1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
gpu / command_buffer / client / fenced_allocator_test.cc [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
// This file contains the tests for the FencedAllocator class.
#include <stdint.h>
#include <memory>
#include "base/functional/bind.h"
#include "base/functional/callback_helpers.h"
#include "base/memory/aligned_memory.h"
#include "base/run_loop.h"
#include "base/test/task_environment.h"
#include "gpu/command_buffer/client/cmd_buffer_helper.h"
#include "gpu/command_buffer/client/fenced_allocator.h"
#include "gpu/command_buffer/service/command_buffer_direct.h"
#include "gpu/command_buffer/service/mocks.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace gpu {
using testing::Return;
using testing::Mock;
using testing::Truly;
using testing::Sequence;
using testing::DoAll;
using testing::Invoke;
using testing::InvokeWithoutArgs;
using testing::_;
class BaseFencedAllocatorTest : public testing::Test {
protected:
static const unsigned int kBufferSize = 1024;
static const int kAllocAlignment = 16;
void SetUp() override {
command_buffer_ = std::make_unique<CommandBufferDirect>();
api_mock_ = std::make_unique<AsyncAPIMock>(true, command_buffer_.get(),
command_buffer_->service());
// ignore noops in the mock - we don't want to inspect the internals of the
// helper.
EXPECT_CALL(*api_mock_, DoCommand(cmd::kNoop, 0, _))
.WillRepeatedly(Return(error::kNoError));
// Forward the SetToken calls to the engine
EXPECT_CALL(*api_mock_.get(), DoCommand(cmd::kSetToken, 1, _))
.WillRepeatedly(DoAll(Invoke(api_mock_.get(), &AsyncAPIMock::SetToken),
Return(error::kNoError)));
helper_ = std::make_unique<CommandBufferHelper>(command_buffer_.get());
helper_->Initialize(kBufferSize);
}
int32_t GetToken() { return command_buffer_->GetLastState().token; }
std::unique_ptr<CommandBufferDirect> command_buffer_;
std::unique_ptr<AsyncAPIMock> api_mock_;
std::unique_ptr<CommandBufferHelper> helper_;
base::test::SingleThreadTaskEnvironment task_environment_;
};
const unsigned int BaseFencedAllocatorTest::kBufferSize;
// Test fixture for FencedAllocator test - Creates a FencedAllocator, using a
// CommandBufferHelper with a mock AsyncAPIInterface for its interface (calling
// it directly, not through the RPC mechanism), making sure Noops are ignored
// and SetToken are properly forwarded to the engine.
class FencedAllocatorTest : public BaseFencedAllocatorTest {
protected:
void SetUp() override {
BaseFencedAllocatorTest::SetUp();
allocator_ = std::make_unique<FencedAllocator>(kBufferSize, helper_.get());
}
void TearDown() override {
// If the CommandExecutor posts any tasks, this forces them to run.
base::RunLoop().RunUntilIdle();
EXPECT_TRUE(allocator_->CheckConsistency());
BaseFencedAllocatorTest::TearDown();
}
std::unique_ptr<FencedAllocator> allocator_;
};
// Checks basic alloc and free.
TEST_F(FencedAllocatorTest, TestBasic) {
allocator_->CheckConsistency();
EXPECT_FALSE(allocator_->InUseOrFreePending());
const unsigned int kSize = 16;
FencedAllocator::Offset offset = allocator_->Alloc(kSize);
EXPECT_TRUE(allocator_->InUseOrFreePending());
EXPECT_NE(FencedAllocator::kInvalidOffset, offset);
EXPECT_GE(kBufferSize, offset+kSize);
EXPECT_TRUE(allocator_->CheckConsistency());
allocator_->Free(offset);
EXPECT_FALSE(allocator_->InUseOrFreePending());
EXPECT_TRUE(allocator_->CheckConsistency());
}
// Test alloc 0 fails.
TEST_F(FencedAllocatorTest, TestAllocZero) {
FencedAllocator::Offset offset = allocator_->Alloc(0);
EXPECT_EQ(FencedAllocator::kInvalidOffset, offset);
EXPECT_FALSE(allocator_->InUseOrFreePending());
EXPECT_TRUE(allocator_->CheckConsistency());
}
// Checks out-of-memory condition.
TEST_F(FencedAllocatorTest, TestOutOfMemory) {
EXPECT_TRUE(allocator_->CheckConsistency());
const unsigned int kSize = 16;
const unsigned int kAllocCount = kBufferSize / kSize;
CHECK_EQ(kAllocCount * kSize, kBufferSize);
// Allocate several buffers to fill in the memory.
