1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435

cc / tiles / software_image_decode_cache_utils.cc [blame]

// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "cc/tiles/software_image_decode_cache_utils.h"

#include <algorithm>
#include <sstream>
#include <utility>

#include "base/atomic_sequence_num.h"
#include "base/functional/callback_helpers.h"
#include "base/hash/hash.h"
#include "base/memory/discardable_memory_allocator.h"
#include "base/metrics/histogram_macros.h"
#include "base/process/memory.h"
#include "base/trace_event/trace_event.h"
#include "cc/paint/paint_flags.h"
#include "cc/tiles/mipmap_util.h"
#include "third_party/skia/include/core/SkColorSpace.h"
#include "third_party/skia/include/core/SkImage.h"
#include "ui/gfx/geometry/skia_conversions.h"

namespace cc {
namespace {
// If the size of the original sized image breaches kMemoryRatioToSubrect but we
// don't need to scale the image, consider caching only the needed subrect.
// The second part that much be true is that we cache only the needed subrect if
// the total size needed for the subrect is at most kMemoryRatioToSubrect *
// (size needed for the full original image).
// Note that at least one of the dimensions has to be at least
// kMinDimensionToSubrect before an image can breach the threshold.
const size_t kMemoryThresholdToSubrect = 64 * 1024 * 1024;
const int kMinDimensionToSubrect = 4 * 1024;
const float kMemoryRatioToSubrect = 0.5f;

// Tracing ID sequence for use in CacheEntry.
base::AtomicSequenceNumber g_next_tracing_id_;

gfx::Rect GetSrcRect(const DrawImage& image) {
  const SkIRect& src_rect = image.src_rect();
  int x = std::max(0, src_rect.x());
  int y = std::max(0, src_rect.y());
  int right = std::min(image.paint_image().width(), src_rect.right());
  int bottom = std::min(image.paint_image().height(), src_rect.bottom());
  if (x >= right || y >= bottom)
    return gfx::Rect();
  return gfx::Rect(x, y, right - x, bottom - y);
}

// Does *not* return nullptr.
std::unique_ptr<base::DiscardableMemory> AllocateDiscardable(
    const SkImageInfo& info,
    base::OnceClosure on_no_memory) {
  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"), "AllocateDiscardable");
  size_t size = info.minRowBytes() * info.height();
  auto* allocator = base::DiscardableMemoryAllocator::GetInstance();
  return allocator->AllocateLockedDiscardableMemoryWithRetryOrDie(
      size, std::move(on_no_memory));
}

}  // namespace

// static
std::unique_ptr<SoftwareImageDecodeCacheUtils::CacheEntry>
SoftwareImageDecodeCacheUtils::DoDecodeImage(
    const CacheKey& key,
    const PaintImage& paint_image,
    SkColorType color_type,
    PaintImage::GeneratorClientId client_id,
    base::OnceClosure on_no_memory) {
  const SkISize target_size =
      SkISize::Make(key.target_size().width(), key.target_size().height());
  DCHECK(target_size == paint_image.GetSupportedDecodeSize(target_size));
  sk_sp<SkColorSpace> target_color_space =
      key.target_color_params().color_space.ToSkColorSpace();
  SkImageInfo target_info = SkImageInfo::Make(
      target_size, color_type, kPremul_SkAlphaType, target_color_space);
  std::unique_ptr<base::DiscardableMemory> target_pixels =
      AllocateDiscardable(target_info, std::move(on_no_memory));
  if (!target_pixels->data())
    return nullptr;
  SkPixmap target_pixmap(target_info, target_pixels->data(),
                         target_info.minRowBytes());

  TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
               "SoftwareImageDecodeCacheUtils::DoDecodeImage - "
               "decode");
  bool result = paint_image.Decode(target_pixmap, key.frame_key().frame_index(),
                                   AuxImage::kDefault, client_id);
  if (!result) {
    target_pixels->Unlock();
    return nullptr;
  }
  return std::make_unique<CacheEntry>(target_info, std::move(target_pixels),
                                      SkSize::Make(0, 0));
}

