1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
cc / base / math_util.cc [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/base/math_util.h"
#include <algorithm>
#include <cmath>
#include <limits>
#if defined(ARCH_CPU_X86_FAMILY)
#include <xmmintrin.h>
#endif
#include "base/numerics/angle_conversions.h"
#include "base/trace_event/traced_value.h"
#include "base/values.h"
#include "ui/gfx/geometry/linear_gradient.h"
#include "ui/gfx/geometry/quad_f.h"
#include "ui/gfx/geometry/rect.h"
#include "ui/gfx/geometry/rect_conversions.h"
#include "ui/gfx/geometry/rect_f.h"
#include "ui/gfx/geometry/rrect_f.h"
#include "ui/gfx/geometry/transform.h"
#include "ui/gfx/geometry/vector2d_conversions.h"
#include "ui/gfx/geometry/vector2d_f.h"
#include "ui/gfx/geometry/vector3d_f.h"
namespace cc {
static HomogeneousCoordinate ProjectHomogeneousPoint(
const gfx::Transform& transform,
const gfx::PointF& p) {
SkScalar m22 = transform.rc(2, 2);
// In this case, the layer we are trying to project onto is perpendicular to
// ray (point p and z-axis direction) that we are trying to project. This
// happens when the layer is rotated so that it is infinitesimally thin, or
// when it is co-planar with the camera origin -- i.e. when the layer is
// invisible anyway. Return an invalid point.
if (!std::isnormal(m22)) {
return HomogeneousCoordinate(0.0, 0.0, 0.0, 0.0);
}
SkScalar z = -(transform.rc(2, 0) * p.x() + transform.rc(2, 1) * p.y() +
transform.rc(2, 3)) /
m22;
// Same underlying condition as the previous early return.
if (!std::isfinite(z)) {
return HomogeneousCoordinate(0.0, 0.0, 0.0, 0.0);
}
HomogeneousCoordinate result(p.x(), p.y(), z, 1.0);
transform.TransformVector4(result.vec.data());
return result;
}
static HomogeneousCoordinate ProjectHomogeneousPoint(
const gfx::Transform& transform,
const gfx::PointF& p,
bool* clipped) {
HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p);
*clipped = h.w() <= 0;
return h;
}
static HomogeneousCoordinate MapHomogeneousPoint(
const gfx::Transform& transform,
const gfx::PointF& p) {
HomogeneousCoordinate result(p.x(), p.y(), 0.0, 1.0);
transform.TransformVector4(result.vec.data());
return result;
}
namespace {
// This is the tolerance for detecting an eyepoint-aligned edge.
const float kStationaryPointEpsilon = 0.00001f;
} // namespace
static void homogeneousLimitAtZero(SkScalar a1,
SkScalar w1,
SkScalar a2,
SkScalar w2,
float t,
float* limit) {
if (std::abs(a1 * w2 / w1 / a2 - 1.0f) > kStationaryPointEpsilon) {
// We are going to explode towards an infinity, but we choose the one that
// corresponds to the one on the positive side of w.
if (((1.0f - t) * a1 + t * a2) > 0) {
*limit = HomogeneousCoordinate::kInfiniteCoordinate;
} else {
*limit = -HomogeneousCoordinate::kInfiniteCoordinate;
}
} else {
*limit = a1 / w1; // (== a2 / w2) && == (1.0f - t) * a1 / w1 + t * a2 / w2
}
}
static gfx::PointF ComputeClippedCartesianPoint2dForEdge(
const HomogeneousCoordinate& h1,
const HomogeneousCoordinate& h2) {
// Points h1 and h2 form a line in 4d, and any point on that line can be
// represented as an interpolation between h1 and h2:
// p = (1-t) h1 + (t) h2
//
// We want to compute the limit in 2 space of
// x = ((1-t) h1.x + (t) h2.x) / ((1-t) h1.w + (t) h2.w)
// y = ((1-t) h1.y + (t) h2.y) / ((1-t) h1.w + (t) h2.w)
// as ((1-t) h1.w + (t) h2.w) -> 0+
// The only answers to this are h1.x/h1.w == h2.x/h2.w, +/- infinity
// i.e., either the coordinate is not moving, or is trending to one
// infinity or the other.
// This assertion isn't really as strong as it looks because
// std::isfinite(h1.w()) or std::isfinite(h2.w()) might not be true
// (and they could be NaN).
// TODO(crbug.com/40186138): We should be able to assert something
// stronger here, and avoid dependencies on undefined floating point
// behavior.
DCHECK_NE(h1.w() <= 0, h2.w() <= 0);
float t = h1.w() / (h1.w() - h2.w());
float x;
float y;
homogeneousLimitAtZero(h1.x(), h1.w(), h2.x(), h2.w(), t, &x);
homogeneousLimitAtZero(h1.y(), h1.w(), h2.y(), h2.w(), t, &y);
return gfx::PointF(x, y);
}
static void homogeneousLimitNearZero(SkScalar a1,
SkScalar w1,
SkScalar a2,
SkScalar w2,
float t,
float* limit) {
if (std::abs(a1 * w2 / w1 / a2 - 1.0f) > kStationaryPointEpsilon) {
// t has been computed so that w is near but not at zero.
