1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
cc / layers / layer_list_iterator.cc [blame]
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/layers/layer_list_iterator.h"
#include "cc/layers/layer.h"
namespace cc {
LayerListIterator::LayerListIterator(Layer* root_layer)
: current_layer_(root_layer) {
DCHECK(!root_layer || !root_layer->parent());
list_indices_.push_back(0);
}
LayerListIterator::LayerListIterator(const LayerListIterator& other) = default;
LayerListIterator& LayerListIterator::operator++() {
// case 0: done
if (!current_layer_)
return *this;
// case 1: descend.
if (!current_layer_->children().empty()) {
current_layer_ = current_layer_->children()[0].get();
list_indices_.push_back(0);
return *this;
}
for (Layer* parent = current_layer_->mutable_parent(); parent;
parent = parent->mutable_parent()) {
// We now try and advance in some list of siblings.
// case 2: Advance to a sibling.
if (list_indices_.back() + 1 < parent->children().size()) {
++list_indices_.back();
current_layer_ = parent->children()[list_indices_.back()].get();
return *this;
}
// We need to ascend. We will pop an index off the stack.
list_indices_.pop_back();
}
current_layer_ = nullptr;
return *this;
}
LayerListIterator::~LayerListIterator() = default;
LayerListConstIterator::LayerListConstIterator(const Layer* root_layer)
: current_layer_(root_layer) {
DCHECK(!root_layer || !root_layer->parent());
list_indices_.push_back(0);
}
LayerListConstIterator::LayerListConstIterator(
const LayerListConstIterator& other) = default;
LayerListConstIterator& LayerListConstIterator::operator++() {
// case 0: done
if (!current_layer_)
return *this;
// case 1: descend.
if (!current_layer_->children().empty()) {
current_layer_ = current_layer_->children()[0].get();
list_indices_.push_back(0);
return *this;
}
for (const Layer* parent = current_layer_->parent(); parent;
parent = parent->parent()) {
// We now try and advance in some list of siblings.
// case 2: Advance to a sibling.
if (list_indices_.back() + 1 < parent->children().size()) {
++list_indices_.back();
current_layer_ = parent->children()[list_indices_.back()].get();
return *this;
}
// We need to ascend. We will pop an index off the stack.
list_indices_.pop_back();
}
current_layer_ = nullptr;
return *this;
}
LayerListConstIterator::~LayerListConstIterator() = default;
LayerListReverseIterator::LayerListReverseIterator(Layer* root_layer)
: current_layer_(root_layer) {
DCHECK(!root_layer || !root_layer->parent());
list_indices_.push_back(0);
DescendToRightmostInSubtree();
}
LayerListReverseIterator::LayerListReverseIterator(
const LayerListReverseIterator& other) = default;
// We will only support prefix increment.
LayerListReverseIterator& LayerListReverseIterator::operator++() {
// case 0: done
if (!current_layer_)
return *this;
// case 1: we're the leftmost sibling.
if (!list_indices_.back()) {
list_indices_.pop_back();
current_layer_ = current_layer_->mutable_parent();
return *this;
}
// case 2: we're not the leftmost sibling. In this case, we want to move one
// sibling over, and then descend to the rightmost descendant in that subtree.
CHECK(current_layer_->parent());
--list_indices_.back();
this->current_layer_ =
current_layer_->mutable_parent()->children()[list_indices_.back()].get();
DescendToRightmostInSubtree();
return *this;
}
void LayerListReverseIterator::DescendToRightmostInSubtree() {
if (!current_layer_)
return;
if (current_layer_->children().empty())
return;
size_t last_index = current_layer_->children().size() - 1;
this->current_layer_ = current_layer_->children()[last_index].get();
list_indices_.push_back(last_index);
DescendToRightmostInSubtree();
}
LayerListReverseIterator::~LayerListReverseIterator() = default;
LayerListReverseConstIterator::LayerListReverseConstIterator(
const LayerListReverseConstIterator& other) = default;
LayerListReverseConstIterator::LayerListReverseConstIterator(
const Layer* root_layer)
: current_layer_(root_layer) {
DCHECK(!root_layer || !root_layer->parent());
list_indices_.push_back(0);
DescendToRightmostInSubtree();
}
LayerListReverseConstIterator& LayerListReverseConstIterator::operator++() {
// case 0: done
if (!current_layer_)
return *this;
// case 1: we're the leftmost sibling.
if (!list_indices_.back()) {
list_indices_.pop_back();
current_layer_ = current_layer_->parent();
return *this;
}
// case 2: we're not the leftmost sibling. In this case, we want to move one
// sibling over, and then descend to the rightmost descendant in that subtree.
CHECK(current_layer_->parent());
--list_indices_.back();
this->current_layer_ =
current_layer_->parent()->children()[list_indices_.back()].get();
DescendToRightmostInSubtree();
return *this;
}
void LayerListReverseConstIterator::DescendToRightmostInSubtree() {
if (!current_layer_)
return;
if (current_layer_->children().empty())
return;
size_t last_index = current_layer_->children().size() - 1;
this->current_layer_ = current_layer_->children()[last_index].get();
list_indices_.push_back(last_index);
DescendToRightmostInSubtree();
}
LayerListReverseConstIterator::~LayerListReverseConstIterator() = default;
} // namespace cc