1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268

gpu / command_buffer / client / fenced_allocator.cc [blame]

// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// This file contains the implementation of the FencedAllocator class.

#include "gpu/command_buffer/client/fenced_allocator.h"

#include <stdint.h>

#include <algorithm>

#include "base/not_fatal_until.h"
#include "base/numerics/clamped_math.h"
#include "gpu/command_buffer/client/cmd_buffer_helper.h"

namespace gpu {

namespace {

// Round down to the largest multiple of kAllocAlignment no greater than |size|.
uint32_t RoundDown(uint32_t size) {
  return size & ~(FencedAllocator::kAllocAlignment - 1);
}

// Round up to the smallest multiple of kAllocAlignment no smaller than |size|.
base::CheckedNumeric<uint32_t> RoundUp(uint32_t size) {
  return (base::CheckedNumeric<uint32_t>(size) +
          (FencedAllocator::kAllocAlignment - 1)) &
         ~(FencedAllocator::kAllocAlignment - 1);
}

}  // namespace

FencedAllocator::FencedAllocator(uint32_t size, CommandBufferHelper* helper)
    : helper_(helper), bytes_in_use_(0) {
  Block block = { FREE, 0, RoundDown(size), kUnusedToken };
  blocks_.push_back(block);
}

FencedAllocator::~FencedAllocator() {
  // All IN_USE blocks should be released at this point. There may still be
  // FREE_PENDING_TOKEN blocks, the assumption is that the underlying memory
  // will not be re-used without higher level synchronization.
  DCHECK_EQ(bytes_in_use_, 0u);
}

// Looks for a non-allocated block that is big enough. Search in the FREE
// blocks first (for direct usage), first-fit, then in the FREE_PENDING_TOKEN
// blocks, waiting for them. The current implementation isn't smart about
// optimizing what to wait for, just looks inside the block in order (first-fit
// as well).
FencedAllocator::Offset FencedAllocator::Alloc(uint32_t size) {
  // size of 0 is not allowed because it would be inconsistent to only sometimes
  // have it succeed. Example: Alloc(SizeOfBuffer), Alloc(0).
  if (size == 0)  {
    return kInvalidOffset;
  }

  // Round up the allocation size to ensure alignment.
  uint32_t aligned_size = 0;
  if (!RoundUp(size).AssignIfValid(&aligned_size)) {
    return kInvalidOffset;
  }

  // Try first to allocate in a free block.
  for (uint32_t i = 0; i < blocks_.size(); ++i) {
    Block &block = blocks_[i];
    if (block.state == FREE && block.size >= aligned_size) {
      return AllocInBlock(i, aligned_size);
    }
  }

  // No free block is available. Look for blocks pending tokens, and wait for
  // them to be re-usable.
  for (uint32_t i = 0; i < blocks_.size(); ++i) {
    if (blocks_[i].state != FREE_PENDING_TOKEN)
      continue;
    i = WaitForTokenAndFreeBlock(i);
    if (blocks_[i].size >= aligned_size)
      return AllocInBlock(i, aligned_size);
  }
  return kInvalidOffset;
}

// Looks for the corresponding block, mark it FREE, and collapse it if
// necessary.
void FencedAllocator::Free(FencedAllocator::Offset offset) {
  BlockIndex index = GetBlockByOffset(offset);
  Block &block = blocks_[index];
  DCHECK_NE(block.state, FREE);
  DCHECK_EQ(block.offset, offset);

  if (block.state == IN_USE)
    bytes_in_use_ -= block.size;

  block.state = FREE;
  CollapseFreeBlock(index);
}

// Looks for the corresponding block, mark it FREE_PENDING_TOKEN.
void FencedAllocator::FreePendingToken(FencedAllocator::Offset offset,
                                       int32_t token) {
  BlockIndex index = GetBlockByOffset(offset);
  Block &block = blocks_[index];
  DCHECK_EQ(block.offset, offset);
  if (block.state == IN_USE)
    bytes_in_use_ -= block.size;
  block.state = FREE_PENDING_TOKEN;
  block.token = token;
}

// Gets the max of the size of the blocks marked as free.
uint32_t FencedAllocator::GetLargestFreeSize() {
  FreeUnused();
  uint32_t max_size = 0;
  for (uint32_t i = 0; i < blocks_.size(); ++i) {
    Block &block = blocks_[i];
    if (block.state == FREE)
      max_size = std::max(max_size, block.size);
  }
  return max_size;
}

// Gets the size of the largest segment of blocks that are either FREE or
// FREE_PENDING_TOKEN.
uint32_t FencedAllocator::GetLargestFreeOrPendingSize() {
  uint32_t max_size = 0;
  uint32_t current_size = 0;
  for (uint32_t i = 0; i < blocks_.size(); ++i) {
    Block &block = blocks_[i];
    if (block.state == IN_USE) {
      max_size = std::max(max_size, current_size);
      current_size = 0;
    } else {
      DCHECK(block.state == FREE || block.state == FREE_PENDING_TOKEN);
      current_size += block.size;
    }
  }
  return std::max(max_size, current_size);
}

