predicate);
    }

    // Estimates dynamic memory usage. Requires tracing support
    // (enable_base_tracing gn flag), otherwise always returns 0. See
    // base/trace_event/memory_usage_estimator.h for more info.
    size_t EstimateMemoryUsage() const;

    // Serializes to a string for logging and debug purposes.
    std::string DebugString() const;

#if BUILDFLAG(ENABLE_BASE_TRACING)
    // Write this object into a trace.
    void WriteIntoTrace(perfetto::TracedValue) const;
#endif  // BUILDFLAG(ENABLE_BASE_TRACING)

   private:
    using ListStorage = std::vector<Value>;

    BASE_EXPORT friend bool operator==(const List& lhs, const List& rhs);
    BASE_EXPORT friend bool operator!=(const List& lhs, const List& rhs);
    BASE_EXPORT friend bool operator<(const List& lhs, const List& rhs);
    BASE_EXPORT friend bool operator>(const List& lhs, const List& rhs);
    BASE_EXPORT friend bool operator<=(const List& lhs, const List& rhs);
    BASE_EXPORT friend bool operator>=(const List& lhs, const List& rhs);

    explicit List(const std::vector<Value>& storage);

    std::vector<Value> storage_;
  };

  // Note: Do not add more types. See the file-level comment above for why.

  // Comparison operators so that Values can easily be used with standard
  // library algorithms and associative containers.
  BASE_EXPORT friend bool operator==(const Value& lhs, const Value& rhs);
  BASE_EXPORT friend bool operator!=(const Value& lhs, const Value& rhs);
  BASE_EXPORT friend bool operator<(const Value& lhs, const Value& rhs);
  BASE_EXPORT friend bool operator>(const Value& lhs, const Value& rhs);
  BASE_EXPORT friend bool operator<=(const Value& lhs, const Value& rhs);
  BASE_EXPORT friend bool operator>=(const Value& lhs, const Value& rhs);

  BASE_EXPORT friend bool operator==(const Value& lhs, bool rhs);
  friend bool operator==(bool lhs, const Value& rhs) { return rhs == lhs; }
  friend bool operator!=(const Value& lhs, bool rhs) { return !(lhs == rhs); }
  friend bool operator!=(bool lhs, const Value& rhs) { return !(lhs == rhs); }
  template <typename T>
  friend bool operator==(const Value& lhs, const T* rhs) = delete;
  template <typename T>
  friend bool operator==(const T* lhs, const Value& rhs) = delete;
  template <typename T>
  friend bool operator!=(const Value& lhs, const T* rhs) = delete;
  template <typename T>
  friend bool operator!=(const T* lhs, const Value& rhs) = delete;
  BASE_EXPORT friend bool operator==(const Value& lhs, int rhs);
  friend bool operator==(int lhs, const Value& rhs) { return rhs == lhs; }
  friend bool operator!=(const Value& lhs, int rhs) { return !(lhs == rhs); }
  friend bool operator!=(int lhs, const Value& rhs) { return !(lhs == rhs); }
  BASE_EXPORT friend bool operator==(const Value& lhs, double rhs);
  friend bool operator==(double lhs, const Value& rhs) { return rhs == lhs; }
  friend bool operator!=(const Value& lhs, double rhs) { return !(lhs == rhs); }
  friend bool operator!=(double lhs, const Value& rhs) { return !(lhs == rhs); }
  // Note: std::u16string_view overload intentionally omitted: Value internally
  // stores strings as UTF-8. While it is possible to implement a comparison
  // operator that would not require first creating a new UTF-8 string from the
  // UTF-16 string argument, it is simpler to just not implement it at all for a
  // rare use case.
  BASE_EXPORT friend bool operator==(const Value& lhs, std::string_view rhs);
  friend bool operator==(std::string_view lhs, const Value& rhs) {
    return rhs == lhs;
  }
  friend bool operator!=(const Value& lhs, std::string_view rhs) {
    return !(lhs == rhs);
  }
  friend bool operator!=(std::string_view lhs, const Value& rhs) {
    return !(lhs == rhs);
  }
  friend bool operator==(const Value& lhs, const char* rhs) {
    return lhs == std::string_view(rhs);
  }
  friend bool operator==(const char* lhs, const Value& rhs) {
    return rhs == lhs;
  }
  friend bool operator!=(const Value& lhs, const char* rhs) {
    return !(lhs == rhs);
  }
  friend bool operator!=(const char* lhs, const Value& rhs) {
    return !(lhs == rhs);
  }
  friend bool operator==(const Value& lhs, const std::string& rhs) {
    return lhs == std::string_view(rhs);
  }
  friend bool operator==(const std::string& lhs, const Value& rhs) {
    return rhs == lhs;
  }
  friend bool operator!=(const Value& lhs, const std::string& rhs) {
    return !(lhs == rhs);
  }
  friend bool operator!=(const std::string& lhs, const Value& rhs) {
    return !(lhs == rhs);
  }
  // Note: Blob support intentionally omitted as an experiment for potentially
  // wholly removing Blob support from Value itself in the future.
  BASE_EXPORT friend bool operator==(const Value& lhs, const Value::Dict& rhs);
  friend bool operator==(const Value::Dict& lhs, const Value& rhs) {
    return rhs == lhs;
  }
  friend bool operator!=(const Value& lhs, const Value::Dict& rhs) {
    return !(lhs == rhs);
  }
  friend bool operator!=(const Value::Dict& lhs, const Value& rhs) {
    return !(lhs == rhs);
  }
  BASE_EXPORT friend bool operator==(const Value& lhs, const Value::List& rhs);
  friend bool operator==(const Value::List& lhs, const Value& rhs) {
    return rhs == lhs;
  }
  friend bool operator!=(const Value& lhs, const Value::List& rhs) {
    return !(lhs == rhs);
  }
  friend bool operator!=(const Value::List& lhs, const Value& rhs) {
    return !(lhs == rhs);
  }

