1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
gpu / command_buffer / common / id_allocator_test.cc [blame]
// Copyright 2011 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/351564777): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
// This file has the unit tests for the IdAllocator class.
#include <stdint.h>
#include "gpu/command_buffer/common/id_allocator.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace gpu {
class IdAllocatorTest : public testing::Test {
protected:
void SetUp() override {}
void TearDown() override {}
IdAllocator* id_allocator() { return &id_allocator_; }
private:
IdAllocator id_allocator_;
};
// Checks basic functionality: AllocateID, FreeID, InUse.
TEST_F(IdAllocatorTest, TestBasic) {
IdAllocator *allocator = id_allocator();
// Check that resource 1 is not in use
EXPECT_FALSE(allocator->InUse(1));
// Allocate an ID, check that it's in use.
ResourceId id1 = allocator->AllocateID();
EXPECT_TRUE(allocator->InUse(id1));
// Allocate another ID, check that it's in use, and different from the first
// one.
ResourceId id2 = allocator->AllocateID();
EXPECT_TRUE(allocator->InUse(id2));
EXPECT_NE(id1, id2);
// Free one of the IDs, check that it's not in use any more.
allocator->FreeID(id1);
EXPECT_FALSE(allocator->InUse(id1));
// Frees the other ID, check that it's not in use any more.
allocator->FreeID(id2);
EXPECT_FALSE(allocator->InUse(id2));
}
// Checks that the resource IDs are re-used after being freed.
TEST_F(IdAllocatorTest, TestAdvanced) {
IdAllocator *allocator = id_allocator();
// Allocate the highest possible ID, to make life awkward.
allocator->AllocateIDAtOrAbove(~static_cast<ResourceId>(0));
// Allocate a significant number of resources.
const unsigned int kNumResources = 100;
ResourceId ids[kNumResources];
for (unsigned int i = 0; i < kNumResources; ++i) {
ids[i] = allocator->AllocateID();
EXPECT_TRUE(allocator->InUse(ids[i]));
}
// Check that a new allocation re-uses the resource we just freed.
ResourceId id1 = ids[kNumResources / 2];
allocator->FreeID(id1);
EXPECT_FALSE(allocator->InUse(id1));
ResourceId id2 = allocator->AllocateID();
EXPECT_TRUE(allocator->InUse(id2));
EXPECT_EQ(id1, id2);
}
// Checks that we can choose our own ids and they won't be reused.
TEST_F(IdAllocatorTest, MarkAsUsed) {
IdAllocator* allocator = id_allocator();
ResourceId id = allocator->AllocateID();
allocator->FreeID(id);
EXPECT_FALSE(allocator->InUse(id));
EXPECT_TRUE(allocator->MarkAsUsed(id));
EXPECT_TRUE(allocator->InUse(id));
ResourceId id2 = allocator->AllocateID();
EXPECT_NE(id, id2);
EXPECT_TRUE(allocator->MarkAsUsed(id2 + 1));
ResourceId id3 = allocator->AllocateID();
// Checks our algorithm. If the algorithm changes this check should be
// changed.
EXPECT_EQ(id3, id2 + 2);
}
// Checks AllocateIdAtOrAbove.
TEST_F(IdAllocatorTest, AllocateIdAtOrAbove) {
const ResourceId kOffset = 123456;
IdAllocator* allocator = id_allocator();
ResourceId id1 = allocator->AllocateIDAtOrAbove(kOffset);
EXPECT_EQ(kOffset, id1);
ResourceId id2 = allocator->AllocateIDAtOrAbove(kOffset);
EXPECT_GT(id2, kOffset);
ResourceId id3 = allocator->AllocateIDAtOrAbove(kOffset);
EXPECT_GT(id3, kOffset);
}
// Checks that AllocateIdAtOrAbove wraps around at the maximum value.
TEST_F(IdAllocatorTest, AllocateIdAtOrAboveWrapsAround) {
const ResourceId kMaxPossibleOffset = ~static_cast<ResourceId>(0);
IdAllocator* allocator = id_allocator();
ResourceId id1 = allocator->AllocateIDAtOrAbove(kMaxPossibleOffset);
EXPECT_EQ(kMaxPossibleOffset, id1);
ResourceId id2 = allocator->AllocateIDAtOrAbove(kMaxPossibleOffset);
EXPECT_EQ(1u, id2);
ResourceId id3 = allocator->AllocateIDAtOrAbove(kMaxPossibleOffset);
EXPECT_EQ(2u, id3);
}
TEST_F(IdAllocatorTest, RedundantFreeIsIgnored) {
IdAllocator* allocator = id_allocator();
ResourceId id1 = allocator->AllocateID();
allocator->FreeID(0);
allocator->FreeID(id1);
allocator->FreeID(id1);
allocator->FreeID(id1 + 1);
ResourceId id2 = allocator->AllocateID();
ResourceId id3 = allocator->AllocateID();
EXPECT_NE(id2, id3);
EXPECT_NE(kInvalidResource, id2);
EXPECT_NE(kInvalidResource, id3);
}
TEST_F(IdAllocatorTest, AllocateIDRange) {
const ResourceId kMaxPossibleOffset = std::numeric_limits<ResourceId>::max();
IdAllocator* allocator = id_allocator();
ResourceId id1 = allocator->AllocateIDRange(1);
EXPECT_EQ(1u, id1);
ResourceId id2 = allocator->AllocateIDRange(2);
EXPECT_EQ(2u, id2);
ResourceId id3 = allocator->AllocateIDRange(3);
EXPECT_EQ(4u, id3);
ResourceId id4 = allocator->AllocateID();
EXPECT_EQ(7u, id4);
allocator->FreeID(3);
ResourceId id5 = allocator->AllocateIDRange(1);
EXPECT_EQ(3u, id5);
allocator->FreeID(5);
allocator->FreeID(2);
allocator->FreeID(4);
ResourceId id6 = allocator->AllocateIDRange(2);
EXPECT_EQ(4u, id6);
ResourceId id7 = allocator->AllocateIDAtOrAbove(kMaxPossibleOffset);
EXPECT_EQ(kMaxPossibleOffset, id7);
ResourceId id8 = allocator->AllocateIDAtOrAbove(kMaxPossibleOffset);
EXPECT_EQ(2u, id8);
ResourceId id9 = allocator->AllocateIDRange(50);
EXPECT_EQ(8u, id9);
ResourceId id10 = allocator->AllocateIDRange(50);
EXPECT_EQ(58u, id10);
// Remove all the low-numbered ids.
