1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
cc / tiles / software_image_decode_cache_utils.cc [blame]
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "cc/tiles/software_image_decode_cache_utils.h"
#include <algorithm>
#include <sstream>
#include <utility>
#include "base/atomic_sequence_num.h"
#include "base/functional/callback_helpers.h"
#include "base/hash/hash.h"
#include "base/memory/discardable_memory_allocator.h"
#include "base/metrics/histogram_macros.h"
#include "base/process/memory.h"
#include "base/trace_event/trace_event.h"
#include "cc/paint/paint_flags.h"
#include "cc/tiles/mipmap_util.h"
#include "third_party/skia/include/core/SkColorSpace.h"
#include "third_party/skia/include/core/SkImage.h"
#include "ui/gfx/geometry/skia_conversions.h"
namespace cc {
namespace {
// If the size of the original sized image breaches kMemoryRatioToSubrect but we
// don't need to scale the image, consider caching only the needed subrect.
// The second part that much be true is that we cache only the needed subrect if
// the total size needed for the subrect is at most kMemoryRatioToSubrect *
// (size needed for the full original image).
// Note that at least one of the dimensions has to be at least
// kMinDimensionToSubrect before an image can breach the threshold.
const size_t kMemoryThresholdToSubrect = 64 * 1024 * 1024;
const int kMinDimensionToSubrect = 4 * 1024;
const float kMemoryRatioToSubrect = 0.5f;
// Tracing ID sequence for use in CacheEntry.
base::AtomicSequenceNumber g_next_tracing_id_;
gfx::Rect GetSrcRect(const DrawImage& image) {
const SkIRect& src_rect = image.src_rect();
int x = std::max(0, src_rect.x());
int y = std::max(0, src_rect.y());
int right = std::min(image.paint_image().width(), src_rect.right());
int bottom = std::min(image.paint_image().height(), src_rect.bottom());
if (x >= right || y >= bottom)
return gfx::Rect();
return gfx::Rect(x, y, right - x, bottom - y);
}
// Does *not* return nullptr.
std::unique_ptr<base::DiscardableMemory> AllocateDiscardable(
const SkImageInfo& info,
base::OnceClosure on_no_memory) {
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"), "AllocateDiscardable");
size_t size = info.minRowBytes() * info.height();
auto* allocator = base::DiscardableMemoryAllocator::GetInstance();
return allocator->AllocateLockedDiscardableMemoryWithRetryOrDie(
size, std::move(on_no_memory));
}
} // namespace
// static
std::unique_ptr<SoftwareImageDecodeCacheUtils::CacheEntry>
SoftwareImageDecodeCacheUtils::DoDecodeImage(
const CacheKey& key,
const PaintImage& paint_image,
SkColorType color_type,
PaintImage::GeneratorClientId client_id,
base::OnceClosure on_no_memory) {
const SkISize target_size =
SkISize::Make(key.target_size().width(), key.target_size().height());
DCHECK(target_size == paint_image.GetSupportedDecodeSize(target_size));
sk_sp<SkColorSpace> target_color_space =
key.target_color_params().color_space.ToSkColorSpace();
SkImageInfo target_info = SkImageInfo::Make(
target_size, color_type, kPremul_SkAlphaType, target_color_space);
std::unique_ptr<base::DiscardableMemory> target_pixels =
AllocateDiscardable(target_info, std::move(on_no_memory));
if (!target_pixels->data())
return nullptr;
SkPixmap target_pixmap(target_info, target_pixels->data(),
target_info.minRowBytes());
TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("cc.debug"),
"SoftwareImageDecodeCacheUtils::DoDecodeImage - "
"decode");
bool result = paint_image.Decode(target_pixmap, key.frame_key().frame_index(),
AuxImage::kDefault, client_id);
if (!result) {
target_pixels->Unlock();
return nullptr;
}
return std::make_unique<CacheEntry>(target_info, std::move(target_pixels),
SkSize::Make(0, 0));
}
// static
std::unique_ptr<SoftwareImageDecodeCacheUtils::CacheEntry>
SoftwareImageDecodeCacheUtils::GenerateCacheEntryFromCandidate(
const CacheKey& key,
const DecodedDrawImage& candidate_image,
bool needs_extract_subset,
SkColorType color_type) {
SkISize target_size =
SkISize::Make(key.target_size().width(), key.target_size().height());
SkImageInfo target_info =
SkImageInfo::Make(target_size, color_type, kPremul_SkAlphaType);
// TODO(crbug.com/40095682): If this turns into a crasher, pass an actual
// "free memory" closure.