FencedAllocator::Offset offsets[kAllocCount];
for (unsigned int i = 0; i < kAllocCount; ++i) {
offsets[i] = allocator_->Alloc(kSize);
EXPECT_NE(FencedAllocator::kInvalidOffset, offsets[i]);
EXPECT_GE(kBufferSize, offsets[i]+kSize);
EXPECT_TRUE(allocator_->CheckConsistency());
}
// This allocation should fail.
FencedAllocator::Offset offset_failed = allocator_->Alloc(kSize);
EXPECT_EQ(FencedAllocator::kInvalidOffset, offset_failed);
EXPECT_TRUE(allocator_->CheckConsistency());
// Free one successful allocation, reallocate with half the size
allocator_->Free(offsets[0]);
EXPECT_TRUE(allocator_->CheckConsistency());
offsets[0] = allocator_->Alloc(kSize/2);
EXPECT_NE(FencedAllocator::kInvalidOffset, offsets[0]);
EXPECT_GE(kBufferSize, offsets[0]+kSize);
EXPECT_TRUE(allocator_->CheckConsistency());
// This allocation should fail as well.
offset_failed = allocator_->Alloc(kSize);
EXPECT_EQ(FencedAllocator::kInvalidOffset, offset_failed);
EXPECT_TRUE(allocator_->CheckConsistency());
// Free up everything.
for (unsigned int i = 0; i < kAllocCount; ++i) {
allocator_->Free(offsets[i]);
EXPECT_TRUE(allocator_->CheckConsistency());
}
}
// Checks the free-pending-token mechanism.
TEST_F(FencedAllocatorTest, TestFreePendingToken) {
EXPECT_TRUE(allocator_->CheckConsistency());
const unsigned int kSize = 16;
const unsigned int kAllocCount = kBufferSize / kSize;
CHECK_EQ(kAllocCount * kSize, kBufferSize);
// Allocate several buffers to fill in the memory.
FencedAllocator::Offset offsets[kAllocCount];
for (unsigned int i = 0; i < kAllocCount; ++i) {
offsets[i] = allocator_->Alloc(kSize);
EXPECT_NE(FencedAllocator::kInvalidOffset, offsets[i]);
EXPECT_GE(kBufferSize, offsets[i]+kSize);
EXPECT_TRUE(allocator_->CheckConsistency());
}
// This allocation should fail.
FencedAllocator::Offset offset_failed = allocator_->Alloc(kSize);
EXPECT_EQ(FencedAllocator::kInvalidOffset, offset_failed);
EXPECT_TRUE(allocator_->CheckConsistency());
// Free one successful allocation, pending fence.
int32_t token = helper_.get()->InsertToken();
allocator_->FreePendingToken(offsets[0], token);
EXPECT_TRUE(allocator_->CheckConsistency());
// The way we hooked up the helper and engine, it won't process commands
// until it has to wait for something. Which means the token shouldn't have
// passed yet at this point.
EXPECT_GT(token, GetToken());
// This allocation will need to reclaim the space freed above, so that should
// process the commands until the token is passed.
offsets[0] = allocator_->Alloc(kSize);
EXPECT_NE(FencedAllocator::kInvalidOffset, offsets[0]);
EXPECT_GE(kBufferSize, offsets[0]+kSize);
EXPECT_TRUE(allocator_->CheckConsistency());
// Check that the token has indeed passed.
EXPECT_LE(token, GetToken());
// Free up everything.
for (unsigned int i = 0; i < kAllocCount; ++i) {
allocator_->Free(offsets[i]);
EXPECT_TRUE(allocator_->CheckConsistency());
}
}
// Checks the free-pending-token mechanism using FreeUnused
TEST_F(FencedAllocatorTest, FreeUnused) {
EXPECT_TRUE(allocator_->CheckConsistency());
const unsigned int kSize = 16;
const unsigned int kAllocCount = kBufferSize / kSize;
CHECK_EQ(kAllocCount * kSize, kBufferSize);
// Allocate several buffers to fill in the memory.
FencedAllocator::Offset offsets[kAllocCount];
for (unsigned int i = 0; i < kAllocCount; ++i) {
offsets[i] = allocator_->Alloc(kSize);
EXPECT_NE(FencedAllocator::kInvalidOffset, offsets[i]);
EXPECT_GE(kBufferSize, offsets[i]+kSize);
EXPECT_TRUE(allocator_->CheckConsistency());
}
EXPECT_TRUE(allocator_->InUseOrFreePending());
// No memory should be available.
