1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
cc / input / scroll_snap_data.cc [blame]
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/input/scroll_snap_data.h"
#include <algorithm>
#include <cmath>
#include <limits>
#include <memory>
#include <optional>
#include "base/auto_reset.h"
#include "base/check.h"
#include "base/notreached.h"
#include "cc/input/snap_selection_strategy.h"
#include "ui/gfx/geometry/vector2d_f.h"
namespace cc {
namespace {
gfx::Vector2dF DistanceFromCorridor(double dx,
double dy,
const gfx::RectF& area) {
gfx::Vector2dF distance;
if (dx < 0)
distance.set_x(-dx);
else if (dx > area.width())
distance.set_x(dx - area.width());
else
distance.set_x(0);
if (dy < 0)
distance.set_y(-dy);
else if (dy > area.height())
distance.set_y(dy - area.height());
else
distance.set_y(0);
return distance;
}
bool IsMutualVisible(const SnapSearchResult& a, const SnapSearchResult& b) {
return gfx::RangeF(b.snap_offset()).IsBoundedBy(a.visible_range()) &&
gfx::RangeF(a.snap_offset()).IsBoundedBy(b.visible_range());
}
void SetOrUpdateResult(const SnapSearchResult& candidate,
std::optional<SnapSearchResult>* result) {
if (result->has_value()) {
result->value().Union(candidate);
if (candidate.has_focus_within()) {
result->value().set_element_id(candidate.element_id());
}
} else {
*result = candidate;
}
}
const std::optional<SnapSearchResult>& ClosestSearchResult(
const gfx::PointF reference_point,
SearchAxis axis,
const std::optional<SnapSearchResult>& a,
const std::optional<SnapSearchResult>& b) {
if (!a.has_value())
return b;
if (!b.has_value())
return a;
float reference_position =
axis == SearchAxis::kX ? reference_point.x() : reference_point.y();
float position_a = a.value().snap_offset();
float position_b = b.value().snap_offset();
DCHECK(
(reference_position <= position_a && reference_position <= position_b) ||
(reference_position >= position_a && reference_position >= position_b));
float distance_a = std::abs(position_a - reference_position);
float distance_b = std::abs(position_b - reference_position);
return distance_a < distance_b ? a : b;
}
std::optional<SnapSearchResult> SearchResultForDodgingRange(
const gfx::RangeF& area_range,
const gfx::RangeF& dodging_range,
const SnapSearchResult& aligned_candidate,
float preferred_offset,
float scroll_padding,
float snapport_size,
SnapAlignment alignment) {
if (dodging_range.is_empty() || dodging_range.is_reversed()) {
return std::nullopt;
}
// Use aligned_candidate as a template (we will override snap_offset and
// covered_range).
SnapSearchResult result = aligned_candidate;
float min_offset = dodging_range.start() - scroll_padding;
float max_offset = dodging_range.end() - scroll_padding - snapport_size;
if (max_offset > min_offset) {
result.set_snap_offset(
std::clamp(preferred_offset, min_offset, max_offset));
result.set_covered_range(gfx::RangeF(min_offset, max_offset));
return result;
}
// The scrollport does not fit in the dodging range, but we should still
// return a snap position so that the content inside the dodging range is not
// unreachable. Choose a position by applying the snap area's alignment.
float offset;
switch (alignment) {
case SnapAlignment::kStart:
offset = min_offset;
break;
case SnapAlignment::kCenter:
offset = (min_offset + max_offset) / 2;
break;
case SnapAlignment::kEnd:
offset = max_offset;
break;
default:
NOTREACHED();
}
min_offset = area_range.start() - scroll_padding;
max_offset = area_range.end() - scroll_padding - snapport_size;
if (max_offset < min_offset) {
return std::nullopt;
}
result.set_snap_offset(std::clamp(offset, min_offset, max_offset));
return result;
}
bool CanCoverSnapportOnAxis(SearchAxis axis,
const gfx::RectF& container_rect,
const gfx::RectF& area_rect) {
return (axis == SearchAxis::kY &&
area_rect.height() >= container_rect.height()) ||
(axis == SearchAxis::kX &&
area_rect.width() >= container_rect.width());
}
} // namespace
SnapSearchResult::SnapSearchResult(float offset,
SearchAxis axis,
gfx::RangeF snapport_visible_range,
float snapport_max_visible)
: snap_offset_(offset),
axis_(axis),
snapport_visible_range_(snapport_visible_range),
snapport_max_visible_(snapport_max_visible) {}
void SnapSearchResult::Clip(float max_snap) {
snap_offset_ = std::clamp(snap_offset_, 0.0f, max_snap);
