1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
base / win / scoped_safearray.h [blame]
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40284755): Remove this and spanify to fix the errors.
#pragma allow_unsafe_buffers
#endif
#ifndef BASE_WIN_SCOPED_SAFEARRAY_H_
#define BASE_WIN_SCOPED_SAFEARRAY_H_
#include <objbase.h>
#include <optional>
#include "base/base_export.h"
#include "base/check_op.h"
#include "base/memory/raw_ptr_exclusion.h"
#include "base/win/variant_conversions.h"
namespace base {
namespace win {
// Manages a Windows SAFEARRAY. This is a minimal wrapper that simply provides
// RAII semantics and does not duplicate the extensive functionality that
// CComSafeArray offers.
class BASE_EXPORT ScopedSafearray {
public:
// LockScope<VARTYPE> class for automatically managing the lifetime of a
// SAFEARRAY lock, and granting easy access to the underlying data either
// through random access or as an iterator.
// It is undefined behavior if the underlying SAFEARRAY is destroyed
// before the LockScope.
// LockScope implements std::iterator_traits as a random access iterator, so
// that LockScope is compatible with STL methods that require these traits.
template <VARTYPE ElementVartype>
class BASE_EXPORT LockScope final {
public:
// Type declarations to support std::iterator_traits
using iterator_category = std::random_access_iterator_tag;
using value_type =
typename internal::VariantConverter<ElementVartype>::Type;
using difference_type = ptrdiff_t;
using reference = value_type&;
using const_reference = const value_type&;
using pointer = value_type*;
using const_pointer = const value_type*;
LockScope() = default;
LockScope(LockScope<ElementVartype>&& other)
: safearray_(std::exchange(other.safearray_, nullptr)),
vartype_(std::exchange(other.vartype_, VT_EMPTY)),
array_(std::exchange(other.array_, nullptr)),
array_size_(std::exchange(other.array_size_, 0U)) {}
LockScope<ElementVartype>& operator=(LockScope<ElementVartype>&& other) {
DCHECK_NE(this, &other);
Reset();
safearray_ = std::exchange(other.safearray_, nullptr);
vartype_ = std::exchange(other.vartype_, VT_EMPTY);
array_ = std::exchange(other.array_, nullptr);
array_size_ = std::exchange(other.array_size_, 0U);
return *this;
}
LockScope(const LockScope&) = delete;
LockScope& operator=(const LockScope&) = delete;
~LockScope() { Reset(); }
VARTYPE Type() const { return vartype_; }
size_t size() const { return array_size_; }
pointer begin() { return array_; }
pointer end() { return array_ + array_size_; }
const_pointer begin() const { return array_; }
const_pointer end() const { return array_ + array_size_; }
pointer data() { return array_; }
const_pointer data() const { return array_; }
reference operator[](size_t index) { return at(index); }
const_reference operator[](size_t index) const { return at(index); }
reference at(size_t index) {
DCHECK_NE(array_, nullptr);
DCHECK_LT(index, array_size_);
return array_[index];
}
const_reference at(size_t index) const {
return const_cast<LockScope<ElementVartype>*>(this)->at(index);
}
private:
LockScope(SAFEARRAY* safearray,
VARTYPE vartype,
pointer array,
size_t array_size)
: safearray_(safearray),
vartype_(vartype),
array_(array),
array_size_(array_size) {}
void Reset() {
if (safearray_)
SafeArrayUnaccessData(safearray_);
safearray_ = nullptr;
vartype_ = VT_EMPTY;
array_ = nullptr;
array_size_ = 0U;
}
// RAW_PTR_EXCLUSION: Comes from the operating system and may have been
// laundered. If rewritten, it may generate an incorrect Dangling Pointer
// Detector error.