EXPECT_EQ(0u, allocator_->GetLargestFreeSize());
// Free one successful allocation, pending fence.
int32_t token = helper_.get()->InsertToken();
allocator_->FreePendingToken(offsets[0], token);
EXPECT_TRUE(allocator_->CheckConsistency());
// Force the command buffer to process the token.
helper_->Finish();
// Tell the allocator to update what's available based on the current token.
allocator_->FreeUnused();
// Check that the new largest free size takes into account the unused block.
EXPECT_EQ(kSize, allocator_->GetLargestFreeSize());
// Free two more.
token = helper_.get()->InsertToken();
allocator_->FreePendingToken(offsets[1], token);
token = helper_.get()->InsertToken();
allocator_->FreePendingToken(offsets[2], token);
EXPECT_TRUE(allocator_->CheckConsistency());
// Check that nothing has changed.
EXPECT_EQ(kSize, allocator_->GetLargestFreeSize());
// Force the command buffer to process the token.
helper_->Finish();
// Tell the allocator to update what's available based on the current token.
allocator_->FreeUnused();
// Check that the new largest free size takes into account the unused blocks.
EXPECT_EQ(kSize * 3, allocator_->GetLargestFreeSize());
EXPECT_TRUE(allocator_->InUseOrFreePending());
// Free up everything.
for (unsigned int i = 3; i < kAllocCount; ++i) {
allocator_->Free(offsets[i]);
EXPECT_TRUE(allocator_->CheckConsistency());
}
EXPECT_FALSE(allocator_->InUseOrFreePending());
}
// Tests GetLargestFreeSize
TEST_F(FencedAllocatorTest, TestGetLargestFreeSize) {
EXPECT_TRUE(allocator_->CheckConsistency());
EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeSize());
FencedAllocator::Offset offset = allocator_->Alloc(kBufferSize);
ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
EXPECT_EQ(0u, allocator_->GetLargestFreeSize());
allocator_->Free(offset);
EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeSize());
const unsigned int kSize = 16;
offset = allocator_->Alloc(kSize);
ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
// The following checks that the buffer is allocated "smartly" - which is
// dependent on the implementation. But both first-fit or best-fit would
// ensure that.
EXPECT_EQ(kBufferSize - kSize, allocator_->GetLargestFreeSize());
// Allocate 2 more buffers (now 3), and then free the first two. This is to
// ensure a hole. Note that this is dependent on the first-fit current
// implementation.
FencedAllocator::Offset offset1 = allocator_->Alloc(kSize);
ASSERT_NE(FencedAllocator::kInvalidOffset, offset1);
FencedAllocator::Offset offset2 = allocator_->Alloc(kSize);
ASSERT_NE(FencedAllocator::kInvalidOffset, offset2);
allocator_->Free(offset);
allocator_->Free(offset1);
EXPECT_EQ(kBufferSize - 3 * kSize, allocator_->GetLargestFreeSize());
offset = allocator_->Alloc(kBufferSize - 3 * kSize);
ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
EXPECT_EQ(2 * kSize, allocator_->GetLargestFreeSize());
offset1 = allocator_->Alloc(2 * kSize);
ASSERT_NE(FencedAllocator::kInvalidOffset, offset1);
EXPECT_EQ(0u, allocator_->GetLargestFreeSize());
allocator_->Free(offset);
allocator_->Free(offset1);
allocator_->Free(offset2);
}
// Tests GetLargestFreeOrPendingSize
TEST_F(FencedAllocatorTest, TestGetLargestFreeOrPendingSize) {
EXPECT_TRUE(allocator_->CheckConsistency());
EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeOrPendingSize());
FencedAllocator::Offset offset = allocator_->Alloc(kBufferSize);
ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
EXPECT_EQ(0u, allocator_->GetLargestFreeOrPendingSize());
allocator_->Free(offset);
EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeOrPendingSize());
const unsigned int kSize = 16;
offset = allocator_->Alloc(kSize);
ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
// The following checks that the buffer is allocates "smartly" - which is
// dependent on the implementation. But both first-fit or best-fit would
// ensure that.
EXPECT_EQ(kBufferSize - kSize, allocator_->GetLargestFreeOrPendingSize());
// Allocate 2 more buffers (now 3), and then free the first two. This is to
// ensure a hole. Note that this is dependent on the first-fit current
// implementation.