}
void SnapSearchResult::Union(const SnapSearchResult& other) {
DCHECK(snap_offset_ == other.snap_offset_);
DCHECK(rect_.has_value() && other.rect().has_value());
if (rect_ && other.rect().has_value()) {
rect_->Union(other.rect().value());
}
}
SnapContainerData::SnapContainerData()
: proximity_range_(gfx::PointF(std::numeric_limits<float>::max(),
std::numeric_limits<float>::max())) {}
SnapContainerData::SnapContainerData(ScrollSnapType type)
: scroll_snap_type_(type),
proximity_range_(gfx::PointF(std::numeric_limits<float>::max(),
std::numeric_limits<float>::max())) {}
SnapContainerData::SnapContainerData(ScrollSnapType type,
const gfx::RectF& rect,
const gfx::PointF& max)
: scroll_snap_type_(type),
rect_(rect),
max_position_(max),
proximity_range_(gfx::PointF(std::numeric_limits<float>::max(),
std::numeric_limits<float>::max())) {}
SnapContainerData::SnapContainerData(const SnapContainerData& other) = default;
SnapContainerData::SnapContainerData(SnapContainerData&& other) = default;
SnapContainerData::~SnapContainerData() = default;
SnapContainerData& SnapContainerData::operator=(
const SnapContainerData& other) = default;
SnapContainerData& SnapContainerData::operator=(SnapContainerData&& other) =
default;
void SnapContainerData::AddSnapAreaData(SnapAreaData snap_area_data) {
snap_area_list_.push_back(snap_area_data);
}
SnapPositionData SnapContainerData::FindSnapPositionWithViewportAdjustment(
const SnapSelectionStrategy& strategy,
double snapport_height_adjustment) {
base::AutoReset<double> resetter{&snapport_height_adjustment_,
snapport_height_adjustment};
return FindSnapPosition(strategy);
}
SnapPositionData SnapContainerData::FindSnapPosition(
const SnapSelectionStrategy& strategy) const {
SnapPositionData result;
result.target_element_ids = TargetSnapAreaElementIds();
if (scroll_snap_type_.is_none)
return result;
gfx::PointF base_position = strategy.base_position();
SnapAxis axis = scroll_snap_type_.axis;
bool should_snap_on_x = strategy.ShouldSnapOnX() &&
(axis == SnapAxis::kX || axis == SnapAxis::kBoth);
bool should_snap_on_y = strategy.ShouldSnapOnY() &&
(axis == SnapAxis::kY || axis == SnapAxis::kBoth);
if (!should_snap_on_x && !should_snap_on_y) {
// We may arrive here because the strategy wants to snap in an axis in
// which we do not snap, and doesn't want to snap in an axis in which we do
// snap. Ensure that we retain the id of the target in any axis where we are
// snapped.
if (axis == SnapAxis::kY) {
result.target_element_ids.y = target_snap_area_element_ids_.y;
} else {
result.target_element_ids.x = target_snap_area_element_ids_.x;
}
return result;
}
bool should_prioritize_x_target =
strategy.ShouldPrioritizeSnapTargets() &&
target_snap_area_element_ids_.x != ElementId();
bool should_prioritize_y_target =
strategy.ShouldPrioritizeSnapTargets() &&
target_snap_area_element_ids_.y != ElementId();
std::optional<SnapSearchResult> selected_x, selected_y;
if (should_snap_on_x) {
// Start from current position in the cross axis. The search algorithm
// expects the cross axis position to be inside scroller bounds. But since
// we cannot always assume that the incoming value fits this criteria we
// clamp it to the bounds to ensure this variant.
SnapSearchResult initial_snap_position_y = {
std::clamp(base_position.y(), 0.f, max_position_.y()), SearchAxis::kY,
gfx::RangeF(rect_.x(), rect_.right()), max_position_.x()};
if (should_prioritize_x_target) {
selected_x = GetTargetSnapAreaSearchResult(strategy, SearchAxis::kX,
initial_snap_position_y);
}
if (!selected_x) {
selected_x = FindClosestValidArea(SearchAxis::kX, strategy,
initial_snap_position_y);
}
}
if (should_snap_on_y) {
SnapSearchResult initial_snap_position_x = {
std::clamp(base_position.x(), 0.f, max_position_.x()), SearchAxis::kX,
gfx::RangeF(rect_.y(), rect_.bottom()), max_position_.y()};
if (should_prioritize_y_target) {
selected_y = GetTargetSnapAreaSearchResult(strategy, SearchAxis::kY,
initial_snap_position_x);
}
if (!selected_y) {
selected_y = FindClosestValidArea(SearchAxis::kY, strategy,
initial_snap_position_x);
}
}
if (!selected_x.has_value() && !selected_y.has_value()) {
// Searching along each axis separately can miss valid snap positions if
// snapping along both axes and the snap positions are off screen.