  // Estimates dynamic memory usage. Requires tracing support
  // (enable_base_tracing gn flag), otherwise always returns 0. See
  // base/trace_event/memory_usage_estimator.h for more info.
  size_t EstimateMemoryUsage() const;

  // Serializes to a string for logging and debug purposes.
  std::string DebugString() const;

#if BUILDFLAG(ENABLE_BASE_TRACING)
  // Write this object into a trace.
  void WriteIntoTrace(perfetto::TracedValue) const;
#endif  // BUILDFLAG(ENABLE_BASE_TRACING)

  template <typename Visitor>
  auto Visit(Visitor&& visitor) const {
    return absl::visit(std::forward<Visitor>(visitor), data_);
  }

 private:
  // For access to DoubleStorage.
  friend class ValueView;

  // Special case for doubles, which are aligned to 8 bytes on some
  // 32-bit architectures. In this case, a simple declaration as a
  // double member would make the whole union 8 byte-aligned, which
  // would also force 4 bytes of wasted padding space before it in
  // the Value layout.
  //
  // To override this, store the value as an array of 32-bit integers, and
  // perform the appropriate bit casts when reading / writing to it.
  class BASE_EXPORT DoubleStorage {
   public:
    explicit DoubleStorage(double v);
    DoubleStorage(const DoubleStorage&) = default;
    DoubleStorage& operator=(const DoubleStorage&) = default;

    // Provide an implicit conversion to double to simplify the use of visitors
    // with `Value::Visit()`. Otherwise, visitors would need a branch for
    // handling `DoubleStorage` like:
    //
    //   value.Visit([] (const auto& member) {
    //     using T = std::decay_t<decltype(member)>;
    //     if constexpr (std::is_same_v<T, Value::DoubleStorage>) {
    //       SomeFunction(double{member});
    //     } else {
    //       SomeFunction(member);
    //     }
    //   });
    operator double() const { return base::bit_cast<double>(v_); }

   private:
    friend bool operator==(const DoubleStorage& lhs, const DoubleStorage& rhs) {
      return double{lhs} == double{rhs};
    }

    friend bool operator!=(const DoubleStorage& lhs, const DoubleStorage& rhs) {
      return !(lhs == rhs);
    }

    friend bool operator<(const DoubleStorage& lhs, const DoubleStorage& rhs) {
      return double{lhs} < double{rhs};
    }

    friend bool operator>(const DoubleStorage& lhs, const DoubleStorage& rhs) {
      return rhs < lhs;
    }

    friend bool operator<=(const DoubleStorage& lhs, const DoubleStorage& rhs) {
      return !(rhs < lhs);
    }

    friend bool operator>=(const DoubleStorage& lhs, const DoubleStorage& rhs) {
      return !(lhs < rhs);
    }

    alignas(4) std::array<char, sizeof(double)> v_;
  };

  // Internal constructors, allowing the simplify the implementation of Clone().
  explicit Value(absl::monostate);
  explicit Value(DoubleStorage storage);

  // A helper for static functions used for cloning a Value or a ValueView.
  class CloningHelper;

  absl::variant<absl::monostate,
                bool,
                int,
                DoubleStorage,
                std::string,
                BlobStorage,
                Dict,
                List>
      data_;
};