// Gets the total size of all blocks marked as free.
uint32_t FencedAllocator::GetFreeSize() {
  FreeUnused();
  uint32_t size = 0;
  for (uint32_t i = 0; i < blocks_.size(); ++i) {
    Block& block = blocks_[i];
    if (block.state == FREE)
      size += block.size;
  }
  return size;
}

// Makes sure that:
// - there is at least one block.
// - there are no contiguous FREE blocks (they should have been collapsed).
// - the successive offsets match the block sizes, and they are in order.
bool FencedAllocator::CheckConsistency() {
  if (blocks_.size() < 1) return false;
  for (uint32_t i = 0; i < blocks_.size() - 1; ++i) {
    Block ¤t = blocks_[i];
    Block &next = blocks_[i + 1];
    // This test is NOT included in the next one, because offset is unsigned.
    if (next.offset <= current.offset)
      return false;
    if (next.offset != current.offset + current.size)
      return false;
    if (current.state == FREE && next.state == FREE)
      return false;
  }
  return true;
}

// Returns false if all blocks are actually FREE, in which
// case they would be coalesced into one block, true otherwise.
bool FencedAllocator::InUseOrFreePending() {
  return blocks_.size() != 1 || blocks_[0].state != FREE;
}

FencedAllocator::State FencedAllocator::GetBlockStatusForTest(
    Offset offset,
    int32_t* token_if_pending) {
  BlockIndex index = GetBlockByOffset(offset);
  Block& block = blocks_[index];
  if ((block.state == FREE_PENDING_TOKEN) && token_if_pending)
    *token_if_pending = block.token;
  return block.state;
}

// Collapse the block to the next one, then to the previous one. Provided the
// structure is consistent, those are the only blocks eligible for collapse.
FencedAllocator::BlockIndex FencedAllocator::CollapseFreeBlock(
    BlockIndex index) {
  if (index + 1 < blocks_.size()) {
    Block &next = blocks_[index + 1];
    if (next.state == FREE) {
      blocks_[index].size += next.size;
      blocks_.erase(blocks_.begin() + index + 1);
    }
  }
  if (index > 0) {
    Block &prev = blocks_[index - 1];
    if (prev.state == FREE) {
      prev.size += blocks_[index].size;
      blocks_.erase(blocks_.begin() + index);
      --index;
    }
  }
  return index;
}

// Waits for the block's token, then mark the block as free, then collapse it.
FencedAllocator::BlockIndex FencedAllocator::WaitForTokenAndFreeBlock(
    BlockIndex index) {
  Block &block = blocks_[index];
  DCHECK_EQ(block.state, FREE_PENDING_TOKEN);
  helper_->WaitForToken(block.token);
  block.state = FREE;
  return CollapseFreeBlock(index);
}

// Frees any blocks pending a token for which the token has been read.
void FencedAllocator::FreeUnused() {
  helper_->RefreshCachedToken();
  for (uint32_t i = 0; i < blocks_.size();) {
    Block& block = blocks_[i];
    if (block.state == FREE_PENDING_TOKEN &&
        helper_->HasCachedTokenPassed(block.token)) {
      block.state = FREE;
      i = CollapseFreeBlock(i);
    } else {
      ++i;
    }
  }
}

// If the block is exactly the requested size, simply mark it IN_USE, otherwise
// split it and mark the first one (of the requested size) IN_USE.
FencedAllocator::Offset FencedAllocator::AllocInBlock(BlockIndex index,
                                                      uint32_t size) {
  Block &block = blocks_[index];
  DCHECK_GE(block.size, size);
  DCHECK_EQ(block.state, FREE);
  Offset offset = block.offset;
  bytes_in_use_ += size;
  if (block.size == size) {
    block.state = IN_USE;
    return offset;
  }
  Block newblock = { FREE, offset + size, block.size - size, kUnusedToken};
  block.state = IN_USE;
  block.size = size;
  // this is the last thing being done because it may invalidate block;
  blocks_.insert(blocks_.begin() + index + 1, newblock);
  return offset;
}

// The blocks are in offset order, so we can do a binary search.
FencedAllocator::BlockIndex FencedAllocator::GetBlockByOffset(Offset offset) {
  Block templ = { IN_USE, offset, 0, kUnusedToken };
  Container::iterator it = std::lower_bound(blocks_.begin(), blocks_.end(),
                                            templ, OffsetCmp());
  CHECK(it != blocks_.end(), base::NotFatalUntil::M130);
  return it-blocks_.begin();
}

}  // namespace gpu