if (should_snap_on_x && should_snap_on_y &&
!strategy.ShouldRespectSnapStop() &&
FindSnapPositionForMutualSnap(strategy, &result.position)) {
result.type = SnapPositionData::Type::kAligned;
}
return result;
}
if (selected_x.has_value() && selected_y.has_value() &&
!IsMutualVisible(selected_x.value(), selected_y.value())) {
SnapAxis axis_to_follow = SelectAxisToFollowForMutualVisibility(
strategy, selected_x.value(), selected_y.value());
if (axis_to_follow == SnapAxis::kX) {
selected_y =
FindClosestValidArea(SearchAxis::kY, strategy, selected_x.value());
} else {
selected_x =
FindClosestValidArea(SearchAxis::kX, strategy, selected_y.value());
}
}
// For each axis, the alternative makes a better selection if it is also
// aligned in the cross axis.
if (selected_y && selected_y->alternative()) {
SelectAlternativeIdForSearchResult(*selected_y, selected_x,
strategy.current_position().x(),
max_position_.x());
}
if (selected_x && selected_x->alternative()) {
SelectAlternativeIdForSearchResult(*selected_x, selected_y,
strategy.current_position().y(),
max_position_.y());
}
result.type = SnapPositionData::Type::kAligned;
result.position = strategy.current_position();
// Make sure that |result| retains what we are currently snapped to in each
// axis in case this search had no result for one axis. This ensures we don't
// incorrectly trigger a snap event. Don't retain ids of areas that may no
// longer exist.
for (const auto& area : snap_area_list_) {
if (area.element_id == target_snap_area_element_ids_.x) {
result.target_element_ids.x = target_snap_area_element_ids_.x;
}
if (area.element_id == target_snap_area_element_ids_.y) {
result.target_element_ids.y = target_snap_area_element_ids_.y;
}
}
if (selected_x) {
result.position.set_x(selected_x->snap_offset());
result.target_element_ids.x = selected_x->element_id();
result.covered_range_x = selected_x->covered_range();
}
if (selected_y) {
result.position.set_y(selected_y->snap_offset());
result.target_element_ids.y = selected_y->element_id();
result.covered_range_y = selected_y->covered_range();
}
if ((!selected_x || result.covered_range_x) &&
(!selected_y || result.covered_range_y)) {
result.type = SnapPositionData::Type::kCovered;
}
return result;
}
// This method is called only if the preferred algorithm fails to find either an
// x or a y snap position.
// The base algorithm searches on x (if appropriate) and then y (if
// appropriate). Each search is along the corridor in the search direction.
// For a search in the x-direction, areas as excluded from consideration if the
// range in the y-direction does not overlap the y base position (i.e. can
// scroll-snap in the x-direction without scrolling in the y-direction). Rules
// for scroll-snap in the y-direction are symmetric. This is the preferred
// approach, though the ordering of the searches should perhaps be determined
// based on axis locking.
// In cases where no valid snap points are found via searches along the axis
// corridors, the snap selection strategy allows for selection of areas outside
// of the corridors.
bool SnapContainerData::FindSnapPositionForMutualSnap(
const SnapSelectionStrategy& strategy,
gfx::PointF* snap_position) const {
DCHECK(strategy.ShouldSnapOnX() && strategy.ShouldSnapOnY());
bool found = false;
gfx::Vector2dF smallest_distance(std::numeric_limits<float>::max(),
std::numeric_limits<float>::max());
// Snap to same element for x & y if possible.
for (const SnapAreaData& area : snap_area_list_) {
if (!strategy.IsValidSnapArea(SearchAxis::kX, area))
continue;
if (!strategy.IsValidSnapArea(SearchAxis::kY, area))
continue;
SnapSearchResult x_candidate = GetSnapSearchResult(SearchAxis::kX, area);
float dx = x_candidate.snap_offset() - strategy.current_position().x();
if (std::abs(dx) > proximity_range_.x())
continue;
SnapSearchResult y_candidate = GetSnapSearchResult(SearchAxis::kY, area);
float dy = y_candidate.snap_offset() - strategy.current_position().y();
if (std::abs(dy) > proximity_range_.y())
continue;
// Preferentially minimize block scrolling distance. Ties in block scrolling
// distance are resolved by considering inline scrolling distance.