*limit = ((1.0f - t) * a1 + t * a2) / ((1.0f - t) * w1 + t * w2);
// std::abs(*limit) should now be somewhere near
// HomogeneousCoordinate::kInfiniteCoordinate, preferably smaller than it,
// but there are edge cases where it will be larger (for example, if the
// point where a crosses 0 is very close to the point where w crosses 0),
// so it's hard to DCHECK() that this is the case.
} else {
*limit = a1 / w1; // (== a2 / w2) && == (1.0f - t) * a1 / w1 + t * a2 / w2
}
}
static gfx::Point3F ComputeClippedCartesianPoint3dForEdge(
const HomogeneousCoordinate& h1,
const HomogeneousCoordinate& h2) {
// Points h1 and h2 form a line in 4d, and any point on that line can be
// represented as an interpolation between h1 and h2:
// p = (1-t) h1 + (t) h2
//
// We want to compute the limit in 3 space of
// x = ((1-t) h1.x + (t) h2.x) / ((1-t) h1.w + (t) h2.w)
// y = ((1-t) h1.y + (t) h2.y) / ((1-t) h1.w + (t) h2.w)
// z = ((1-t) h1.z + (t) h2.z) / ((1-t) h1.w + (t) h2.w)
// as ((1-t) h1.w + (t) h2.w) -> 0+
// The only answers to this are h1.x/h1.w == h2.x/h2.w, +/- infinity
// i.e., either the coordinate is not moving, or is trending to one
// infinity or the other.
// When we clamp to HomogeneousCoordinate::kInfiniteCoordinate we want
// to keep the result in the correct plane, which we do by computing
// a t that will result in the largest (in absolute value) of x, y, or
// z being HomogeneousCoordinate::kInfiniteCoordinate
// This assertion isn't really as strong as it looks because
// std::isfinite(h1.w()) or std::isfinite(h2.w()) might not be true
// (and they could be NaN).
// TODO(crbug.com/40186138): We should be able to assert something
// stronger here, and avoid dependencies on undefined floating point
// behavior.
DCHECK_NE(h1.w() <= 0, h2.w() <= 0);
float w_diff = h1.w() - h2.w();
float t = h1.w() / w_diff;
float max_numerator = std::max({std::abs((1.0f - t) * h1.x() + t * h2.x()),
std::abs((1.0f - t) * h1.y() + t * h2.y()),
std::abs((1.0f - t) * h1.z() + t * h2.z())});
// Shift t away from the point where w is zero, far enough so that the
// largest of the resulting x, y, and z will be about
// kInfiniteCoordinate. Add an extra epsilon() / 2.0 so that there's
// always enough movement (in case t_shift is very small, which it
// often is).
const float t_shift =
max_numerator / w_diff / HomogeneousCoordinate::kInfiniteCoordinate;
constexpr float half_epsilon = std::numeric_limits<float>::epsilon() / 2.0f;
DCHECK_EQ(w_diff > 0, t_shift > 0);
if (w_diff > 0) {
t = std::max(0.0f, t - (t_shift + half_epsilon));
} else {
t = std::min(1.0f, t - (t_shift - half_epsilon));
}
float x;
float y;
float z;
homogeneousLimitNearZero(h1.x(), h1.w(), h2.x(), h2.w(), t, &x);
homogeneousLimitNearZero(h1.y(), h1.w(), h2.y(), h2.w(), t, &y);
homogeneousLimitNearZero(h1.z(), h1.w(), h2.z(), h2.w(), t, &z);
return gfx::Point3F(x, y, z);
}
static inline void ExpandBoundsToIncludePoint(float* xmin,
float* xmax,
float* ymin,
float* ymax,
const gfx::PointF& p) {
*xmin = std::min(p.x(), *xmin);
*xmax = std::max(p.x(), *xmax);
*ymin = std::min(p.y(), *ymin);
*ymax = std::max(p.y(), *ymax);
}
static inline bool IsNearlyTheSame(float f, float g) {
// The idea behind this is to use this fraction of the larger of the
// two numbers as the limit of the difference. This breaks down near
// zero, so we reuse this as the minimum absolute size we will use
// for the base of the scale too.