// static
std::unique_ptr<SoftwareImageDecodeCacheUtils::CacheEntry>
SoftwareImageDecodeCacheUtils::GenerateCacheEntryFromCandidate(
    const CacheKey& key,
    const DecodedDrawImage& candidate_image,
    bool needs_extract_subset,
    SkColorType color_type) {
  SkISize target_size =
      SkISize::Make(key.target_size().width(), key.target_size().height());
  SkImageInfo target_info =
      SkImageInfo::Make(target_size, color_type, kPremul_SkAlphaType);
  // TODO(crbug.com/40095682): If this turns into a crasher, pass an actual
  // "free memory" closure.
  std::unique_ptr<base::DiscardableMemory> target_pixels =
      AllocateDiscardable(target_info, base::DoNothing());

  if (key.type() == CacheKey::kSubrectOriginal) {
    DCHECK(needs_extract_subset);
    TRACE_EVENT0(
        TRACE_DISABLED_BY_DEFAULT("cc.debug"),
        "SoftwareImageDecodeCacheUtils::GenerateCacheEntryFromCandidate - "
        "subrect");
    bool result = candidate_image.image()->readPixels(
        target_info, target_pixels->data(), target_info.minRowBytes(),
        key.src_rect().x(), key.src_rect().y(), SkImage::kDisallow_CachingHint);
    // We have a decoded image, and we're reading into already allocated memory.
    // This should never fail.
    DCHECK(result) << key.ToString();
    return std::make_unique<CacheEntry>(
        target_info.makeColorSpace(candidate_image.image()->refColorSpace()),
        std::move(target_pixels),
        SkSize::Make(-key.src_rect().x(), -key.src_rect().y()));
  }

  DCHECK_EQ(key.type(), CacheKey::kSubrectAndScale);
  TRACE_EVENT0(
      TRACE_DISABLED_BY_DEFAULT("cc.debug"),
      "SoftwareImageDecodeCacheUtils::GenerateCacheEntryFromCandidate - "
      "scale");
  SkPixmap decoded_pixmap;
  // We don't need to subrect this image, since all candidates passed in would
  // already have a src_rect applied to them.
  bool result = candidate_image.image()->peekPixels(&decoded_pixmap);
  DCHECK(result) << key.ToString();
  if (needs_extract_subset) {
    result = decoded_pixmap.extractSubset(&decoded_pixmap,
                                          gfx::RectToSkIRect(key.src_rect()));
    DCHECK(result) << key.ToString();
  }

  // Nearest neighbor would only be set in the unscaled case.
  DCHECK(!key.is_nearest_neighbor());
  SkPixmap target_pixmap(target_info, target_pixels->data(),
                         target_info.minRowBytes());
  PaintFlags::FilterQuality filter_quality = PaintFlags::FilterQuality::kMedium;
  result = decoded_pixmap.scalePixels(
      target_pixmap,
      PaintFlags::FilterQualityToSkSamplingOptions(filter_quality));
  DCHECK(result) << key.ToString();

  return std::make_unique<CacheEntry>(
      target_info.makeColorSpace(candidate_image.image()->refColorSpace()),
      std::move(target_pixels),
      SkSize::Make(-key.src_rect().x(), -key.src_rect().y()));
}

// CacheKey --------------------------------------------------------------------
// static
SoftwareImageDecodeCacheUtils::CacheKey
SoftwareImageDecodeCacheUtils::CacheKey::FromDrawImage(const DrawImage& image,
                                                       SkColorType color_type) {
  DCHECK(!image.paint_image().IsTextureBacked());

  const PaintImage::FrameKey frame_key = image.frame_key();
  const PaintImage::Id stable_id = image.paint_image().stable_id();

  const SkSize& scale = image.scale();
  // If the src_rect falls outside of the image, we need to clip it since
  // otherwise we might end up with uninitialized memory in the decode process.
  // Note that the scale is still unchanged and the target size is now a
  // function of the new src_rect.
  const gfx::Rect& src_rect = GetSrcRect(image);

  // Start with the exact target size. However, this will be adjusted below to
  // be either a mip level, the original size, or a subrect size. This is done
  // to keep memory accounting correct.
  gfx::Size target_size(
      SkScalarRoundToInt(std::abs(src_rect.width() * scale.width())),
      SkScalarRoundToInt(std::abs(src_rect.height() * scale.height())));

  // If the target size is empty, then we'll be skipping the decode anyway, so
  // the filter quality doesn't matter. Early out instead.
  if (target_size.IsEmpty()) {
    return CacheKey(frame_key, stable_id, kSubrectAndScale, false,
                    image.paint_image().may_be_lcp_candidate(), src_rect,
                    target_size, image.target_color_params());
  }

  ProcessingType type = kOriginal;
  bool is_nearest_neighbor =
      image.filter_quality() == PaintFlags::FilterQuality::kNone;
  int mip_level = MipMapUtil::GetLevelForSize(src_rect.size(), target_size);
  // If any of the following conditions hold, then use at most low filter
  // quality and adjust the target size to match the original image:
  // - Quality is none: We need a pixelated image, so we can't upgrade it.
  // - Mip level is 0: The required mip is the original image, so just use low
  //   filter quality.
  // - Matrix is not decomposable: There's perspective on this image and we
  //   can't determine the size, so use the original.
  if (is_nearest_neighbor || mip_level == 0 ||
      !image.matrix_is_decomposable()) {
    type = kOriginal;
    // Update the size to be the original image size.
    target_size =
        gfx::Size(image.paint_image().width(), image.paint_image().height());
  } else {
    type = kSubrectAndScale;
    // Update the target size to be a mip level size.
    target_size = MipMapUtil::GetSizeForLevel(src_rect.size(), mip_level);
  }