std::unique_ptr<base::DiscardableMemory> target_pixels =
AllocateDiscardable(target_info, base::DoNothing());
if (key.type() == CacheKey::kSubrectOriginal) {
DCHECK(needs_extract_subset);
TRACE_EVENT0(
TRACE_DISABLED_BY_DEFAULT("cc.debug"),
"SoftwareImageDecodeCacheUtils::GenerateCacheEntryFromCandidate - "
"subrect");
bool result = candidate_image.image()->readPixels(
target_info, target_pixels->data(), target_info.minRowBytes(),
key.src_rect().x(), key.src_rect().y(), SkImage::kDisallow_CachingHint);
// We have a decoded image, and we're reading into already allocated memory.
// This should never fail.
DCHECK(result) << key.ToString();
return std::make_unique<CacheEntry>(
target_info.makeColorSpace(candidate_image.image()->refColorSpace()),
std::move(target_pixels),
SkSize::Make(-key.src_rect().x(), -key.src_rect().y()));
}
DCHECK_EQ(key.type(), CacheKey::kSubrectAndScale);
TRACE_EVENT0(
TRACE_DISABLED_BY_DEFAULT("cc.debug"),
"SoftwareImageDecodeCacheUtils::GenerateCacheEntryFromCandidate - "
"scale");
SkPixmap decoded_pixmap;
// We don't need to subrect this image, since all candidates passed in would
// already have a src_rect applied to them.
bool result = candidate_image.image()->peekPixels(&decoded_pixmap);
DCHECK(result) << key.ToString();
if (needs_extract_subset) {
result = decoded_pixmap.extractSubset(&decoded_pixmap,
gfx::RectToSkIRect(key.src_rect()));
DCHECK(result) << key.ToString();
}
// Nearest neighbor would only be set in the unscaled case.
DCHECK(!key.is_nearest_neighbor());
SkPixmap target_pixmap(target_info, target_pixels->data(),
target_info.minRowBytes());
PaintFlags::FilterQuality filter_quality = PaintFlags::FilterQuality::kMedium;
result = decoded_pixmap.scalePixels(
target_pixmap,
PaintFlags::FilterQualityToSkSamplingOptions(filter_quality));
DCHECK(result) << key.ToString();
return std::make_unique<CacheEntry>(
target_info.makeColorSpace(candidate_image.image()->refColorSpace()),
std::move(target_pixels),
SkSize::Make(-key.src_rect().x(), -key.src_rect().y()));
}
// CacheKey --------------------------------------------------------------------
// static
SoftwareImageDecodeCacheUtils::CacheKey
SoftwareImageDecodeCacheUtils::CacheKey::FromDrawImage(const DrawImage& image,
SkColorType color_type) {
DCHECK(!image.paint_image().IsTextureBacked());
const PaintImage::FrameKey frame_key = image.frame_key();
const PaintImage::Id stable_id = image.paint_image().stable_id();
const SkSize& scale = image.scale();
// If the src_rect falls outside of the image, we need to clip it since
// otherwise we might end up with uninitialized memory in the decode process.
// Note that the scale is still unchanged and the target size is now a
// function of the new src_rect.
const gfx::Rect& src_rect = GetSrcRect(image);
// Start with the exact target size. However, this will be adjusted below to
// be either a mip level, the original size, or a subrect size. This is done
// to keep memory accounting correct.
gfx::Size target_size(
SkScalarRoundToInt(std::abs(src_rect.width() * scale.width())),
SkScalarRoundToInt(std::abs(src_rect.height() * scale.height())));
// If the target size is empty, then we'll be skipping the decode anyway, so
// the filter quality doesn't matter. Early out instead.
if (target_size.IsEmpty()) {
return CacheKey(frame_key, stable_id, kSubrectAndScale, false,
image.paint_image().may_be_lcp_candidate(), src_rect,
target_size, image.target_color_params());
}
ProcessingType type = kOriginal;
bool is_nearest_neighbor =
image.filter_quality() == PaintFlags::FilterQuality::kNone;
int mip_level = MipMapUtil::GetLevelForSize(src_rect.size(), target_size);
// If any of the following conditions hold, then use at most low filter
// quality and adjust the target size to match the original image:
// - Quality is none: We need a pixelated image, so we can't upgrade it.
// - Mip level is 0: The required mip is the original image, so just use low
// filter quality.
