1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
gpu / command_buffer / client / client_discardable_manager.cc [blame]
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "gpu/command_buffer/client/client_discardable_manager.h"
#include "base/atomic_sequence_num.h"
#include "base/containers/contains.h"
#include "base/containers/flat_set.h"
#include "base/numerics/safe_conversions.h"
#include "base/system/sys_info.h"
#include "build/build_config.h"
namespace gpu {
namespace {
// Stores a set of offsets, initially 0 to |element_count_|. Allows callers to
// take and return offsets from the set. Internally stores the offsets as a set
// of ranges. This means that in the worst case (every other offset taken), the
// set will use |element_count_| uints, but should typically use fewer.
class FreeOffsetSet {
public:
// Creates a new set, containing 0 to |element_count|.
explicit FreeOffsetSet(uint32_t element_count);
FreeOffsetSet(const FreeOffsetSet&) = delete;
FreeOffsetSet& operator=(const FreeOffsetSet&) = delete;
// Returns true if the set contains at least one element.
bool HasFreeOffset() const;
// Returns true if any element from the set has been taken.
bool HasUsedOffset() const;
// Takes a free offset from the set. Should only be called if HasFreeOffset().
uint32_t TakeFreeOffset();
// Returns an offset to the set.
void ReturnFreeOffset(uint32_t offset);
private:
struct FreeRange {
uint32_t start;
uint32_t end;
};
struct CompareFreeRanges {
bool operator()(const FreeRange& a, const FreeRange& b) const {
return a.start < b.start;
}
};
const uint32_t element_count_;
base::flat_set<FreeRange, CompareFreeRanges> free_ranges_;
};
FreeOffsetSet::FreeOffsetSet(uint32_t element_count)
: element_count_(element_count) {
free_ranges_.insert({0, element_count_});
}
bool FreeOffsetSet::HasFreeOffset() const {
return !free_ranges_.empty();
}
bool FreeOffsetSet::HasUsedOffset() const {
if (free_ranges_.size() != 1 || free_ranges_.begin()->start != 0 ||
free_ranges_.begin()->end != element_count_)
return true;
return false;
}
uint32_t FreeOffsetSet::TakeFreeOffset() {
DCHECK(HasFreeOffset());
auto it = free_ranges_.begin();
uint32_t offset_to_return = it->start;
FreeRange new_range{it->start + 1, it->end};
free_ranges_.erase(it);
if (new_range.start != new_range.end)
free_ranges_.insert(new_range);
return offset_to_return;
}
void FreeOffsetSet::ReturnFreeOffset(uint32_t offset) {
FreeRange new_range{offset, offset + 1};
// Find the FreeRange directly before/after our new range.
auto next_range = free_ranges_.lower_bound(new_range);
auto prev_range = free_ranges_.end();
if (next_range != free_ranges_.begin()) {
prev_range = std::prev(next_range);
}
// Collapse ranges if possible.
if (prev_range != free_ranges_.end() && prev_range->end == new_range.start) {
new_range.start = prev_range->start;
// Erase invalidates the next_range iterator, so re-acquire it.
next_range = free_ranges_.erase(prev_range);
}
if (next_range != free_ranges_.end() && next_range->start == new_range.end) {
new_range.end = next_range->end;
free_ranges_.erase(next_range);
}
free_ranges_.insert(new_range);
}
// Returns the size of the allocation which ClientDiscardableManager will
// sub-allocate from. This should be at least as big as the minimum shared
// memory allocation size.
size_t AllocationSize() {
#if BUILDFLAG(IS_NACL)
// base::SysInfo isn't available under NaCl.
size_t system_allocation_size = getpagesize();
#else
size_t system_allocation_size = base::SysInfo::VMAllocationGranularity();
#endif
// If the allocation is small (less than 2K), round it up to at least 2K.
return std::max(size_t{2048}, system_allocation_size);
}
ClientDiscardableHandle::Id GetNextHandleId() {
static base::AtomicSequenceNumber g_next_handle_id;
// AtomicSequenceNumber is 0-based, add 1 to have a 1-based ID where 0 is
// invalid.
return ClientDiscardableHandle::Id::FromUnsafeValue(
g_next_handle_id.GetNext() + 1);
}
} // namespace
struct ClientDiscardableManager::Allocation {
Allocation(uint32_t element_count) : free_offsets(element_count) {}
scoped_refptr<Buffer> buffer;
int32_t shm_id = 0;
FreeOffsetSet free_offsets;
};
ClientDiscardableManager::ClientDiscardableManager()
: allocation_size_(AllocationSize()) {}
ClientDiscardableManager::~ClientDiscardableManager() = default;
ClientDiscardableHandle::Id ClientDiscardableManager::CreateHandle(
CommandBuffer* command_buffer) {
scoped_refptr<Buffer> buffer;
int32_t shm_id;
uint32_t offset = 0;
if (!FindAllocation(command_buffer, &buffer, &shm_id, &offset)) {
// This can fail if we've lost context, return an invalid Id.