static const float epsilon_scale = 0.00001f;
return std::abs(f - g) <
epsilon_scale * std::max({std::abs(f), std::abs(g), epsilon_scale});
}
static inline bool IsNearlyTheSame(const gfx::PointF& lhs,
const gfx::PointF& rhs) {
return IsNearlyTheSame(lhs.x(), rhs.x()) && IsNearlyTheSame(lhs.y(), rhs.y());
}
static inline bool IsNearlyTheSame(const gfx::Point3F& lhs,
const gfx::Point3F& rhs) {
return IsNearlyTheSame(lhs.x(), rhs.x()) &&
IsNearlyTheSame(lhs.y(), rhs.y()) && IsNearlyTheSame(lhs.z(), rhs.z());
}
static inline void AddVertexToClippedQuad3d(
const gfx::Point3F& new_vertex,
base::span<gfx::Point3F, 6> clipped_quad,
int* num_vertices_in_clipped_quad,
bool* need_to_clamp) {
CHECK(num_vertices_in_clipped_quad);
CHECK_GE(*num_vertices_in_clipped_quad, 0);
if (*num_vertices_in_clipped_quad > 0 &&
IsNearlyTheSame(
clipped_quad[static_cast<size_t>(*num_vertices_in_clipped_quad - 1)],
new_vertex)) {
return;
}
CHECK_LT(*num_vertices_in_clipped_quad, 6);
clipped_quad[static_cast<size_t>(*num_vertices_in_clipped_quad)] = new_vertex;
++*num_vertices_in_clipped_quad;
if (new_vertex.x() < -HomogeneousCoordinate::kInfiniteCoordinate ||
new_vertex.x() > HomogeneousCoordinate::kInfiniteCoordinate ||
new_vertex.y() < -HomogeneousCoordinate::kInfiniteCoordinate ||
new_vertex.y() > HomogeneousCoordinate::kInfiniteCoordinate ||
new_vertex.z() < -HomogeneousCoordinate::kInfiniteCoordinate ||
new_vertex.z() > HomogeneousCoordinate::kInfiniteCoordinate) {
*need_to_clamp = true;
}
}
gfx::Rect MathUtil::MapEnclosingClippedRect(const gfx::Transform& transform,
const gfx::Rect& src_rect) {
return MapEnclosingClippedRectIgnoringError(transform, src_rect, 0.f);
}
gfx::Rect MathUtil::MapEnclosingClippedRectIgnoringError(
const gfx::Transform& transform,
const gfx::Rect& src_rect,
float ignore_error) {
if (transform.IsIdentityOrIntegerTranslation())
return src_rect + gfx::ToFlooredVector2d(transform.To2dTranslation());
gfx::RectF mapped_rect = MapClippedRect(transform, gfx::RectF(src_rect));
return gfx::ToEnclosingRectIgnoringError(mapped_rect, ignore_error);
}
gfx::RectF MathUtil::MapClippedRect(const gfx::Transform& transform,
const gfx::RectF& src_rect) {
if (transform.IsIdentityOrTranslation())
return src_rect + transform.To2dTranslation();
// Apply the transform, but retain the result in homogeneous coordinates.
HomogeneousCoordinate hc0 = MapHomogeneousPoint(transform, src_rect.origin());
HomogeneousCoordinate hc1 =
MapHomogeneousPoint(transform, src_rect.top_right());
HomogeneousCoordinate hc2 =
MapHomogeneousPoint(transform, src_rect.bottom_right());
HomogeneousCoordinate hc3 =
MapHomogeneousPoint(transform, src_rect.bottom_left());
return ComputeEnclosingClippedRect(hc0, hc1, hc2, hc3);
}
gfx::Rect MathUtil::ProjectEnclosingClippedRect(const gfx::Transform& transform,
const gfx::Rect& src_rect) {
if (transform.IsIdentityOrIntegerTranslation())
return src_rect + gfx::ToFlooredVector2d(transform.To2dTranslation());
gfx::RectF projected_rect =
ProjectClippedRect(transform, gfx::RectF(src_rect));
// gfx::ToEnclosingRect crashes if called on a RectF with any NaN coordinate.
if (std::isnan(projected_rect.x()) || std::isnan(projected_rect.y()) ||
std::isnan(projected_rect.right()) || std::isnan(projected_rect.bottom()))
return gfx::Rect();
return gfx::ToEnclosingRect(projected_rect);
}
gfx::RectF MathUtil::ProjectClippedRect(const gfx::Transform& transform,
const gfx::RectF& src_rect) {
if (transform.IsIdentityOrTranslation())
return src_rect + transform.To2dTranslation();
// Perform the projection, but retain the result in homogeneous coordinates.
gfx::QuadF q = gfx::QuadF(src_rect);
HomogeneousCoordinate h1 = ProjectHomogeneousPoint(transform, q.p1());
HomogeneousCoordinate h2 = ProjectHomogeneousPoint(transform, q.p2());
HomogeneousCoordinate h3 = ProjectHomogeneousPoint(transform, q.p3());
HomogeneousCoordinate h4 = ProjectHomogeneousPoint(transform, q.p4());
return ComputeEnclosingClippedRect(h1, h2, h3, h4);
}
gfx::QuadF MathUtil::InverseMapQuadToLocalSpace(
const gfx::Transform& device_transform,
const gfx::QuadF& device_quad) {
DCHECK(device_transform.IsFlat());
gfx::Transform inverse_device_transform =
device_transform.GetCheckedInverse();
bool clipped = false;
gfx::QuadF local_quad =
MathUtil::MapQuad(inverse_device_transform, device_quad, &clipped);
// We should not DCHECK(!clipped) here, because anti-aliasing inflation may
// cause device_quad to become clipped. To our knowledge this scenario does
// not need to be handled differently than the unclipped case.