allocator->FreeID(1);
allocator->FreeID(15);
allocator->FreeIDRange(2, 107);
ResourceId id11 = allocator->AllocateIDRange(100);
EXPECT_EQ(1u, id11);
allocator->FreeID(kMaxPossibleOffset);
ResourceId id12 = allocator->AllocateIDRange(100);
EXPECT_EQ(101u, id12);
ResourceId id13 = allocator->AllocateIDAtOrAbove(kMaxPossibleOffset - 2u);
EXPECT_EQ(kMaxPossibleOffset - 2u, id13);
ResourceId id14 = allocator->AllocateIDRange(3);
EXPECT_EQ(201u, id14);
}
TEST_F(IdAllocatorTest, AllocateIDRangeEndNoEffect) {
const ResourceId kMaxPossibleOffset = std::numeric_limits<ResourceId>::max();
IdAllocator* allocator = id_allocator();
ResourceId id1 = allocator->AllocateIDAtOrAbove(kMaxPossibleOffset - 2u);
EXPECT_EQ(kMaxPossibleOffset - 2u, id1);
ResourceId id3 = allocator->AllocateIDRange(3);
EXPECT_EQ(1u, id3);
ResourceId id2 = allocator->AllocateIDRange(2);
EXPECT_EQ(4u, id2);
}
TEST_F(IdAllocatorTest, AllocateFullIDRange) {
const uint32_t kMaxPossibleRange = std::numeric_limits<uint32_t>::max();
const ResourceId kFreedId = 555u;
IdAllocator* allocator = id_allocator();
ResourceId id1 = allocator->AllocateIDRange(kMaxPossibleRange);
EXPECT_EQ(1u, id1);
ResourceId id2 = allocator->AllocateID();
EXPECT_EQ(0u, id2);
allocator->FreeID(kFreedId);
ResourceId id3 = allocator->AllocateID();
EXPECT_EQ(kFreedId, id3);
ResourceId id4 = allocator->AllocateID();
EXPECT_EQ(0u, id4);
allocator->FreeID(kFreedId + 1u);
allocator->FreeID(kFreedId + 4u);
allocator->FreeID(kFreedId + 3u);
allocator->FreeID(kFreedId + 5u);
allocator->FreeID(kFreedId + 2u);
ResourceId id5 = allocator->AllocateIDRange(5);
EXPECT_EQ(kFreedId + 1u, id5);
}
TEST_F(IdAllocatorTest, AllocateIDRangeNoWrapInRange) {
const uint32_t kMaxPossibleRange = std::numeric_limits<uint32_t>::max();
const ResourceId kAllocId = 10u;
IdAllocator* allocator = id_allocator();
ResourceId id1 = allocator->AllocateIDAtOrAbove(kAllocId);
EXPECT_EQ(kAllocId, id1);
ResourceId id2 = allocator->AllocateIDRange(kMaxPossibleRange - 5u);
EXPECT_EQ(0u, id2);
ResourceId id3 = allocator->AllocateIDRange(kMaxPossibleRange - kAllocId);
EXPECT_EQ(kAllocId + 1u, id3);
}
TEST_F(IdAllocatorTest, AllocateIdMax) {
const uint32_t kMaxPossibleRange = std::numeric_limits<uint32_t>::max();
IdAllocator* allocator = id_allocator();
ResourceId id = allocator->AllocateIDRange(kMaxPossibleRange);
EXPECT_EQ(1u, id);
allocator->FreeIDRange(id, kMaxPossibleRange - 1u);
ResourceId id2 = allocator->AllocateIDRange(kMaxPossibleRange);
EXPECT_EQ(0u, id2);
allocator->FreeIDRange(id, kMaxPossibleRange);
ResourceId id3 = allocator->AllocateIDRange(kMaxPossibleRange);
EXPECT_EQ(1u, id3);
}
TEST_F(IdAllocatorTest, ZeroIdCases) {
IdAllocator* allocator = id_allocator();
EXPECT_FALSE(allocator->InUse(0));
ResourceId id1 = allocator->AllocateIDAtOrAbove(0);
EXPECT_NE(0u, id1);
EXPECT_FALSE(allocator->InUse(0));
allocator->FreeID(0);
EXPECT_FALSE(allocator->InUse(0));
EXPECT_TRUE(allocator->InUse(id1));
allocator->FreeID(id1);
EXPECT_FALSE(allocator->InUse(id1));
}
} // namespace gpu