FencedAllocator::Offset offset1 = allocator_->Alloc(kSize);
ASSERT_NE(FencedAllocator::kInvalidOffset, offset1);
FencedAllocator::Offset offset2 = allocator_->Alloc(kSize);
ASSERT_NE(FencedAllocator::kInvalidOffset, offset2);
allocator_->Free(offset);
allocator_->Free(offset1);
EXPECT_EQ(kBufferSize - 3 * kSize,
allocator_->GetLargestFreeOrPendingSize());
// Free the last one, pending a token.
int32_t token = helper_.get()->InsertToken();
allocator_->FreePendingToken(offset2, token);
// Now all the buffers have been freed...
EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeOrPendingSize());
// .. but one is still waiting for the token.
EXPECT_EQ(kBufferSize - 3 * kSize,
allocator_->GetLargestFreeSize());
// The way we hooked up the helper and engine, it won't process commands
// until it has to wait for something. Which means the token shouldn't have
// passed yet at this point.
EXPECT_GT(token, GetToken());
// This allocation will need to reclaim the space freed above, so that should
// process the commands until the token is passed, but it will succeed.
offset = allocator_->Alloc(kBufferSize);
ASSERT_NE(FencedAllocator::kInvalidOffset, offset);
// Check that the token has indeed passed.
EXPECT_LE(token, GetToken());
allocator_->Free(offset);
// Everything now has been freed...
EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeOrPendingSize());
// ... for real.
EXPECT_EQ(kBufferSize, allocator_->GetLargestFreeSize());
}
// Test fixture for FencedAllocatorWrapper test - Creates a
// FencedAllocatorWrapper, using a CommandBufferHelper with a mock
// AsyncAPIInterface for its interface (calling it directly, not through the
// RPC mechanism), making sure Noops are ignored and SetToken are properly
// forwarded to the engine.
class FencedAllocatorWrapperTest : public BaseFencedAllocatorTest {
protected:
void SetUp() override {
BaseFencedAllocatorTest::SetUp();
// Though allocating this buffer isn't strictly necessary, it makes
// allocations point to valid addresses, so they could be used for
// something.
buffer_.reset(static_cast<char*>(base::AlignedAlloc(
kBufferSize, kAllocAlignment)));
allocator_ = std::make_unique<FencedAllocatorWrapper>(
kBufferSize, helper_.get(), buffer_.get());
}
void TearDown() override {
// If the CommandExecutor posts any tasks, this forces them to run.
base::RunLoop().RunUntilIdle();
EXPECT_TRUE(allocator_->CheckConsistency());
BaseFencedAllocatorTest::TearDown();
}
std::unique_ptr<char, base::AlignedFreeDeleter> buffer_;
std::unique_ptr<FencedAllocatorWrapper> allocator_;
};
// Checks basic alloc and free.
TEST_F(FencedAllocatorWrapperTest, TestBasic) {
allocator_->CheckConsistency();
const unsigned int kSize = 16;
void* pointer = allocator_->Alloc(kSize);
ASSERT_TRUE(pointer);
EXPECT_LE(buffer_.get(), static_cast<char *>(pointer));
EXPECT_GE(kBufferSize, static_cast<char *>(pointer) - buffer_.get() + kSize);
EXPECT_TRUE(allocator_->CheckConsistency());
allocator_->Free(pointer);
EXPECT_TRUE(allocator_->CheckConsistency());
char* pointer_char = allocator_->AllocTyped<char>(kSize);
ASSERT_TRUE(pointer_char);
EXPECT_LE(buffer_.get(), pointer_char);
EXPECT_GE(buffer_.get() + kBufferSize, pointer_char + kSize);
allocator_->Free(pointer_char);
EXPECT_TRUE(allocator_->CheckConsistency());
unsigned int* pointer_uint = allocator_->AllocTyped<unsigned int>(kSize);
ASSERT_TRUE(pointer_uint);
EXPECT_LE(buffer_.get(), reinterpret_cast<char *>(pointer_uint));
EXPECT_GE(buffer_.get() + kBufferSize,
reinterpret_cast<char *>(pointer_uint + kSize));
// Check that it did allocate kSize * sizeof(unsigned int). We can't tell
// directly, except from the remaining size.
EXPECT_EQ(kBufferSize - kSize * sizeof(*pointer_uint),
allocator_->GetLargestFreeSize());
allocator_->Free(pointer_uint);
}
// Test alloc 0 fails.