return local_quad;
}
gfx::Rect MathUtil::MapEnclosedRectWith2dAxisAlignedTransform(
const gfx::Transform& transform,
const gfx::Rect& rect) {
DCHECK(transform.Preserves2dAxisAlignment());
DCHECK_GT(transform.rc(3, 3), 0);
DCHECK(std::isnormal(transform.rc(3, 3)));
if (transform.IsIdentityOrIntegerTranslation())
return rect + gfx::ToFlooredVector2d(transform.To2dTranslation());
if (transform.IsIdentityOrTranslation()) {
gfx::Vector2dF offset = transform.To2dTranslation();
return gfx::ToEnclosedRect(gfx::RectF(rect) + offset);
}
HomogeneousCoordinate hc0 =
MapHomogeneousPoint(transform, gfx::PointF(rect.origin()));
HomogeneousCoordinate hc1 =
MapHomogeneousPoint(transform, gfx::PointF(rect.bottom_right()));
DCHECK(!hc0.ShouldBeClipped());
DCHECK(!hc1.ShouldBeClipped());
gfx::PointF top_left(hc0.CartesianPoint2d());
gfx::PointF bottom_right(hc1.CartesianPoint2d());
return gfx::ToEnclosedRect(gfx::BoundingRect(top_left, bottom_right));
}
bool MathUtil::MapClippedQuad3d(const gfx::Transform& transform,
const gfx::QuadF& src_quad,
base::span<gfx::Point3F, 6> clipped_quad,
int* num_vertices_in_clipped_quad) {
// This is different from the 2D version because, when we clamp
// coordinates to [-HomogeneousCoordinate::kInfiniteCoordinate,
// HomogeneousCoordinate::kInfiniteCoordinate], we need to do the
// clamping while keeping the points coplanar.
HomogeneousCoordinate h1 = MapHomogeneousPoint(transform, src_quad.p1());
HomogeneousCoordinate h2 = MapHomogeneousPoint(transform, src_quad.p2());
HomogeneousCoordinate h3 = MapHomogeneousPoint(transform, src_quad.p3());
HomogeneousCoordinate h4 = MapHomogeneousPoint(transform, src_quad.p4());
// The order of adding the vertices to the array is chosen so that
// clockwise / counter-clockwise orientation is retained.
*num_vertices_in_clipped_quad = 0;
bool need_to_clamp = false;
if (!h1.ShouldBeClipped()) {
AddVertexToClippedQuad3d(h1.CartesianPoint3dUnclamped(), clipped_quad,
num_vertices_in_clipped_quad, &need_to_clamp);
}
if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped()) {
AddVertexToClippedQuad3d(ComputeClippedCartesianPoint3dForEdge(h1, h2),
clipped_quad, num_vertices_in_clipped_quad,
&need_to_clamp);
}
if (!h2.ShouldBeClipped()) {
AddVertexToClippedQuad3d(h2.CartesianPoint3dUnclamped(), clipped_quad,
num_vertices_in_clipped_quad, &need_to_clamp);
}
if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped()) {
AddVertexToClippedQuad3d(ComputeClippedCartesianPoint3dForEdge(h2, h3),
clipped_quad, num_vertices_in_clipped_quad,
&need_to_clamp);
}
if (!h3.ShouldBeClipped()) {
AddVertexToClippedQuad3d(h3.CartesianPoint3dUnclamped(), clipped_quad,
num_vertices_in_clipped_quad, &need_to_clamp);
}
if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped()) {
AddVertexToClippedQuad3d(ComputeClippedCartesianPoint3dForEdge(h3, h4),
clipped_quad, num_vertices_in_clipped_quad,
&need_to_clamp);
}
if (!h4.ShouldBeClipped()) {
AddVertexToClippedQuad3d(h4.CartesianPoint3dUnclamped(), clipped_quad,
num_vertices_in_clipped_quad, &need_to_clamp);
}
if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped()) {
AddVertexToClippedQuad3d(ComputeClippedCartesianPoint3dForEdge(h4, h1),
clipped_quad, num_vertices_in_clipped_quad,
&need_to_clamp);
}
if (*num_vertices_in_clipped_quad > 2 &&
IsNearlyTheSame(clipped_quad[0],
clipped_quad[static_cast<size_t>(
*num_vertices_in_clipped_quad - 1)])) {
--*num_vertices_in_clipped_quad;
}
if (need_to_clamp) {
// Some of the values need to be clamped, but we need to keep them
// coplanar while doing so.