gfx::Vector2dF distance = DistanceFromCorridor(dx, dy, snapport());
if (distance.y() < smallest_distance.y() ||
(distance.y() == smallest_distance.y() &&
distance.x() < smallest_distance.x())) {
smallest_distance = distance;
snap_position->set_x(x_candidate.snap_offset());
snap_position->set_y(y_candidate.snap_offset());
found = true;
}
}
return found;
}
std::optional<SnapSearchResult>
SnapContainerData::GetTargetSnapAreaSearchResult(
const SnapSelectionStrategy& strategy,
SearchAxis axis,
SnapSearchResult cross_axis_snap_result) const {
ElementId target_id = axis == SearchAxis::kX
? target_snap_area_element_ids_.x
: target_snap_area_element_ids_.y;
if (target_id == ElementId())
return std::nullopt;
for (const SnapAreaData& area : snap_area_list_) {
if (area.element_id == target_id && strategy.IsValidSnapArea(axis, area)) {
auto aligned_result = GetSnapSearchResult(axis, area);
if (CanCoverSnapportOnAxis(axis, snapport(), area.rect)) {
// This code path handles snapping after layout changes. If the
// target snap area is larger than the snapport, we need to consider
// snap areas nested within it, which may themselves be large snap areas
// containing nested snap areas.
gfx::RangeF area_range =
axis == SearchAxis::kX
? gfx::RangeF(area.rect.x(), area.rect.right())
: gfx::RangeF(area.rect.y(), area.rect.bottom());
auto covering_result = FindClosestValidAreaInternal(
axis, strategy, cross_axis_snap_result, true, area_range);
return covering_result.has_value() ? covering_result.value()
: aligned_result;
}
return aligned_result;
}
}
return std::nullopt;
}
void SnapContainerData::UpdateSnapAreaForTesting(ElementId element_id,
SnapAreaData snap_area_data) {
for (SnapAreaData& area : snap_area_list_) {
if (area.element_id == element_id) {
area = snap_area_data;
}
}
}
const TargetSnapAreaElementIds& SnapContainerData::GetTargetSnapAreaElementIds()
const {
return target_snap_area_element_ids_;
}
bool SnapContainerData::SetTargetSnapAreaElementIds(
TargetSnapAreaElementIds ids) {
if (target_snap_area_element_ids_ == ids)
return false;
target_snap_area_element_ids_ = ids;
return true;
}
std::optional<SnapSearchResult> SnapContainerData::FindClosestValidArea(
SearchAxis axis,
const SnapSelectionStrategy& strategy,
const SnapSearchResult& cross_axis_snap_result) const {
std::optional<SnapSearchResult> result =
FindClosestValidAreaInternal(axis, strategy, cross_axis_snap_result);
// For EndAndDirectionStrategy, if there is a snap area with snap-stop:always,
// and is between the starting position and the above result, we should choose
// the first snap area with snap-stop:always.
// This additional search is executed only if we found a result, while the
// additional search for the relaxed_strategy is executed only if we didn't
// find a result. So we put this search first so we can return early if we
// could find a result.
if (result.has_value() && strategy.ShouldRespectSnapStop()) {
std::unique_ptr<SnapSelectionStrategy> must_only_strategy =
SnapSelectionStrategy::CreateForDirection(
strategy.current_position(),
strategy.intended_position() - strategy.current_position(),
strategy.UsingFractionalOffsets(), SnapStopAlwaysFilter::kRequire);
std::optional<SnapSearchResult> must_only_result =
FindClosestValidAreaInternal(axis, *must_only_strategy,
cross_axis_snap_result, false);
result = ClosestSearchResult(strategy.current_position(), axis, result,
must_only_result);
}
// Our current direction based strategies are too strict ignoring the other
// directions even when we have no candidate in the given direction. This is
// particularly problematic with mandatory snap points and for fling
// gestures. To counteract this, if the direction based strategy finds no
// candidates, we do a second search ignoring the direction (this is
// implemented by using an equivalent EndPosition strategy).
if (result.has_value() ||
scroll_snap_type_.strictness == SnapStrictness::kProximity ||
!strategy.HasIntendedDirection())
return result;
std::unique_ptr<SnapSelectionStrategy> relaxed_strategy =
SnapSelectionStrategy::CreateForEndPosition(strategy.current_position(),
strategy.ShouldSnapOnX(),
strategy.ShouldSnapOnY());
return FindClosestValidAreaInternal(axis, *relaxed_strategy,
cross_axis_snap_result);
}
std::optional<SnapSearchResult> SnapContainerData::FindClosestValidAreaInternal(
SearchAxis axis,
const SnapSelectionStrategy& strategy,
const SnapSearchResult& cross_axis_snap_result,
bool should_consider_covering,
std::optional<gfx::RangeF> active_element_range) const {
bool horiz = axis == SearchAxis::kX;
// The cross axis result is expected to be within bounds otherwise no snap
// area will meet the mutual visibility requirement.