return ClientDiscardableHandle::Id();
}
uint32_t byte_offset = base::checked_cast<uint32_t>(offset * element_size_);
ClientDiscardableHandle handle(std::move(buffer), byte_offset, shm_id);
ClientDiscardableHandle::Id handle_id = GetNextHandleId();
handles_.emplace(handle_id, handle);
return handle_id;
}
bool ClientDiscardableManager::LockHandle(
ClientDiscardableHandle::Id handle_id) {
auto found = handles_.find(handle_id);
if (found == handles_.end())
return false;
return found->second.Lock();
}
void ClientDiscardableManager::FreeHandle(
ClientDiscardableHandle::Id handle_id) {
auto found = handles_.find(handle_id);
if (found == handles_.end())
return;
pending_handles_.push(found->second);
handles_.erase(found);
}
bool ClientDiscardableManager::HandleIsValid(
ClientDiscardableHandle::Id handle_id) const {
return base::Contains(handles_, handle_id);
}
ClientDiscardableHandle ClientDiscardableManager::GetHandle(
ClientDiscardableHandle::Id handle_id) {
auto found = handles_.find(handle_id);
if (found == handles_.end())
return ClientDiscardableHandle();
return found->second;
}
bool ClientDiscardableManager::HandleIsDeleted(
ClientDiscardableHandle::Id handle_id) {
auto found = handles_.find(handle_id);
if (found == handles_.end())
return true;
if (found->second.CanBeReUsed()) {
handles_.erase(found);
return true;
}
return false;
}
bool ClientDiscardableManager::HandleIsDeletedForTracing(
ClientDiscardableHandle::Id handle_id) const {
auto found = handles_.find(handle_id);
if (found == handles_.end())
return true;
return found->second.IsDeletedForTracing();
}
bool ClientDiscardableManager::FindAllocation(CommandBuffer* command_buffer,
scoped_refptr<Buffer>* buffer,
int32_t* shm_id,
uint32_t* offset) {
CheckPending(command_buffer);
if (FindExistingAllocation(command_buffer, buffer, shm_id, offset))
return true;
// We couldn't find an existing free entry and are about to allocate more
// space. Check whether any handles have been deleted on the service side.
if (CheckDeleted(command_buffer)) {
// We deleted at least one entry, try to find an allocaiton. If the entry
// we deleted was the last one in an allocation, it's possbile that we
// *still* won't have allocaitons, so this isn't guaranteed to succeed.
if (FindExistingAllocation(command_buffer, buffer, shm_id, offset))
return true;
}
// Allocate more space.
auto allocation = std::make_unique<Allocation>(elements_per_allocation_);
allocation->buffer = command_buffer->CreateTransferBuffer(
base::checked_cast<uint32_t>(allocation_size_), &allocation->shm_id);
if (!allocation->buffer)
return false;
*offset = allocation->free_offsets.TakeFreeOffset();
*shm_id = allocation->shm_id;
*buffer = allocation->buffer;
allocations_.push_back(std::move(allocation));
return true;
}
bool ClientDiscardableManager::FindExistingAllocation(
CommandBuffer* command_buffer,
scoped_refptr<Buffer>* buffer,
int32_t* shm_id,
uint32_t* offset) {
for (auto& allocation : allocations_) {
if (!allocation->free_offsets.HasFreeOffset())
continue;
*offset = allocation->free_offsets.TakeFreeOffset();
*shm_id = allocation->shm_id;
*buffer = allocation->buffer;
return true;
}
return false;
}
void ClientDiscardableManager::ReturnAllocation(
CommandBuffer* command_buffer,
const ClientDiscardableHandle& handle) {
for (auto it = allocations_.begin(); it != allocations_.end(); ++it) {
Allocation* allocation = it->get();
if (allocation->shm_id != handle.shm_id())
continue;
allocation->free_offsets.ReturnFreeOffset(
static_cast<uint32_t>(handle.byte_offset() / element_size_));
if (!allocation->free_offsets.HasUsedOffset()) {
command_buffer->DestroyTransferBuffer(allocation->shm_id);
allocations_.erase(it);
return;
}
}
}
void ClientDiscardableManager::CheckPending(CommandBuffer* command_buffer) {
while (pending_handles_.size() > 0 &&
pending_handles_.front().CanBeReUsed()) {
ReturnAllocation(command_buffer, pending_handles_.front());
pending_handles_.pop();
}
}
bool ClientDiscardableManager::CheckDeleted(CommandBuffer* command_buffer) {
bool freed_entry = false;
for (auto it = handles_.begin(); it != handles_.end();) {
if (it->second.CanBeReUsed()) {
ReturnAllocation(command_buffer, it->second);
it = handles_.erase(it);
freed_entry = true;
} else {
++it;
}
}
return freed_entry;
}
} // namespace gpu