// First, build a normal vector to the plane by averaging the
// cross products of adjacent edges.
gfx::Vector3dF normal(0.0f, 0.0f, 0.0f);
if (*num_vertices_in_clipped_quad > 2) {
gfx::Vector3dF loop_vector =
clipped_quad[0] -
clipped_quad[static_cast<size_t>(*num_vertices_in_clipped_quad - 1)];
gfx::Vector3dF prev_vector(loop_vector);
for (size_t i = 1; i < static_cast<size_t>(*num_vertices_in_clipped_quad);
++i) {
gfx::Vector3dF cur_vector = clipped_quad[i] - clipped_quad[i - 1];
normal += CrossProduct(prev_vector, cur_vector);
prev_vector = cur_vector;
}
normal += CrossProduct(prev_vector, loop_vector);
}
bool clamp_by_points = false;
float length = normal.Length();
if (std::isnormal(length)) { // exclude 0, denormals, +/- inf, NaN
normal.InvScale(length);
// Find the vector to the point in the plane closest to (0,0,0).
gfx::Vector3dF shortest_from_zero(normal);
shortest_from_zero.Scale(
DotProduct(normal, clipped_quad[0] - gfx::Point3F(0.0f, 0.0f, 0.0f)));
// Find the the point in the plane that is at x=0 and y=0
float z_at_xy_zero = 0.0f;
if (shortest_from_zero.x() == 0.0f && shortest_from_zero.y() == 0.0f) {
z_at_xy_zero = shortest_from_zero.z();
} else if (shortest_from_zero.z() != 0) {
// Compute the vector v pointing from the shortest_from_zero
// point to the point with x=0 and y=0. If both v and normal
// are projected into the x/y plane, they should point in
// opposite directions.
gfx::Vector3dF v = CrossProduct(
normal, CrossProduct(gfx::Vector3dF(0.0f, 0.0f, 1.0f), normal));
DCHECK(std::abs(normal.x() * v.y() - normal.y() * v.x()) < 0.00001f);
// It doesn't matter whether we use x or y, unless one of them
// is zero or very close to it.
float r = std::abs(v.x()) > std::abs(v.y())
? shortest_from_zero.x() / v.x()
: shortest_from_zero.y() / v.y();
z_at_xy_zero = shortest_from_zero.z() - v.z() * r;
} else {
// Plane is parallel to the z axis. This means it's not
// visible, so just fall back to clamping by points.
clamp_by_points = true;
}
if (!clamp_by_points) {
// If z_at_xy_zero is more than 3/4 of kInfiniteCoordinate
// distance from zero, move everything in the z axis so
// z_at_xy_zero is that distance from zero, so that we don't end
// up clamping away the parts that fit within what's likely to
// be the visible area.
constexpr float max_distance =
0.75 * HomogeneousCoordinate::kInfiniteCoordinate;
if (std::abs(z_at_xy_zero) > max_distance) {
float z_delta;
if (z_at_xy_zero > 0) {
z_delta = max_distance - z_at_xy_zero;
} else {
z_delta = -max_distance - z_at_xy_zero;
}
for (size_t i = 0;
i < static_cast<size_t>(*num_vertices_in_clipped_quad); ++i) {
clipped_quad[i].set_z(clipped_quad[i].z() + z_delta);
}
z_at_xy_zero += z_delta;
}
// Move all the points towards (0, 0, z_at_xy_zero) until all
// their coordinates are less than kInfiniteCoordinate.
for (size_t i = 0;
i < static_cast<size_t>(*num_vertices_in_clipped_quad); ++i) {
gfx::Point3F& point = clipped_quad[i];
float t = 1.0f;
float x_abs = std::abs(point.x());
if (x_abs > HomogeneousCoordinate::kInfiniteCoordinate) {
t = std::min(t, HomogeneousCoordinate::kInfiniteCoordinate / x_abs);
}
float y_abs = std::abs(point.y());
if (y_abs > HomogeneousCoordinate::kInfiniteCoordinate) {
t = std::min(t, HomogeneousCoordinate::kInfiniteCoordinate / y_abs);
}
float z = point.z();
if (std::abs(z) > HomogeneousCoordinate::kInfiniteCoordinate) {
// From the clamping to max_distance above, we should have
// made std::abs(z_at_xy_zero) < kInfiniteCoordinate.
// However, if it started off very large we might not have.
float z_at_xy_zero_clamped =
std::min(float{HomogeneousCoordinate::kInfiniteCoordinate},
std::max(-HomogeneousCoordinate::kInfiniteCoordinate,
z_at_xy_zero));
float z_offset = z - z_at_xy_zero_clamped;
float z_space =
(z > 0 ? HomogeneousCoordinate::kInfiniteCoordinate
: -HomogeneousCoordinate::kInfiniteCoordinate) -
z_at_xy_zero_clamped;
DCHECK_NE(z_offset, 0.0f);
DCHECK_NE(z_space, 0.0f);
DCHECK_EQ(z_offset > 0, z_space > 0);
t = std::min(t, z_space / z_offset);
}
if (t != 1.0f) {
DCHECK(0.0f <= t && t < 1.0f);
point.set_x(t * point.x());
point.set_y(t * point.y());
point.set_z((1.0f - t) * z_at_xy_zero + t * point.z());
}
}
}
} else {
// Our points were colinear, so there's no plane to maintain.
clamp_by_points = true;
}
if (clamp_by_points) {
// Just clamp each point separately in each axis, just like we do
// for 2D.