DCHECK(cross_axis_snap_result.snap_offset() >= 0 &&
cross_axis_snap_result.snap_offset() <=
(horiz ? max_position_.y() : max_position_.x()));
// The search result from the snap area that's closest to the search origin.
std::optional<SnapSearchResult> closest;
// The search result with the intended position if it makes a snap area cover
// the snapport.
std::optional<SnapSearchResult> covering_intended;
// The intended position of the scroll operation if there's no snap. This
// scroll position becomes the covering candidate if there is a snap area that
// fully covers the snapport if this position is scrolled to.
float intended_position = horiz ? strategy.intended_position().x()
: strategy.intended_position().y();
// The position from which we search for the closest snap position.
float base_position =
horiz ? strategy.base_position().x() : strategy.base_position().y();
float smallest_distance = horiz ? proximity_range_.x() : proximity_range_.y();
auto evaluate = [&](const SnapSearchResult& candidate,
const SnapAreaData& area) {
if (!IsMutualVisible(candidate, cross_axis_snap_result)) {
return;
}
if (!strategy.IsValidSnapPosition(axis, candidate.snap_offset())) {
return;
}
float distance = std::abs(candidate.snap_offset() - base_position);
if (distance > smallest_distance) {
return;
}
// Aligned snap areas that have focus should be given preference when
// selecting snap targets.
if (distance < smallest_distance || candidate.has_focus_within()) {
smallest_distance = distance;
closest = candidate;
} else if (closest && !closest->has_focus_within()) {
if (closest->element_id() == targeted_area_id_) {
return;
}
if (candidate.element_id() == targeted_area_id_) {
closest = candidate;
return;
}
const auto candidate_rect = candidate.rect();
const auto closest_rect = closest->rect();
// Prefer snapping to innermost elements when nesting snap areas.
// RectF::Contains allows equality but the candidate should only prevail
// if it is smaller.
DCHECK(closest_rect && candidate_rect);
if (closest_rect && candidate_rect &&
closest_rect->Contains(candidate_rect.value()) &&
closest_rect != candidate_rect) {
smallest_distance = distance;
closest = candidate;
} else if ((scroll_snap_type_.axis == SnapAxis::kBoth) &&
(area.scroll_snap_align.alignment_block !=
SnapAlignment::kNone) &&
(area.scroll_snap_align.alignment_inline !=
SnapAlignment::kNone)) {
// This candidate is equally aligned with the current closest. Since it
// can be snapped to in both axes, designate it a potential alternative
// if we don't already have a potential alternative or it is a better
// alternative than the current one.
UpdateSearchAlternative(*closest, candidate, area, strategy);
}
}
};
for (const SnapAreaData& area : snap_area_list_) {
if (!strategy.IsValidSnapArea(axis, area))
continue;
if (active_element_range) {
gfx::RangeF area_range =
horiz ? gfx::RangeF(area.rect.x(), area.rect.right())
: gfx::RangeF(area.rect.y(), area.rect.bottom());
if (!active_element_range->Intersects(area_range)) {
continue;
}
}
SnapSearchResult candidate = GetSnapSearchResult(axis, area);
evaluate(candidate, area);
if (should_consider_covering &&
CanCoverSnapportOnAxis(axis, snapport(), area.rect)) {
if (std::optional<SnapSearchResult> covering =
FindCoveringCandidate(area, axis, candidate, intended_position)) {
covering->set_has_focus_within(area.has_focus_within);
covering->set_rect(area.rect);
if (covering->snap_offset() == intended_position) {
SetOrUpdateResult(*covering, &covering_intended);
} else {
// A covering candidate that is displaced from the intended position
// should behave similarly to an aligned snap position, competing on
// distance with other aligned snap positions - unlike a covering
// candidate at the intended position which may be given a higher
// priority in ScrollSnapStrategy::PickBestResult.
evaluate(*covering, area);
}
}
}
// Even if a snap area covers the snapport, we need to continue this
// search to find previous and next snap positions and also to have
// alternative snap candidates if this covering candidate is ultimately
// rejected. And this covering snap area has its own alignment that may
// generates a snap position rejecting the current inplace candidate.
}
const std::optional<SnapSearchResult>& picked =
strategy.PickBestResult(closest, covering_intended);
return picked;
}
SnapSearchResult SnapContainerData::GetSnapSearchResult(
SearchAxis axis,
const SnapAreaData& area) const {
SnapSearchResult result;
gfx::RectF rect = snapport();
if (axis == SearchAxis::kX) {
// https://www.w3.org/TR/css-scroll-snap-1/#scroll-snap-align
// Snap alignment has been normalized for a horizontal left to right and top
// to bottom writing mode.