// - Matrix is not decomposable: There's perspective on this image and we
// can't determine the size, so use the original.
if (is_nearest_neighbor || mip_level == 0 ||
!image.matrix_is_decomposable()) {
type = kOriginal;
// Update the size to be the original image size.
target_size =
gfx::Size(image.paint_image().width(), image.paint_image().height());
} else {
type = kSubrectAndScale;
// Update the target size to be a mip level size.
target_size = MipMapUtil::GetSizeForLevel(src_rect.size(), mip_level);
}
// If the original image is large, we might want to do a subrect instead if
// the subrect would be kMemoryRatioToSubrect times smaller.
if (type == kOriginal &&
(image.paint_image().width() >= kMinDimensionToSubrect ||
image.paint_image().height() >= kMinDimensionToSubrect)) {
base::CheckedNumeric<size_t> checked_original_size = 4u;
checked_original_size *= image.paint_image().width();
checked_original_size *= image.paint_image().height();
size_t original_size = checked_original_size.ValueOrDefault(
std::numeric_limits<size_t>::max());
base::CheckedNumeric<size_t> checked_src_rect_size = 4u;
checked_src_rect_size *= src_rect.width();
checked_src_rect_size *= src_rect.height();
size_t src_rect_size = checked_src_rect_size.ValueOrDefault(
std::numeric_limits<size_t>::max());
// If the sizes are such that we get good savings by subrecting, then do
// that. Also update the target size to be the src rect size since that's
// the rect we want to use.
if (original_size > kMemoryThresholdToSubrect &&
src_rect_size <= original_size * kMemoryRatioToSubrect) {
type = kSubrectOriginal;
target_size = src_rect.size();
}
}
return CacheKey(frame_key, stable_id, type, is_nearest_neighbor,
image.paint_image().may_be_lcp_candidate(), src_rect,
target_size, image.target_color_params());
}
SoftwareImageDecodeCacheUtils::CacheKey::CacheKey(
PaintImage::FrameKey frame_key,
PaintImage::Id stable_id,
ProcessingType type,
bool is_nearest_neighbor,
bool may_be_lcp_candidate,
const gfx::Rect& src_rect,
const gfx::Size& target_size,
const TargetColorParams& target_color_params)
: frame_key_(frame_key),
stable_id_(stable_id),
type_(type),
is_nearest_neighbor_(is_nearest_neighbor),
may_be_lcp_candidate_(may_be_lcp_candidate),
src_rect_(src_rect),
target_size_(target_size),
target_color_params_(target_color_params) {
if (type == kOriginal) {
hash_ = frame_key_.hash();
} else {
// TODO(vmpstr): This is a mess. Maybe it's faster to just search the vector
// always (forwards or backwards to account for LRU).
uint64_t src_rect_hash = base::HashInts(
static_cast<uint64_t>(base::HashInts(src_rect_.x(), src_rect_.y())),
static_cast<uint64_t>(
base::HashInts(src_rect_.width(), src_rect_.height())));
uint64_t target_size_hash =
base::HashInts(target_size_.width(), target_size_.height());
hash_ = base::HashInts(base::HashInts(src_rect_hash, target_size_hash),
frame_key_.hash());
}
// Include the target color space in the hash regardless of scaling.
hash_ = base::HashInts(hash_, target_color_params.GetHash());
}
SoftwareImageDecodeCacheUtils::CacheKey::CacheKey(const CacheKey& other) =
default;
SoftwareImageDecodeCacheUtils::CacheKey&
SoftwareImageDecodeCacheUtils::CacheKey::operator=(const CacheKey& other) =
default;
std::string SoftwareImageDecodeCacheUtils::CacheKey::ToString() const {
std::ostringstream str;
str << "frame_key[" << frame_key_.ToString() << "]\ntype[";
switch (type_) {
case kOriginal:
str << "Original";
break;
case kSubrectOriginal:
str << "SubrectOriginal";
break;
case kSubrectAndScale:
str << "SubrectAndScale";
break;
}
str << "]\nis_nearest_neightbor[" << is_nearest_neighbor_ << "]\nsrc_rect["
<< src_rect_.ToString() << "]\ntarget_size[" << target_size_.ToString()
<< "]\ntarget_color_params[" << target_color_params_.ToString()
<< "]\nhash[" << hash_ << "]";
return str.str();
}
// CacheEntry ------------------------------------------------------------------
SoftwareImageDecodeCacheUtils::CacheEntry::CacheEntry()
: tracing_id_(g_next_tracing_id_.GetNext()) {}
SoftwareImageDecodeCacheUtils::CacheEntry::CacheEntry(
const SkImageInfo& info,
std::unique_ptr<base::DiscardableMemory> in_memory,
const SkSize& src_rect_offset)
: is_locked(true),
memory(std::move(in_memory)),
image_info_(info),
src_rect_offset_(src_rect_offset),
tracing_id_(g_next_tracing_id_.GetNext()) {
DCHECK(memory);
SkPixmap pixmap(image_info_, memory->data(), image_info_.minRowBytes());
image_ = SkImages::RasterFromPixmap(
pixmap, [](const void* pixels, void* context) {}, nullptr);
}
SoftwareImageDecodeCacheUtils::CacheEntry::~CacheEntry() {
DCHECK(!is_locked);
// We create temporary CacheEntries as a part of decoding. However, we move
// the memory to cache entries that actually live in the cache. Destroying the
// temporaries should not cause any of the stats to be recorded. Specifically,
// if allowed to report, they would report every single temporary entry as
// wasted, which is misleading. As a fix, don't report on a cache entry that
// has never been in the cache.