for (size_t i = 0; i < static_cast<size_t>(*num_vertices_in_clipped_quad);
++i) {
gfx::Point3F& point = clipped_quad[i];
point.set_x(
std::clamp(point.x(), -HomogeneousCoordinate::kInfiniteCoordinate,
float{HomogeneousCoordinate::kInfiniteCoordinate}));
point.set_y(
std::clamp(point.y(), -HomogeneousCoordinate::kInfiniteCoordinate,
float{HomogeneousCoordinate::kInfiniteCoordinate}));
point.set_z(
std::clamp(point.z(), -HomogeneousCoordinate::kInfiniteCoordinate,
float{HomogeneousCoordinate::kInfiniteCoordinate}));
}
}
}
DCHECK_LE(*num_vertices_in_clipped_quad, 6);
return *num_vertices_in_clipped_quad >= 4;
}
gfx::RectF MathUtil::ComputeEnclosingRectOfVertices(
base::span<const gfx::PointF> vertices) {
if (vertices.size() < 2) {
return gfx::RectF();
}
float xmin = std::numeric_limits<float>::max();
float xmax = -std::numeric_limits<float>::max();
float ymin = std::numeric_limits<float>::max();
float ymax = -std::numeric_limits<float>::max();
for (auto& vertex : vertices) {
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax, vertex);
}
return gfx::RectF(gfx::PointF(xmin, ymin),
gfx::SizeF(xmax - xmin, ymax - ymin));
}
gfx::RectF MathUtil::ComputeEnclosingClippedRect(
const HomogeneousCoordinate& h1,
const HomogeneousCoordinate& h2,
const HomogeneousCoordinate& h3,
const HomogeneousCoordinate& h4) {
// This function performs clipping as necessary and computes the enclosing 2d
// gfx::RectF of the vertices. Doing these two steps simultaneously allows us
// to avoid the overhead of storing an unknown number of clipped vertices.
// If no vertices on the quad are clipped, then we can simply return the
// enclosing rect directly.
bool something_clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
h3.ShouldBeClipped() || h4.ShouldBeClipped();
if (!something_clipped) {
gfx::QuadF mapped_quad = gfx::QuadF(h1.CartesianPoint2d(),
h2.CartesianPoint2d(),
h3.CartesianPoint2d(),
h4.CartesianPoint2d());
return mapped_quad.BoundingBox();
}
bool everything_clipped = h1.ShouldBeClipped() && h2.ShouldBeClipped() &&
h3.ShouldBeClipped() && h4.ShouldBeClipped();
if (everything_clipped)
return gfx::RectF();
float xmin = std::numeric_limits<float>::max();
float xmax = -std::numeric_limits<float>::max();
float ymin = std::numeric_limits<float>::max();
float ymax = -std::numeric_limits<float>::max();
if (!h1.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
h1.CartesianPoint2d());
if (h1.ShouldBeClipped() ^ h2.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
ComputeClippedCartesianPoint2dForEdge(h1, h2));
if (!h2.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
h2.CartesianPoint2d());
if (h2.ShouldBeClipped() ^ h3.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
ComputeClippedCartesianPoint2dForEdge(h2, h3));
if (!h3.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
h3.CartesianPoint2d());
if (h3.ShouldBeClipped() ^ h4.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
ComputeClippedCartesianPoint2dForEdge(h3, h4));
if (!h4.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
h4.CartesianPoint2d());
if (h4.ShouldBeClipped() ^ h1.ShouldBeClipped())
ExpandBoundsToIncludePoint(&xmin, &xmax, &ymin, &ymax,
ComputeClippedCartesianPoint2dForEdge(h4, h1));
return gfx::RectF(gfx::PointF(xmin, ymin),
gfx::SizeF(xmax - xmin, ymax - ymin));
}
gfx::QuadF MathUtil::MapQuad(const gfx::Transform& transform,
const gfx::QuadF& q,
bool* clipped) {
if (transform.IsIdentityOrTranslation()) {
gfx::QuadF mapped_quad(q);
mapped_quad += transform.To2dTranslation();
*clipped = false;
return mapped_quad;
}
HomogeneousCoordinate h1 = MapHomogeneousPoint(transform, q.p1());
HomogeneousCoordinate h2 = MapHomogeneousPoint(transform, q.p2());
HomogeneousCoordinate h3 = MapHomogeneousPoint(transform, q.p3());
HomogeneousCoordinate h4 = MapHomogeneousPoint(transform, q.p4());
*clipped = h1.ShouldBeClipped() || h2.ShouldBeClipped() ||
h3.ShouldBeClipped() || h4.ShouldBeClipped();
// Result will be invalid if clipped == true. But, compute it anyway just in
// case, to emulate existing behavior.
return gfx::QuadF(h1.CartesianPoint2d(),
h2.CartesianPoint2d(),
h3.CartesianPoint2d(),
h4.CartesianPoint2d());
}
gfx::PointF MathUtil::MapPoint(const gfx::Transform& transform,
const gfx::PointF& p,
bool* clipped) {
HomogeneousCoordinate h = MapHomogeneousPoint(transform, p);
if (h.w() > 0) {
*clipped = false;
return h.CartesianPoint2d();
}
// The cartesian coordinates will be invalid after dividing by w.
