1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
gpu / command_buffer / client / fenced_allocator.cc [blame]
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
// This file contains the implementation of the FencedAllocator class.
#include "gpu/command_buffer/client/fenced_allocator.h"
#include <stdint.h>
#include <algorithm>
#include "base/not_fatal_until.h"
#include "base/numerics/clamped_math.h"
#include "gpu/command_buffer/client/cmd_buffer_helper.h"
namespace gpu {
namespace {
// Round down to the largest multiple of kAllocAlignment no greater than |size|.
uint32_t RoundDown(uint32_t size) {
return size & ~(FencedAllocator::kAllocAlignment - 1);
}
// Round up to the smallest multiple of kAllocAlignment no smaller than |size|.
base::CheckedNumeric<uint32_t> RoundUp(uint32_t size) {
return (base::CheckedNumeric<uint32_t>(size) +
(FencedAllocator::kAllocAlignment - 1)) &
~(FencedAllocator::kAllocAlignment - 1);
}
} // namespace
FencedAllocator::FencedAllocator(uint32_t size, CommandBufferHelper* helper)
: helper_(helper), bytes_in_use_(0) {
Block block = { FREE, 0, RoundDown(size), kUnusedToken };
blocks_.push_back(block);
}
FencedAllocator::~FencedAllocator() {
// All IN_USE blocks should be released at this point. There may still be
// FREE_PENDING_TOKEN blocks, the assumption is that the underlying memory
// will not be re-used without higher level synchronization.
DCHECK_EQ(bytes_in_use_, 0u);
}
// Looks for a non-allocated block that is big enough. Search in the FREE
// blocks first (for direct usage), first-fit, then in the FREE_PENDING_TOKEN
// blocks, waiting for them. The current implementation isn't smart about
// optimizing what to wait for, just looks inside the block in order (first-fit
// as well).
FencedAllocator::Offset FencedAllocator::Alloc(uint32_t size) {
// size of 0 is not allowed because it would be inconsistent to only sometimes
// have it succeed. Example: Alloc(SizeOfBuffer), Alloc(0).
if (size == 0) {
return kInvalidOffset;
}
// Round up the allocation size to ensure alignment.
uint32_t aligned_size = 0;
if (!RoundUp(size).AssignIfValid(&aligned_size)) {
return kInvalidOffset;
}
// Try first to allocate in a free block.
for (uint32_t i = 0; i < blocks_.size(); ++i) {
Block &block = blocks_[i];
if (block.state == FREE && block.size >= aligned_size) {
return AllocInBlock(i, aligned_size);
}
}
// No free block is available. Look for blocks pending tokens, and wait for
// them to be re-usable.
for (uint32_t i = 0; i < blocks_.size(); ++i) {
if (blocks_[i].state != FREE_PENDING_TOKEN)
continue;
i = WaitForTokenAndFreeBlock(i);
if (blocks_[i].size >= aligned_size)
return AllocInBlock(i, aligned_size);
}
return kInvalidOffset;
}
// Looks for the corresponding block, mark it FREE, and collapse it if
// necessary.
void FencedAllocator::Free(FencedAllocator::Offset offset) {
BlockIndex index = GetBlockByOffset(offset);
Block &block = blocks_[index];
DCHECK_NE(block.state, FREE);
DCHECK_EQ(block.offset, offset);
if (block.state == IN_USE)
bytes_in_use_ -= block.size;
block.state = FREE;
CollapseFreeBlock(index);
}
// Looks for the corresponding block, mark it FREE_PENDING_TOKEN.
void FencedAllocator::FreePendingToken(FencedAllocator::Offset offset,
int32_t token) {
BlockIndex index = GetBlockByOffset(offset);
Block &block = blocks_[index];
DCHECK_EQ(block.offset, offset);
if (block.state == IN_USE)
bytes_in_use_ -= block.size;
block.state = FREE_PENDING_TOKEN;
block.token = token;
}
// Gets the max of the size of the blocks marked as free.
uint32_t FencedAllocator::GetLargestFreeSize() {
FreeUnused();
uint32_t max_size = 0;
for (uint32_t i = 0; i < blocks_.size(); ++i) {
Block &block = blocks_[i];
if (block.state == FREE)
max_size = std::max(max_size, block.size);
}
return max_size;
}
// Gets the size of the largest segment of blocks that are either FREE or
// FREE_PENDING_TOKEN.
uint32_t FencedAllocator::GetLargestFreeOrPendingSize() {
uint32_t max_size = 0;
uint32_t current_size = 0;
for (uint32_t i = 0; i < blocks_.size(); ++i) {
Block &block = blocks_[i];
if (block.state == IN_USE) {
max_size = std::max(max_size, current_size);
current_size = 0;
} else {
DCHECK(block.state == FREE || block.state == FREE_PENDING_TOKEN);
current_size += block.size;
}
}
return std::max(max_size, current_size);
}
// Gets the total size of all blocks marked as free.
uint32_t FencedAllocator::GetFreeSize() {
FreeUnused();
uint32_t size = 0;
for (uint32_t i = 0; i < blocks_.size(); ++i) {
Block& block = blocks_[i];
if (block.state == FREE)
size += block.size;
}
return size;
}
// Makes sure that:
// - there is at least one block.
