1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
cc / base / reverse_spiral_iterator.cc [blame]
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/base/reverse_spiral_iterator.h"
#include <algorithm>
#include "base/check_op.h"
namespace cc {
ReverseSpiralIterator::ReverseSpiralIterator()
: around_index_rect_(-1, -1, -1, -1),
consider_index_rect_(-1, -1, -1, -1),
ignore_index_rect_(-1, -1, -1, -1),
index_x_(-1),
index_y_(-1) {}
ReverseSpiralIterator::ReverseSpiralIterator(
const IndexRect& around_index_rect,
const IndexRect& consider_index_rect,
const IndexRect& ignore_index_rect)
: around_index_rect_(around_index_rect),
consider_index_rect_(consider_index_rect),
ignore_index_rect_(ignore_index_rect),
index_x_(-1),
index_y_(-1),
direction_(Direction::kLeft),
delta_x_(-1),
delta_y_(0),
current_step_(0),
horizontal_step_count_(0),
vertical_step_count_(0) {
// Figure out the maximum distance from the around edge to consider edge.
int max_distance = 0;
max_distance = std::max(
max_distance, around_index_rect_.top() - consider_index_rect_.top());
max_distance = std::max(
max_distance, around_index_rect_.left() - consider_index_rect_.left());
max_distance = std::max(max_distance, consider_index_rect_.bottom() -
around_index_rect_.bottom());
max_distance = std::max(
max_distance, consider_index_rect_.right() - around_index_rect_.right());
// The step count is the length of the edge
// (around_index_rect_.num_indices_x()) plus twice the max distance to pad
// (to the right and to the left). This way the initial rect is the size
// proportional to the center, but big enough to cover the consider rect.
//
// C = consider rect
// A = around rect
// . = area of the padded around rect
// md = max distance (note in the picture below, there's md written vertically
// as well).
// I = initial starting position
//
// |md| |md|
//
// - ..........
// m ..........
// d ..........
// - CCCCCCC...
// CCCCAAC...
// CCCCAAC...
// - ..........
// m ..........
// d ..........
// - ..........I
vertical_step_count_ = around_index_rect_.num_indices_y() + 2 * max_distance;
horizontal_step_count_ =
around_index_rect_.num_indices_x() + 2 * max_distance;
// Start with one to the right of the padded around rect.
index_x_ = around_index_rect_.right() + max_distance + 1;
index_y_ = around_index_rect_.bottom() + max_distance;
// The current index is outside a valid tile, so advance immediately.
++(*this);
}
ReverseSpiralIterator::operator bool() const {
return index_x_ != -1 && index_y_ != -1;
}
ReverseSpiralIterator& ReverseSpiralIterator::operator++() {
while (!around_index_rect_.Contains(index_x_, index_y_)) {
if (needs_direction_switch())
switch_direction();
index_x_ += delta_x_;
index_y_ += delta_y_;
++current_step_;
if (around_index_rect_.Contains(index_x_, index_y_)) {
break;
} else if (consider_index_rect_.Contains(index_x_, index_y_)) {
// If the tile is in the consider rect but not in ignore rect, then it's a
// valid tile to visit.
if (!ignore_index_rect_.Contains(index_x_, index_y_))
break;
// Steps needed to reach the very edge of the ignore rect, while remaining
// inside it (so that the continue would take us outside).
int steps_to_edge = 0;
switch (direction_) {
case Direction::kUp:
steps_to_edge = index_y_ - ignore_index_rect_.top();
break;
case Direction::kLeft:
steps_to_edge = index_x_ - ignore_index_rect_.left();
break;
case Direction::kDown:
steps_to_edge = ignore_index_rect_.bottom() - index_y_;
break;
case Direction::kRight:
steps_to_edge = ignore_index_rect_.right() - index_x_;
break;
}
// We need to switch directions in |max_steps|.
int max_steps = current_step_count() - current_step_;
int steps_to_take = std::min(steps_to_edge, max_steps);
DCHECK_GE(steps_to_take, 0);
index_x_ += steps_to_take * delta_x_;
index_y_ += steps_to_take * delta_y_;
current_step_ += steps_to_take;
} else {
// We're not in the consider rect.
int max_steps = current_step_count() - current_step_;
int steps_to_take = max_steps;
// We might hit the consider rect before needing to switch directions:
// update steps to take.
switch (direction_) {
case Direction::kUp:
if (consider_index_rect_.valid_column(index_x_) &&
consider_index_rect_.bottom() < index_y_)
steps_to_take = index_y_ - consider_index_rect_.bottom() - 1;
break;
case Direction::kLeft:
if (consider_index_rect_.valid_row(index_y_) &&
consider_index_rect_.right() < index_x_)
steps_to_take = index_x_ - consider_index_rect_.right() - 1;
break;
case Direction::kDown:
if (consider_index_rect_.valid_column(index_x_) &&
consider_index_rect_.top() > index_y_)
steps_to_take = consider_index_rect_.top() - index_y_ - 1;
break;
case Direction::kRight:
if (consider_index_rect_.valid_row(index_y_) &&
consider_index_rect_.left() > index_x_)
steps_to_take = consider_index_rect_.left() - index_x_ - 1;
break;
}
steps_to_take = std::min(steps_to_take, max_steps);
DCHECK_GE(steps_to_take, 0);
index_x_ += steps_to_take * delta_x_;
index_y_ += steps_to_take * delta_y_;
current_step_ += steps_to_take;
}
}
// Once we enter the around rect, we're done.
if (around_index_rect_.Contains(index_x_, index_y_)) {
index_x_ = -1;
index_y_ = -1;
}
return *this;
}
bool ReverseSpiralIterator::needs_direction_switch() const {
return current_step_ >= current_step_count();
}
void ReverseSpiralIterator::switch_direction() {
// Note that delta_x_ and delta_y_ always remain between -1 and 1.
int new_delta_y = delta_x_;
delta_x_ = -delta_y_;
delta_y_ = new_delta_y;
current_step_ = 0;
direction_ = static_cast<Direction>((static_cast<int>(direction_) + 1) % 4);
if (direction_ == Direction::kUp || direction_ == Direction::kDown) {
--vertical_step_count_;
--horizontal_step_count_;
// We should always end up in an around rect at some point.
// Since the direction is now vertical, we have to ensure that we will
// advance.
DCHECK_GE(horizontal_step_count_, 1);
DCHECK_GE(vertical_step_count_, 1);
}
}
} // namespace cc