switch (area.scroll_snap_align.alignment_inline) {
case SnapAlignment::kStart:
result.set_snap_offset(area.rect.x() - rect.x());
break;
case SnapAlignment::kCenter:
result.set_snap_offset(area.rect.CenterPoint().x() -
rect.CenterPoint().x());
break;
case SnapAlignment::kEnd:
result.set_snap_offset(area.rect.right() - rect.right());
break;
default:
NOTREACHED();
}
result.Clip(max_position_.x());
result.set_snapport_max_visible(max_position_.y());
result.set_snapport_visible_range(gfx::RangeF(rect.y(), rect.bottom()));
} else {
switch (area.scroll_snap_align.alignment_block) {
case SnapAlignment::kStart:
result.set_snap_offset(area.rect.y() - rect.y());
break;
case SnapAlignment::kCenter:
result.set_snap_offset(area.rect.CenterPoint().y() -
rect.CenterPoint().y());
break;
case SnapAlignment::kEnd:
result.set_snap_offset(area.rect.bottom() - rect.bottom());
break;
default:
NOTREACHED();
}
result.Clip(max_position_.y());
result.set_snapport_max_visible(max_position_.x());
result.set_snapport_visible_range(gfx::RangeF(rect.x(), rect.right()));
}
result.set_axis(axis);
result.set_rect(area.rect);
result.set_has_focus_within(area.has_focus_within);
result.set_element_id(area.element_id);
return result;
}
std::optional<SnapSearchResult> SnapContainerData::FindCoveringCandidate(
const SnapAreaData& area,
SearchAxis axis,
const SnapSearchResult& aligned_candidate,
float intended_position) const {
bool horiz = axis == SearchAxis::kX;
gfx::RectF rect = snapport();
float scroll_padding = horiz ? rect.x() : rect.y();
float snapport_size = horiz ? rect.width() : rect.height();
SnapAlignment alignment = horiz ? area.scroll_snap_align.alignment_inline
: area.scroll_snap_align.alignment_block;
gfx::RangeF area_range = horiz
? gfx::RangeF(area.rect.x(), area.rect.right())
: gfx::RangeF(area.rect.y(), area.rect.bottom());
gfx::RangeF preferred_snapport(
intended_position + scroll_padding,
intended_position + scroll_padding + snapport_size);
gfx::RangeF backward_dodging_range = area_range;
gfx::RangeF middle_dodging_range = area_range;
gfx::RangeF forward_dodging_range = area_range;
for (const SnapAreaData& intruder : snap_area_list_) {
gfx::RangeF intruder_range =
horiz ? gfx::RangeF(intruder.rect.x(), intruder.rect.right())
: gfx::RangeF(intruder.rect.y(), intruder.rect.bottom());
if (intruder_range.start() > area_range.end() ||
intruder_range.end() < area_range.start()) {
// Does not intrude.
continue;
}
if (intruder_range.start() <= area_range.start() &&
intruder_range.end() >= area_range.end()) {
// Superset of `area` also not treated as an intruder.
continue;
}
// Try three ways of dodging the intruders.
// In full generality this requires an interval tree. But we can simplify
// somewhat because we only care about a dodging range that is potentially
// closer than an aligned snap position, which each intruder also
// produces. For example, given:
// |---A---| |---preferred snapport---|
// |---B---|
// We do not care about the dodging range before the start of A.
// backward_dodging_range finds a dodging range that is above any intruder
// that intersects the snapport.
if (intruder_range.end() < preferred_snapport.start()) {
backward_dodging_range.set_start(
std::max(backward_dodging_range.start(), intruder_range.end()));
} else {
backward_dodging_range.set_end(
std::min(backward_dodging_range.end(), intruder_range.start()));
}
// forward_dodging_range finds a dodging range that is below any intruder
// that intersects the snapport.
if (intruder_range.start() > preferred_snapport.end()) {
forward_dodging_range.set_end(
std::min(forward_dodging_range.end(), intruder_range.start()));
} else {
forward_dodging_range.set_start(
std::max(forward_dodging_range.start(), intruder_range.end()));
}
// middle_dodging_range finds a dodging range inside the snapport, if there
// are intruders from above and below.