// - there are no contiguous FREE blocks (they should have been collapsed).
// - the successive offsets match the block sizes, and they are in order.
bool FencedAllocator::CheckConsistency() {
if (blocks_.size() < 1) return false;
for (uint32_t i = 0; i < blocks_.size() - 1; ++i) {
Block ¤t = blocks_[i];
Block &next = blocks_[i + 1];
// This test is NOT included in the next one, because offset is unsigned.
if (next.offset <= current.offset)
return false;
if (next.offset != current.offset + current.size)
return false;
if (current.state == FREE && next.state == FREE)
return false;
}
return true;
}
// Returns false if all blocks are actually FREE, in which
// case they would be coalesced into one block, true otherwise.
bool FencedAllocator::InUseOrFreePending() {
return blocks_.size() != 1 || blocks_[0].state != FREE;
}
FencedAllocator::State FencedAllocator::GetBlockStatusForTest(
Offset offset,
int32_t* token_if_pending) {
BlockIndex index = GetBlockByOffset(offset);
Block& block = blocks_[index];
if ((block.state == FREE_PENDING_TOKEN) && token_if_pending)
*token_if_pending = block.token;
return block.state;
}
// Collapse the block to the next one, then to the previous one. Provided the
// structure is consistent, those are the only blocks eligible for collapse.
FencedAllocator::BlockIndex FencedAllocator::CollapseFreeBlock(
BlockIndex index) {
if (index + 1 < blocks_.size()) {
Block &next = blocks_[index + 1];
if (next.state == FREE) {
blocks_[index].size += next.size;
blocks_.erase(blocks_.begin() + index + 1);
}
}
if (index > 0) {
Block &prev = blocks_[index - 1];
if (prev.state == FREE) {
prev.size += blocks_[index].size;
blocks_.erase(blocks_.begin() + index);
--index;
}
}
return index;
}
// Waits for the block's token, then mark the block as free, then collapse it.
FencedAllocator::BlockIndex FencedAllocator::WaitForTokenAndFreeBlock(
BlockIndex index) {
Block &block = blocks_[index];
DCHECK_EQ(block.state, FREE_PENDING_TOKEN);
helper_->WaitForToken(block.token);
block.state = FREE;
return CollapseFreeBlock(index);
}
// Frees any blocks pending a token for which the token has been read.
void FencedAllocator::FreeUnused() {
helper_->RefreshCachedToken();
for (uint32_t i = 0; i < blocks_.size();) {
Block& block = blocks_[i];
if (block.state == FREE_PENDING_TOKEN &&
helper_->HasCachedTokenPassed(block.token)) {
block.state = FREE;
i = CollapseFreeBlock(i);
} else {
++i;
}
}
}
// If the block is exactly the requested size, simply mark it IN_USE, otherwise
// split it and mark the first one (of the requested size) IN_USE.
FencedAllocator::Offset FencedAllocator::AllocInBlock(BlockIndex index,
uint32_t size) {
Block &block = blocks_[index];
DCHECK_GE(block.size, size);
DCHECK_EQ(block.state, FREE);
Offset offset = block.offset;
bytes_in_use_ += size;
if (block.size == size) {
block.state = IN_USE;
return offset;
}
Block newblock = { FREE, offset + size, block.size - size, kUnusedToken};
block.state = IN_USE;
block.size = size;
// this is the last thing being done because it may invalidate block;
blocks_.insert(blocks_.begin() + index + 1, newblock);
return offset;
}
// The blocks are in offset order, so we can do a binary search.
FencedAllocator::BlockIndex FencedAllocator::GetBlockByOffset(Offset offset) {
Block templ = { IN_USE, offset, 0, kUnusedToken };
Container::iterator it = std::lower_bound(blocks_.begin(), blocks_.end(),
templ, OffsetCmp());
CHECK(it != blocks_.end(), base::NotFatalUntil::M130);
return it-blocks_.begin();
}
} // namespace gpu