  // If the original image is large, we might want to do a subrect instead if
  // the subrect would be kMemoryRatioToSubrect times smaller.
  if (type == kOriginal &&
      (image.paint_image().width() >= kMinDimensionToSubrect ||
       image.paint_image().height() >= kMinDimensionToSubrect)) {
    base::CheckedNumeric<size_t> checked_original_size = 4u;
    checked_original_size *= image.paint_image().width();
    checked_original_size *= image.paint_image().height();
    size_t original_size = checked_original_size.ValueOrDefault(
        std::numeric_limits<size_t>::max());

    base::CheckedNumeric<size_t> checked_src_rect_size = 4u;
    checked_src_rect_size *= src_rect.width();
    checked_src_rect_size *= src_rect.height();
    size_t src_rect_size = checked_src_rect_size.ValueOrDefault(
        std::numeric_limits<size_t>::max());

    // If the sizes are such that we get good savings by subrecting, then do
    // that. Also update the target size to be the src rect size since that's
    // the rect we want to use.
    if (original_size > kMemoryThresholdToSubrect &&
        src_rect_size <= original_size * kMemoryRatioToSubrect) {
      type = kSubrectOriginal;
      target_size = src_rect.size();
    }
  }

  return CacheKey(frame_key, stable_id, type, is_nearest_neighbor,
                  image.paint_image().may_be_lcp_candidate(), src_rect,
                  target_size, image.target_color_params());
}

SoftwareImageDecodeCacheUtils::CacheKey::CacheKey(
    PaintImage::FrameKey frame_key,
    PaintImage::Id stable_id,
    ProcessingType type,
    bool is_nearest_neighbor,
    bool may_be_lcp_candidate,
    const gfx::Rect& src_rect,
    const gfx::Size& target_size,
    const TargetColorParams& target_color_params)
    : frame_key_(frame_key),
      stable_id_(stable_id),
      type_(type),
      is_nearest_neighbor_(is_nearest_neighbor),
      may_be_lcp_candidate_(may_be_lcp_candidate),
      src_rect_(src_rect),
      target_size_(target_size),
      target_color_params_(target_color_params) {
  if (type == kOriginal) {
    hash_ = frame_key_.hash();
  } else {
    // TODO(vmpstr): This is a mess. Maybe it's faster to just search the vector
    // always (forwards or backwards to account for LRU).
    uint64_t src_rect_hash = base::HashInts(
        static_cast<uint64_t>(base::HashInts(src_rect_.x(), src_rect_.y())),
        static_cast<uint64_t>(
            base::HashInts(src_rect_.width(), src_rect_.height())));

    uint64_t target_size_hash =
        base::HashInts(target_size_.width(), target_size_.height());

    hash_ = base::HashInts(base::HashInts(src_rect_hash, target_size_hash),
                           frame_key_.hash());
  }
  // Include the target color space in the hash regardless of scaling.
  hash_ = base::HashInts(hash_, target_color_params.GetHash());
}

SoftwareImageDecodeCacheUtils::CacheKey::CacheKey(const CacheKey& other) =
    default;

SoftwareImageDecodeCacheUtils::CacheKey&
SoftwareImageDecodeCacheUtils::CacheKey::operator=(const CacheKey& other) =
    default;

std::string SoftwareImageDecodeCacheUtils::CacheKey::ToString() const {
  std::ostringstream str;
  str << "frame_key[" << frame_key_.ToString() << "]\ntype[";
  switch (type_) {
    case kOriginal:
      str << "Original";
      break;
    case kSubrectOriginal:
      str << "SubrectOriginal";
      break;
    case kSubrectAndScale:
      str << "SubrectAndScale";
      break;
  }
  str << "]\nis_nearest_neightbor[" << is_nearest_neighbor_ << "]\nsrc_rect["
      << src_rect_.ToString() << "]\ntarget_size[" << target_size_.ToString()
      << "]\ntarget_color_params[" << target_color_params_.ToString()
      << "]\nhash[" << hash_ << "]";
  return str.str();
}