*clipped = true;
// Avoid dividing by w if w == 0.
if (!h.w())
return gfx::PointF();
// This return value will be invalid because clipped == true, but (1) users of
// this code should be ignoring the return value when clipped == true anyway,
// and (2) this behavior is more consistent with existing behavior of WebKit
// transforms if the user really does not ignore the return value.
return h.CartesianPoint2d();
}
gfx::PointF MathUtil::ProjectPoint(const gfx::Transform& transform,
const gfx::PointF& p,
bool* clipped) {
HomogeneousCoordinate h = ProjectHomogeneousPoint(transform, p, clipped);
// Avoid dividing by w if w == 0.
if (!h.w())
return gfx::PointF();
// This return value will be invalid if clipped == true, but (1) users of
// this code should be ignoring the return value when clipped == true anyway,
// and (2) this behavior is more consistent with existing behavior of WebKit
// transforms if the user really does not ignore the return value.
return h.CartesianPoint2d();
}
gfx::RectF MathUtil::ScaleRectProportional(const gfx::RectF& input_outer_rect,
const gfx::RectF& scale_outer_rect,
const gfx::RectF& scale_inner_rect) {
gfx::RectF output_inner_rect = input_outer_rect;
float scale_rect_to_input_scale_x =
scale_outer_rect.width() / input_outer_rect.width();
float scale_rect_to_input_scale_y =
scale_outer_rect.height() / input_outer_rect.height();
gfx::Vector2dF top_left_diff =
scale_inner_rect.origin() - scale_outer_rect.origin();
gfx::Vector2dF bottom_right_diff =
scale_inner_rect.bottom_right() - scale_outer_rect.bottom_right();
output_inner_rect.Inset(
gfx::InsetsF::TLBR(top_left_diff.y() / scale_rect_to_input_scale_y,
top_left_diff.x() / scale_rect_to_input_scale_x,
-bottom_right_diff.y() / scale_rect_to_input_scale_y,
-bottom_right_diff.x() / scale_rect_to_input_scale_x));
return output_inner_rect;
}
float MathUtil::SmallestAngleBetweenVectors(const gfx::Vector2dF& v1,
const gfx::Vector2dF& v2) {
double dot_product = gfx::DotProduct(v1, v2) / v1.Length() / v2.Length();
// Clamp to compensate for rounding errors.
dot_product = std::clamp(dot_product, -1.0, 1.0);
return static_cast<float>(base::RadToDeg(std::acos(dot_product)));
}
gfx::Vector2dF MathUtil::ProjectVector(const gfx::Vector2dF& source,
const gfx::Vector2dF& destination) {
float projected_length =
gfx::DotProduct(source, destination) / destination.LengthSquared();
return gfx::Vector2dF(projected_length * destination.x(),
projected_length * destination.y());
}
bool MathUtil::FromValue(const base::Value* raw_value, gfx::Rect* out_rect) {
if (!raw_value->is_list())
return false;
const base::Value::List& list = raw_value->GetList();
if (list.size() != 4)
return false;
for (const auto& val : list) {
if (!val.is_int()) {
return false;
}
}
int x = list[0].GetInt();
int y = list[1].GetInt();
int w = list[2].GetInt();
int h = list[3].GetInt();
*out_rect = gfx::Rect(x, y, w, h);
return true;
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::Size& s,
base::trace_event::TracedValue* res) {
res->BeginDictionary(name);
res->SetDouble("width", s.width());
res->SetDouble("height", s.height());
res->EndDictionary();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::SizeF& s,
base::trace_event::TracedValue* res) {
res->BeginDictionary(name);
res->SetDouble("width", s.width());
res->SetDouble("height", s.height());
res->EndDictionary();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::Rect& r,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendInteger(r.x());
res->AppendInteger(r.y());
res->AppendInteger(r.width());
res->AppendInteger(r.height());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::Point& pt,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendInteger(pt.x());
res->AppendInteger(pt.y());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::PointF& pt,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendDouble(pt.x());
res->AppendDouble(pt.y());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::Point3F& pt,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendDouble(pt.x());
res->AppendDouble(pt.y());
res->AppendDouble(pt.z());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::Vector2d& v,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendInteger(v.x());
res->AppendInteger(v.y());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::Vector2dF& v,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendDouble(v.x());
res->AppendDouble(v.y());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::QuadF& q,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendDouble(q.p1().x());
res->AppendDouble(q.p1().y());
res->AppendDouble(q.p2().x());
res->AppendDouble(q.p2().y());
res->AppendDouble(q.p3().x());
res->AppendDouble(q.p3().y());
res->AppendDouble(q.p4().x());
res->AppendDouble(q.p4().y());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::RectF& rect,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendDouble(rect.x());
res->AppendDouble(rect.y());
res->AppendDouble(rect.width());
res->AppendDouble(rect.height());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::Transform& transform,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