// Adapter so `Value::Dict` or `Value::List` can be directly passed to JSON
// serialization methods without having to clone the contents and transfer
// ownership of the clone to a `Value` wrapper object.
//
// Like `std::string_view` and `span<T>`, this adapter does NOT retain
// ownership. Any underlying object that is passed by reference (i.e.
// `std::string`, `Value::BlobStorage`, `Value::Dict`, `Value::List`, or
// `Value`) MUST remain live as long as there is a `ValueView` referencing it.
//
// While it might be nice to just use the `absl::variant` type directly, the
// need to use `std::reference_wrapper` makes it clunky. `absl::variant` and
// `std::reference_wrapper` both support implicit construction, but C++ only
// allows at most one user-defined conversion in an implicit conversion
// sequence. If this adapter and its implicit constructors did not exist,
// callers would need to use `std::ref` or `std::cref` to pass `Value::Dict` or
// `Value::List` to a function with a `ValueView` parameter.
class BASE_EXPORT GSL_POINTER ValueView {
 public:
  ValueView() = default;
  ValueView(bool value) : data_view_(value) {}
  template <typename T>
  ValueView(const T*) = delete;
  ValueView(int value) : data_view_(value) {}
  ValueView(double value)
      : data_view_(absl::in_place_type_t<Value::DoubleStorage>(), value) {}
  ValueView(std::string_view value) : data_view_(value) {}
  ValueView(const char* value) : ValueView(std::string_view(value)) {}
  ValueView(const std::string& value) : ValueView(std::string_view(value)) {}
  // Note: UTF-16 is intentionally not supported. ValueView is intended to be a
  // low-cost view abstraction, but Value internally represents strings as
  // UTF-8, so it would not be possible to implement this without allocating an
  // entirely new UTF-8 string.
  ValueView(const Value::BlobStorage& value) : data_view_(value) {}
  ValueView(const Value::Dict& value) : data_view_(value) {}
  ValueView(const Value::List& value) : data_view_(value) {}
  ValueView(const Value& value);

  // This is the only 'getter' method provided as `ValueView` is not intended
  // to be a general replacement of `Value`.
  template <typename Visitor>
  auto Visit(Visitor&& visitor) const {
    return absl::visit(std::forward<Visitor>(visitor), data_view_);
  }

  // Returns a clone of the underlying Value.
  Value ToValue() const;

 private:
  using ViewType =
      absl::variant<absl::monostate,
                    bool,
                    int,
                    Value::DoubleStorage,
                    std::string_view,
                    std::reference_wrapper<const Value::BlobStorage>,
                    std::reference_wrapper<const Value::Dict>,
                    std::reference_wrapper<const Value::List>>;

 public:
  using DoubleStorageForTest = Value::DoubleStorage;
  const ViewType& data_view_for_test() const { return data_view_; }

 private:
  ViewType data_view_;
};

// This interface is implemented by classes that know how to serialize
// Value objects.
class BASE_EXPORT ValueSerializer {
 public:
  virtual ~ValueSerializer();

  virtual bool Serialize(ValueView root) = 0;
};

// This interface is implemented by classes that know how to deserialize Value
// objects.
class BASE_EXPORT ValueDeserializer {
 public:
  virtual ~ValueDeserializer();

  // This method deserializes the subclass-specific format into a Value object.
  // If the return value is non-NULL, the caller takes ownership of returned
  // Value.
  //
  // If the return value is nullptr, and if `error_code` is non-nullptr,
  // `*error_code` will be set to an integer value representing the underlying
  // error. See "enum ErrorCode" below for more detail about the integer value.
  //
  // If `error_message` is non-nullptr, it will be filled in with a formatted
  // error message including the location of the error if appropriate.
  virtual std::unique_ptr<Value> Deserialize(int* error_code,
                                             std::string* error_message) = 0;

  // The integer-valued error codes form four groups:
  //  - The value 0 means no error.
  //  - Values between 1 and 999 inclusive mean an error in the data (i.e.
  //    content). The bytes being deserialized are not in the right format.
  //  - Values 1000 and above mean an error in the metadata (i.e. context). The
  //    file could not be read, the network is down, etc.
  //  - Negative values are reserved.
  //
  // These values are persisted to logs. Entries should not be renumbered and
  // numeric values should never be reused.
  enum ErrorCode {
    kErrorCodeNoError = 0,
    // kErrorCodeInvalidFormat is a generic error code for "the data is not in
    // the right format". Subclasses of ValueDeserializer may return other
    // values for more specific errors.
    kErrorCodeInvalidFormat = 1,
    // kErrorCodeFirstMetadataError is the minimum value (inclusive) of the
    // range of metadata errors.
    kErrorCodeFirstMetadataError = 1000,
  };

  // The `error_code` argument can be one of the ErrorCode values, but it is
  // not restricted to only being 0, 1 or 1000. Subclasses of ValueDeserializer
  // can define their own error code values.
  static inline bool ErrorCodeIsDataError(int error_code) {
    return (kErrorCodeInvalidFormat <= error_code) &&
           (error_code < kErrorCodeFirstMetadataError);
  }
};

// Stream operator so Values can be pretty printed by gtest.
BASE_EXPORT std::ostream& operator<<(std::ostream& out, const Value& value);
BASE_EXPORT std::ostream& operator<<(std::ostream& out,
                                     const Value::Dict& dict);
BASE_EXPORT std::ostream& operator<<(std::ostream& out,
                                     const Value::List& list);

// Stream operator so that enum class Types can be used in log statements.
BASE_EXPORT std::ostream& operator<<(std::ostream& out,
                                     const Value::Type& type);

}  // namespace base

#endif  // BASE_VALUES_H_