if (intruder_range.Contains(preferred_snapport) ||
preferred_snapport.Contains(intruder_range)) {
middle_dodging_range = gfx::RangeF();
} else if (intruder_range.start() <= preferred_snapport.start()) {
middle_dodging_range.set_start(
std::max(middle_dodging_range.start(), intruder_range.end()));
} else {
DCHECK(intruder_range.end() >= preferred_snapport.end());
middle_dodging_range.set_end(
std::min(middle_dodging_range.end(), intruder_range.start()));
}
}
std::optional<SnapSearchResult> middle_candidate =
SearchResultForDodgingRange(area_range, middle_dodging_range,
aligned_candidate, intended_position,
scroll_padding, snapport_size, alignment);
if (middle_candidate) {
return middle_candidate;
}
std::optional<SnapSearchResult> backward_candidate =
SearchResultForDodgingRange(area_range, backward_dodging_range,
aligned_candidate, intended_position,
scroll_padding, snapport_size, alignment);
std::optional<SnapSearchResult> forward_candidate =
SearchResultForDodgingRange(area_range, forward_dodging_range,
aligned_candidate, intended_position,
scroll_padding, snapport_size, alignment);
if (!backward_candidate) {
return forward_candidate;
}
if (!forward_candidate) {
return backward_candidate;
}
float backward_distance =
std::abs(backward_candidate->snap_offset() - intended_position);
float forward_distance =
std::abs(forward_candidate->snap_offset() - intended_position);
return backward_distance < forward_distance ? backward_candidate
: forward_candidate;
}
constexpr float kSnapportCoveredTolerance = 0.5;
bool SnapContainerData::IsSnapportCoveredOnAxis(
SearchAxis axis,
float current_offset,
const gfx::RectF& area_rect) const {
// We expand the range that SnapContainerData considers covering the snapport
// by kSnapportCoveredTolerance to handle offsets at the boundaries of
// the snap container. At the boundaries, |current_offset| might be a rounded
// int coming from ScrollTree::ClampScrollOffsetToLimits which uses
// ScrollNode::bounds which is a gfx::Size which stores ints.
// See crbug.com/1468412.
gfx::RectF rect = snapport();
if (axis == SearchAxis::kX) {
if (area_rect.width() < rect.width()) {
return false;
}
float left = area_rect.x() - rect.x();
float right = area_rect.right() - rect.right();
return current_offset >= left - kSnapportCoveredTolerance &&
current_offset <= right + kSnapportCoveredTolerance;
} else {
if (area_rect.height() < rect.height()) {
return false;
}
float top = area_rect.y() - rect.y();
float bottom = area_rect.bottom() - rect.bottom();
return current_offset >= top - kSnapportCoveredTolerance &&
current_offset <= bottom + kSnapportCoveredTolerance;
}
}
// TODO(crbug.com/40941354): Use tolerance value less than 1.
// It is currently set to 1 because of differences in the way Blink and cc
// currently handle fractional offsets when snapping.
constexpr float kSnappedToTolerance = 1.0;
bool SnapContainerData::IsSnappedToArea(
const SnapAreaData& area,
const gfx::PointF& scroll_offset) const {
bool covered_on_y =
IsSnapportCoveredOnAxis(SearchAxis::kY, scroll_offset.y(), area.rect);
bool covered_on_x =
IsSnapportCoveredOnAxis(SearchAxis::kX, scroll_offset.x(), area.rect);
bool snaps_on_x = scroll_snap_type_.axis == SnapAxis::kX ||
scroll_snap_type_.axis == SnapAxis::kBoth;
bool snaps_on_y = scroll_snap_type_.axis == SnapAxis::kY ||
scroll_snap_type_.axis == SnapAxis::kBoth;
if ((snaps_on_x && covered_on_x) && (snaps_on_y && covered_on_y)) {
return true;
}
if (snaps_on_y &&
area.scroll_snap_align.alignment_block != SnapAlignment::kNone) {
SnapSearchResult snap_result_y = GetSnapSearchResult(SearchAxis::kY, area);
if (((std::abs(snap_result_y.snap_offset() - scroll_offset.y()) <=
kSnappedToTolerance) ||
covered_on_y) &&
gfx::RangeF(scroll_offset.x())
.IsBoundedBy(snap_result_y.visible_range())) {
return true;
}
}
if (snaps_on_x &&
area.scroll_snap_align.alignment_inline != SnapAlignment::kNone) {
SnapSearchResult snap_result_x = GetSnapSearchResult(SearchAxis::kX, area);
if (((std::abs(snap_result_x.snap_offset() - scroll_offset.x()) <=
kSnappedToTolerance) ||
covered_on_x) &&
gfx::RangeF(scroll_offset.y())
.IsBoundedBy(snap_result_x.visible_range())) {
return true;
}
}
return false;
}
gfx::RectF SnapContainerData::snapport() const {
if (!snapport_height_adjustment_) {
return rect_;
}
gfx::RectF adjusted = rect_;
// The top visible point is not changed by showing / hiding the top controls;
// they only expand the visible rect from that anchor point.