for (int row = 0; row < 4; ++row) {
for (int col = 0; col < 4; ++col)
res->AppendDouble(transform.rc(row, col));
}
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::BoxF& box,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendInteger(box.x());
res->AppendInteger(box.y());
res->AppendInteger(box.z());
res->AppendInteger(box.width());
res->AppendInteger(box.height());
res->AppendInteger(box.depth());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::RRectF& rect,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendDouble(rect.rect().x());
res->AppendDouble(rect.rect().y());
res->AppendDouble(rect.rect().width());
res->AppendDouble(rect.rect().height());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperLeft).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperLeft).y());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperRight).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperRight).y());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerRight).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerRight).y());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerLeft).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerLeft).y());
res->EndArray();
}
void MathUtil::AddCornerRadiiToTracedValue(
const char* name,
const gfx::RRectF& rect,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperLeft).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperLeft).y());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperRight).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kUpperRight).y());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerRight).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerRight).y());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerLeft).x());
res->AppendDouble(rect.GetCornerRadii(gfx::RRectF::Corner::kLowerLeft).y());
res->EndArray();
}
void MathUtil::AddToTracedValue(const char* name,
const gfx::LinearGradient& gradient,
base::trace_event::TracedValue* res) {
res->BeginArray(name);
res->AppendInteger(gradient.angle());
res->AppendInteger(gradient.step_count());
for (size_t i = 0; i < gradient.step_count(); i++) {
res->AppendDouble(gradient.steps()[i].fraction);
res->AppendInteger(gradient.steps()[i].alpha);
}
res->EndArray();
}
double MathUtil::AsDoubleSafely(double value) {
return std::min(value, std::numeric_limits<double>::max());
}
float MathUtil::AsFloatSafely(float value) {
return std::min(value, std::numeric_limits<float>::max());
}
gfx::Vector3dF MathUtil::GetXAxis(const gfx::Transform& transform) {
if (transform.IsScaleOrTranslation()) {
return gfx::Vector3dF(transform.To2dScale().x(), 0, 0);
}
return gfx::Vector3dF(transform.rc(0, 0), transform.rc(1, 0),
transform.rc(2, 0));
}
gfx::Vector3dF MathUtil::GetYAxis(const gfx::Transform& transform) {
if (transform.IsScaleOrTranslation()) {
return gfx::Vector3dF(0, transform.To2dScale().y(), 0);
}
return gfx::Vector3dF(transform.rc(0, 1), transform.rc(1, 1),
transform.rc(2, 1));
}
ScopedSubnormalFloatDisabler::ScopedSubnormalFloatDisabler() {
#if defined(ARCH_CPU_X86_FAMILY)
// Turn on "subnormals are zero" and "flush to zero" CSR flags.
orig_state_ = _mm_getcsr();
_mm_setcsr(orig_state_ | 0x8040);
#endif
}
ScopedSubnormalFloatDisabler::~ScopedSubnormalFloatDisabler() {
#if defined(ARCH_CPU_X86_FAMILY)
_mm_setcsr(orig_state_);
#endif
}
bool MathUtil::IsFloatNearlyTheSame(float left, float right) {
return IsNearlyTheSame(left, right);
}
bool MathUtil::IsNearlyTheSameForTesting(const gfx::PointF& left,
const gfx::PointF& right) {
return IsNearlyTheSame(left, right);
}
bool MathUtil::IsNearlyTheSameForTesting(const gfx::Point3F& left,
const gfx::Point3F& right) {
return IsNearlyTheSame(left, right);
}
// Equivalent to SkMatrix::HasPerspective
bool MathUtil::SkM44HasPerspective(const SkM44& m) {
return (m.rc(3, 0) != 0 || m.rc(3, 1) != 0 || m.rc(3, 2) != 0 ||
m.rc(3, 3) != 1);
}
// Since some operations assume a 2d transformation, check to make sure that
// is the case by seeing that the z-axis is identity
bool MathUtil::SkM44Is2D(const SkM44& m) {
return (m.rc(0, 2) == 0 && m.rc(1, 2) == 0 && m.rc(2, 2) == 1 &&
m.rc(2, 0) == 0 && m.rc(2, 1) == 0 && m.rc(2, 3) == 0 &&
m.rc(3, 2) == 0);
}
// Equivalent to SkMatrix::PreservesAxisAlignment
// Checks if the transformation is a 90 degree rotation or scaling
// See SkMatrix::computeTypeMask
bool MathUtil::SkM44Preserves2DAxisAlignment(const SkM44& m) {
// Conservatively assume that perspective transforms would not preserve
// axis-alignment
if (!SkM44Is2D(m) || SkM44HasPerspective(m))
return false;
// Does the matrix have skew components
if (m.rc(0, 1) != 0 || m.rc(1, 0) != 0) {
// Rects only map to rects if both skews are non-zero and both scale
// components are zero (i.e. it's a +/-90-degree rotation)
return (m.rc(0, 0) == 0 && m.rc(1, 1) == 0 && m.rc(0, 1) != 0 &&
m.rc(1, 0) != 0);
}
// Since the matrix has no skewing, it maps to a rectangle so long as the
// scale components are non-zero
return (m.rc(0, 0) != 0 && m.rc(1, 1) != 0);
}
} // namespace cc