RAW_PTR_EXCLUSION SAFEARRAY* safearray_ = nullptr;
VARTYPE vartype_ = VT_EMPTY;
pointer array_ = nullptr;
size_t array_size_ = 0U;
friend class ScopedSafearray;
};
explicit ScopedSafearray(SAFEARRAY* safearray = nullptr)
: safearray_(safearray) {}
ScopedSafearray(const ScopedSafearray&) = delete;
ScopedSafearray& operator=(const ScopedSafearray&) = delete;
// Move constructor
ScopedSafearray(ScopedSafearray&& r) noexcept : safearray_(r.safearray_) {
r.safearray_ = nullptr;
}
// Move operator=. Allows assignment from a ScopedSafearray rvalue.
ScopedSafearray& operator=(ScopedSafearray&& rvalue) {
Reset(rvalue.Release());
return *this;
}
~ScopedSafearray() { Destroy(); }
// Creates a LockScope for accessing the contents of a
// single-dimensional SAFEARRAYs.
template <VARTYPE ElementVartype>
std::optional<LockScope<ElementVartype>> CreateLockScope() const {
if (!safearray_ || SafeArrayGetDim(safearray_) != 1)
return std::nullopt;
VARTYPE vartype;
HRESULT hr = SafeArrayGetVartype(safearray_, &vartype);
if (FAILED(hr) ||
!internal::VariantConverter<ElementVartype>::IsConvertibleTo(vartype)) {
return std::nullopt;
}
typename LockScope<ElementVartype>::pointer array = nullptr;
hr = SafeArrayAccessData(safearray_, reinterpret_cast<void**>(&array));
if (FAILED(hr))
return std::nullopt;
const size_t array_size = GetCount();
return LockScope<ElementVartype>(safearray_, vartype, array, array_size);
}
void Destroy() {
if (safearray_) {
HRESULT hr = SafeArrayDestroy(safearray_);
DCHECK_EQ(S_OK, hr);
safearray_ = nullptr;
}
}
// Give ScopedSafearray ownership over an already allocated SAFEARRAY or
// nullptr.
void Reset(SAFEARRAY* safearray = nullptr) {
if (safearray != safearray_) {
Destroy();
safearray_ = safearray;
}
}
// Releases ownership of the SAFEARRAY to the caller.
SAFEARRAY* Release() {
SAFEARRAY* safearray = safearray_;
safearray_ = nullptr;
return safearray;
}
// Retrieves the pointer address.
// Used to receive SAFEARRAYs as out arguments (and take ownership).
// This function releases any existing references because it will leak
// the existing ref otherwise.
// Usage: GetSafearray(safearray.Receive());
SAFEARRAY** Receive() {
Destroy();
return &safearray_;
}
// Returns the number of elements in a dimension of the array.
size_t GetCount(UINT dimension = 0) const {
DCHECK(safearray_);
// Initialize |lower| and |upper| so this method will return zero if either
// SafeArrayGetLBound or SafeArrayGetUBound returns failure because they
// only write to the output parameter when successful.
LONG lower = 0;
LONG upper = -1;
DCHECK_LT(dimension, SafeArrayGetDim(safearray_));
HRESULT hr = SafeArrayGetLBound(safearray_, dimension + 1, &lower);
DCHECK(SUCCEEDED(hr));
hr = SafeArrayGetUBound(safearray_, dimension + 1, &upper);
DCHECK(SUCCEEDED(hr));
LONG count = upper - lower + 1;
// SafeArrays may have negative lower bounds, so check for wraparound.
DCHECK_GT(count, 0);
return static_cast<size_t>(count);
}
// Returns the internal pointer.
SAFEARRAY* Get() const { return safearray_; }
// Forbid comparison of ScopedSafearray types. You should never have the same
// SAFEARRAY owned by two different scoped_ptrs.
bool operator==(const ScopedSafearray& safearray2) const = delete;
bool operator!=(const ScopedSafearray& safearray2) const = delete;
private:
// RAW_PTR_EXCLUSION: Like LockScope::safearray_, this comes from the
// operating system.
RAW_PTR_EXCLUSION SAFEARRAY* safearray_;
};
} // namespace win
} // namespace base
#endif // BASE_WIN_SCOPED_SAFEARRAY_H_