// CacheEntry ------------------------------------------------------------------
SoftwareImageDecodeCacheUtils::CacheEntry::CacheEntry()
    : tracing_id_(g_next_tracing_id_.GetNext()) {}
SoftwareImageDecodeCacheUtils::CacheEntry::CacheEntry(
    const SkImageInfo& info,
    std::unique_ptr<base::DiscardableMemory> in_memory,
    const SkSize& src_rect_offset)
    : is_locked(true),
      memory(std::move(in_memory)),
      image_info_(info),
      src_rect_offset_(src_rect_offset),
      tracing_id_(g_next_tracing_id_.GetNext()) {
  DCHECK(memory);
  SkPixmap pixmap(image_info_, memory->data(), image_info_.minRowBytes());
  image_ = SkImages::RasterFromPixmap(
      pixmap, [](const void* pixels, void* context) {}, nullptr);
}

SoftwareImageDecodeCacheUtils::CacheEntry::~CacheEntry() {
  DCHECK(!is_locked);

  // We create temporary CacheEntries as a part of decoding. However, we move
  // the memory to cache entries that actually live in the cache. Destroying the
  // temporaries should not cause any of the stats to be recorded. Specifically,
  // if allowed to report, they would report every single temporary entry as
  // wasted, which is misleading. As a fix, don't report on a cache entry that
  // has never been in the cache.
  if (!cached_)
    return;

  // lock_count | used  | last lock failed | result state
  // ===========+=======+==================+==================
  //  1         | false | false            | WASTED
  //  1         | false | true             | WASTED
  //  1         | true  | false            | USED
  //  1         | true  | true             | USED_RELOCK_FAILED
  //  >1        | false | false            | WASTED_RELOCKED
  //  >1        | false | true             | WASTED_RELOCKED
  //  >1        | true  | false            | USED_RELOCKED
  //  >1        | true  | true             | USED_RELOCKED
  // Note that it's important not to reorder the following enums, since the
  // numerical values are used in the histogram code.
  enum State : int {
    DECODED_IMAGE_STATE_WASTED,
    DECODED_IMAGE_STATE_USED,
    DECODED_IMAGE_STATE_USED_RELOCK_FAILED,
    DECODED_IMAGE_STATE_WASTED_RELOCKED,
    DECODED_IMAGE_STATE_USED_RELOCKED,
    DECODED_IMAGE_STATE_COUNT
  } state = DECODED_IMAGE_STATE_WASTED;

  if (usage_stats_.lock_count == 1) {
    if (!usage_stats_.used)
      state = DECODED_IMAGE_STATE_WASTED;
    else if (usage_stats_.last_lock_failed)
      state = DECODED_IMAGE_STATE_USED_RELOCK_FAILED;
    else
      state = DECODED_IMAGE_STATE_USED;
  } else {
    if (usage_stats_.used)
      state = DECODED_IMAGE_STATE_USED_RELOCKED;
    else
      state = DECODED_IMAGE_STATE_WASTED_RELOCKED;
  }

  UMA_HISTOGRAM_ENUMERATION("Renderer4.SoftwareImageDecodeState", state,
                            DECODED_IMAGE_STATE_COUNT);
  UMA_HISTOGRAM_BOOLEAN("Renderer4.SoftwareImageDecodeState.FirstLockWasted",
                        usage_stats_.first_lock_wasted);
  if (usage_stats_.first_lock_out_of_raster)
    UMA_HISTOGRAM_BOOLEAN(
        "Renderer4.SoftwareImageDecodeState.FirstLockWasted.OutOfRaster",
        usage_stats_.first_lock_wasted);
}

void SoftwareImageDecodeCacheUtils::CacheEntry::MoveImageMemoryTo(
    CacheEntry* entry) {
  DCHECK(!is_budgeted);
  DCHECK_EQ(ref_count, 0);

  // Copy/move most things except budgeted and ref counts.
  entry->decode_failed = decode_failed;
  entry->is_locked = is_locked;
  is_locked = false;

  entry->memory = std::move(memory);
  entry->image_info_ = std::move(image_info_);
  entry->src_rect_offset_ = std::move(src_rect_offset_);
  entry->image_ = std::move(image_);
}

bool SoftwareImageDecodeCacheUtils::CacheEntry::Lock() {
  if (!memory)
    return false;

  DCHECK(!is_locked);
  bool success = memory->Lock();
  if (!success) {
    memory = nullptr;
    usage_stats_.last_lock_failed = true;
    return false;
  }
  is_locked = true;
  ++usage_stats_.lock_count;
  return true;
}

void SoftwareImageDecodeCacheUtils::CacheEntry::Unlock() {
  if (!memory)
    return;

  DCHECK(is_locked);
  memory->Unlock();
  is_locked = false;
  if (usage_stats_.lock_count == 1)
    usage_stats_.first_lock_wasted = !usage_stats_.used;
}

}  // namespace cc