if (!cached_)
return;
// lock_count | used | last lock failed | result state
// ===========+=======+==================+==================
// 1 | false | false | WASTED
// 1 | false | true | WASTED
// 1 | true | false | USED
// 1 | true | true | USED_RELOCK_FAILED
// >1 | false | false | WASTED_RELOCKED
// >1 | false | true | WASTED_RELOCKED
// >1 | true | false | USED_RELOCKED
// >1 | true | true | USED_RELOCKED
// Note that it's important not to reorder the following enums, since the
// numerical values are used in the histogram code.
enum State : int {
DECODED_IMAGE_STATE_WASTED,
DECODED_IMAGE_STATE_USED,
DECODED_IMAGE_STATE_USED_RELOCK_FAILED,
DECODED_IMAGE_STATE_WASTED_RELOCKED,
DECODED_IMAGE_STATE_USED_RELOCKED,
DECODED_IMAGE_STATE_COUNT
} state = DECODED_IMAGE_STATE_WASTED;
if (usage_stats_.lock_count == 1) {
if (!usage_stats_.used)
state = DECODED_IMAGE_STATE_WASTED;
else if (usage_stats_.last_lock_failed)
state = DECODED_IMAGE_STATE_USED_RELOCK_FAILED;
else
state = DECODED_IMAGE_STATE_USED;
} else {
if (usage_stats_.used)
state = DECODED_IMAGE_STATE_USED_RELOCKED;
else
state = DECODED_IMAGE_STATE_WASTED_RELOCKED;
}
UMA_HISTOGRAM_ENUMERATION("Renderer4.SoftwareImageDecodeState", state,
DECODED_IMAGE_STATE_COUNT);
UMA_HISTOGRAM_BOOLEAN("Renderer4.SoftwareImageDecodeState.FirstLockWasted",
usage_stats_.first_lock_wasted);
if (usage_stats_.first_lock_out_of_raster)
UMA_HISTOGRAM_BOOLEAN(
"Renderer4.SoftwareImageDecodeState.FirstLockWasted.OutOfRaster",
usage_stats_.first_lock_wasted);
}
void SoftwareImageDecodeCacheUtils::CacheEntry::MoveImageMemoryTo(
CacheEntry* entry) {
DCHECK(!is_budgeted);
DCHECK_EQ(ref_count, 0);
// Copy/move most things except budgeted and ref counts.
entry->decode_failed = decode_failed;
entry->is_locked = is_locked;
is_locked = false;
entry->memory = std::move(memory);
entry->image_info_ = std::move(image_info_);
entry->src_rect_offset_ = std::move(src_rect_offset_);
entry->image_ = std::move(image_);
}
bool SoftwareImageDecodeCacheUtils::CacheEntry::Lock() {
if (!memory)
return false;
DCHECK(!is_locked);
bool success = memory->Lock();
if (!success) {
memory = nullptr;
usage_stats_.last_lock_failed = true;
return false;
}
is_locked = true;
++usage_stats_.lock_count;
return true;
}
void SoftwareImageDecodeCacheUtils::CacheEntry::Unlock() {
if (!memory)
return;
DCHECK(is_locked);
memory->Unlock();
is_locked = false;
if (usage_stats_.lock_count == 1)
usage_stats_.first_lock_wasted = !usage_stats_.used;
}
} // namespace cc