TEST_F(FencedAllocatorWrapperTest, TestAllocZero) {
allocator_->CheckConsistency();
void* pointer = allocator_->Alloc(0);
ASSERT_FALSE(pointer);
EXPECT_TRUE(allocator_->CheckConsistency());
}
// Checks that allocation offsets are aligned to multiples of 16 bytes.
TEST_F(FencedAllocatorWrapperTest, TestAlignment) {
allocator_->CheckConsistency();
const unsigned int kSize1 = 75;
void* pointer1 = allocator_->Alloc(kSize1);
ASSERT_TRUE(pointer1);
EXPECT_TRUE(base::IsAligned(pointer1, kAllocAlignment));
EXPECT_TRUE(allocator_->CheckConsistency());
const unsigned int kSize2 = 43;
void* pointer2 = allocator_->Alloc(kSize2);
ASSERT_TRUE(pointer2);
EXPECT_TRUE(base::IsAligned(pointer2, kAllocAlignment));
EXPECT_TRUE(allocator_->CheckConsistency());
allocator_->Free(pointer2);
EXPECT_TRUE(allocator_->CheckConsistency());
allocator_->Free(pointer1);
EXPECT_TRUE(allocator_->CheckConsistency());
}
// Checks out-of-memory condition.
TEST_F(FencedAllocatorWrapperTest, TestOutOfMemory) {
allocator_->CheckConsistency();
const unsigned int kSize = 16;
const unsigned int kAllocCount = kBufferSize / kSize;
CHECK_EQ(kAllocCount * kSize, kBufferSize);
// Allocate several buffers to fill in the memory.
void* pointers[kAllocCount];
for (unsigned int i = 0; i < kAllocCount; ++i) {
pointers[i] = allocator_->Alloc(kSize);
EXPECT_TRUE(pointers[i]);
EXPECT_TRUE(allocator_->CheckConsistency());
}
// This allocation should fail.
void* pointer_failed = allocator_->Alloc(kSize);
EXPECT_FALSE(pointer_failed);
EXPECT_TRUE(allocator_->CheckConsistency());
// Free one successful allocation, reallocate with half the size
allocator_->Free(pointers[0]);
EXPECT_TRUE(allocator_->CheckConsistency());
pointers[0] = allocator_->Alloc(kSize/2);
EXPECT_TRUE(pointers[0]);
EXPECT_TRUE(allocator_->CheckConsistency());
// This allocation should fail as well.
pointer_failed = allocator_->Alloc(kSize);
EXPECT_FALSE(pointer_failed);
EXPECT_TRUE(allocator_->CheckConsistency());
// Free up everything.
for (unsigned int i = 0; i < kAllocCount; ++i) {
allocator_->Free(pointers[i]);
EXPECT_TRUE(allocator_->CheckConsistency());
}
}
// Checks the free-pending-token mechanism.
TEST_F(FencedAllocatorWrapperTest, TestFreePendingToken) {
allocator_->CheckConsistency();
const unsigned int kSize = 16;
const unsigned int kAllocCount = kBufferSize / kSize;
CHECK_EQ(kAllocCount * kSize, kBufferSize);
// Allocate several buffers to fill in the memory.
void* pointers[kAllocCount];
for (unsigned int i = 0; i < kAllocCount; ++i) {
pointers[i] = allocator_->Alloc(kSize);
EXPECT_TRUE(pointers[i]);
EXPECT_TRUE(allocator_->CheckConsistency());
}
// This allocation should fail.
void* pointer_failed = allocator_->Alloc(kSize);
EXPECT_FALSE(pointer_failed);
EXPECT_TRUE(allocator_->CheckConsistency());
// Free one successful allocation, pending fence.
int32_t token = helper_.get()->InsertToken();
allocator_->FreePendingToken(pointers[0], token);
EXPECT_TRUE(allocator_->CheckConsistency());
// The way we hooked up the helper and engine, it won't process commands
// until it has to wait for something. Which means the token shouldn't have
// passed yet at this point.
EXPECT_GT(token, GetToken());
// This allocation will need to reclaim the space freed above, so that should
// process the commands until the token is passed.
pointers[0] = allocator_->Alloc(kSize);
EXPECT_TRUE(pointers[0]);
EXPECT_TRUE(allocator_->CheckConsistency());
// Check that the token has indeed passed.
EXPECT_LE(token, GetToken());
// Free up everything.
for (unsigned int i = 0; i < kAllocCount; ++i) {
allocator_->Free(pointers[i]);
EXPECT_TRUE(allocator_->CheckConsistency());
}
}
} // namespace gpu