adjusted.set_height(adjusted.height() + snapport_height_adjustment_);
return adjusted;
}
void SnapContainerData::UpdateSearchAlternative(
SnapSearchResult& current_result,
const SnapSearchResult& candidate_result,
const SnapAreaData& candidate_area,
const SnapSelectionStrategy& strategy) const {
bool horiz = current_result.axis() == SearchAxis::kX;
const auto candidate_cross_axis_aligned_result = GetSnapSearchResult(
horiz ? SearchAxis::kY : SearchAxis::kX, candidate_area);
const auto candidate_rect = candidate_result.rect();
const auto current_result_rect = current_result.rect();
DCHECK(candidate_rect && current_result_rect);
if (!candidate_rect || !current_result_rect ||
candidate_rect->Contains(*current_result_rect)) {
return;
}
if (auto alt = current_result.alternative()) {
float cross_axis_base_position =
horiz ? strategy.base_position().y() : strategy.base_position().x();
float candidate_cross_axis_distance =
std::abs(cross_axis_base_position -
candidate_cross_axis_aligned_result.snap_offset());
float alt_cross_axis_distance =
std::abs(cross_axis_base_position - alt->cross_axis_snap_offset);
if (candidate_cross_axis_distance > alt_cross_axis_distance) {
return;
}
const auto alt_rect = alt->area_rect;
// This candidate beats our current alternative if it is closer to the
// base position in the cross axis than our current alternative,
// or if it is tied with the current alternative and is nested within
// the current alternative (inner targets are preferred to outer targets).
if (candidate_cross_axis_distance < alt_cross_axis_distance ||
(alt_rect != *candidate_rect && alt_rect.Contains(*candidate_rect))) {
current_result.set_alternative(
candidate_area.element_id, *candidate_rect,
candidate_cross_axis_aligned_result.snap_offset());
}
} else {
// We did not have an alternative before now, make the current
// candidate our alternative.
current_result.set_alternative(
candidate_area.element_id, *candidate_rect,
candidate_cross_axis_aligned_result.snap_offset());
}
}
void SnapContainerData::SelectAlternativeIdForSearchResult(
SnapSearchResult& selection,
const std::optional<SnapSearchResult>& cross_selection,
float cross_current_position,
float cross_max_position) const {
const auto within_snapped_tolerance = [](float v1, float v2) {
return std::abs(v1 - v2) <= kSnappedToTolerance;
};
if (cross_selection) {
if (within_snapped_tolerance(
cross_selection->snap_offset(),
selection.alternative()->cross_axis_snap_offset)) {
selection.set_element_id(selection.alternative()->element_id);
}
} else {
if (within_snapped_tolerance(
std::clamp(cross_current_position, 0.0f, cross_max_position),
selection.alternative()->cross_axis_snap_offset)) {
selection.set_element_id(selection.alternative()->element_id);
}
}
}
SnapAxis SnapContainerData::SelectAxisToFollowForMutualVisibility(
const SnapSelectionStrategy& strategy,
const SnapSearchResult& selected_x,
const SnapSearchResult& selected_y) const {
// If snapping in one axis pushes off-screen the other snap area, this snap
// position is invalid. https://drafts.csswg.org/css-scroll-snap-1/#snap-scope
// In this case, first check if we need to prioritize snapping to the most
// recent snap targets in each axis and prioritize one axis over the other
// according to the following order:
// 1. an axis with the focused area.
// 2. an axis with the targeted [1] area.
// 3. the block axis.
// (See step 8 at
// https://github.com/w3c/csswg-drafts/issues/9622#issue-2006578282)
// [1]https://drafts.csswg.org/selectors/#the-target-pseudo
// If we don't prioritize snapping to the most recent snap targets, we choose
// the axis whose snap area is closer. Then find a new snap area on the other
// axis that is mutually visible with the selected axis' snap area.
if (strategy.ShouldPrioritizeSnapTargets()) {
// If we we're previously snapped in one axis but not the other, follow the
// axis we we're previously snapped in.
if (target_snap_area_element_ids_.x == ElementId()) {
return SnapAxis::kY;
} else if (target_snap_area_element_ids_.y == ElementId()) {
return SnapAxis::kX;
}
// Focused, then targeted snap areas should be followed.
if (selected_x.has_focus_within()) {
return SnapAxis::kX;
} else if (selected_y.has_focus_within()) {
return SnapAxis::kY;
} else if (selected_x.element_id() == targeted_area_id_) {
return SnapAxis::kX;
} else if (selected_y.element_id() == targeted_area_id_) {
return SnapAxis::kY;
}
// Follow the block axis target.
return has_horizontal_writing_mode_ ? SnapAxis::kY : SnapAxis::kX;
}
return (
std::abs(selected_x.snap_offset() - strategy.base_position().x()) <=
std::abs(selected_y.snap_offset() - strategy.base_position().y())
? SnapAxis::kX
: SnapAxis::kY);
}
std::ostream& operator<<(std::ostream& ostream, const SnapAreaData& area_data) {
return ostream << area_data.rect.ToString();
}
std::ostream& operator<<(std::ostream& ostream,
const SnapContainerData& container_data) {
ostream << "container_rect: " << container_data.rect().ToString();
ostream << "area_rects: ";
for (size_t i = 0; i < container_data.size(); ++i) {
ostream << container_data.at(i) << "\n";
}
return ostream;
}
} // namespace cc