1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
gpu / command_buffer / service / shared_image / d3d_image_representation.cc [blame]
// Copyright 2019 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "gpu/command_buffer/service/shared_image/d3d_image_representation.h"
#include "gpu/command_buffer/common/constants.h"
#include "gpu/command_buffer/common/shared_image_usage.h"
#include "gpu/command_buffer/service/shared_image/d3d_image_backing.h"
#include "ui/gl/scoped_restore_texture.h"
namespace gpu {
GLTexturePassthroughD3DImageRepresentation::
GLTexturePassthroughD3DImageRepresentation(
SharedImageManager* manager,
SharedImageBacking* backing,
MemoryTypeTracker* tracker,
Microsoft::WRL::ComPtr<ID3D11Device> d3d11_device,
std::vector<scoped_refptr<D3DImageBacking::GLTextureHolder>>
gl_texture_holders)
: GLTexturePassthroughImageRepresentation(manager, backing, tracker),
d3d11_device_(std::move(d3d11_device)),
gl_texture_holders_(std::move(gl_texture_holders)) {}
GLTexturePassthroughD3DImageRepresentation::
~GLTexturePassthroughD3DImageRepresentation() = default;
bool GLTexturePassthroughD3DImageRepresentation::
NeedsSuspendAccessForDXGIKeyedMutex() const {
return static_cast<D3DImageBacking*>(backing())->has_keyed_mutex();
}
const scoped_refptr<gles2::TexturePassthrough>&
GLTexturePassthroughD3DImageRepresentation::GetTexturePassthrough(
int plane_index) {
return gl_texture_holders_[plane_index]->texture_passthrough();
}
void* GLTexturePassthroughD3DImageRepresentation::GetEGLImage() {
DCHECK(format().is_single_plane());
return gl_texture_holders_[0]->egl_image();
}
bool GLTexturePassthroughD3DImageRepresentation::BeginAccess(GLenum mode) {
D3DImageBacking* d3d_image_backing = static_cast<D3DImageBacking*>(backing());
const bool write_access =
mode == GL_SHARED_IMAGE_ACCESS_MODE_READWRITE_CHROMIUM;
if (!d3d_image_backing->BeginAccessD3D11(d3d11_device_, write_access)) {
return false;
}
for (auto& gl_texture_holder : gl_texture_holders_) {
// Bind GLImage to texture if it is necessary.
gl_texture_holder->BindEGLImageToTexture();
}
return true;
}
void GLTexturePassthroughD3DImageRepresentation::EndAccess() {
D3DImageBacking* d3d_image_backing = static_cast<D3DImageBacking*>(backing());
d3d_image_backing->EndAccessD3D11(d3d11_device_);
}
DawnD3DImageRepresentation::DawnD3DImageRepresentation(
SharedImageManager* manager,
SharedImageBacking* backing,
MemoryTypeTracker* tracker,
const wgpu::Device& device,
wgpu::BackendType backend_type,
std::vector<wgpu::TextureFormat> view_formats)
: DawnImageRepresentation(manager, backing, tracker),
device_(device),
backend_type_(backend_type),
view_formats_(view_formats) {
DCHECK(device_);
}
DawnD3DImageRepresentation::~DawnD3DImageRepresentation() {
EndAccess();
}
wgpu::Texture DawnD3DImageRepresentation::BeginAccess(
wgpu::TextureUsage usage,
wgpu::TextureUsage internal_usage) {
D3DImageBacking* d3d_image_backing = static_cast<D3DImageBacking*>(backing());
texture_ = d3d_image_backing->BeginAccessDawn(device_, backend_type_, usage,
internal_usage, view_formats_);
return texture_;
}
void DawnD3DImageRepresentation::EndAccess() {
if (!texture_)
return;
// Do this before further operations since those could end up destroying the
// Dawn device and we want the fence to be duplicated before then.
D3DImageBacking* d3d_image_backing = static_cast<D3DImageBacking*>(backing());
d3d_image_backing->EndAccessDawn(device_, texture_);
texture_ = nullptr;
}
// Enabling this functionality reduces overhead in the compositor by lowering
// the frequency of begin/end access pairs. The semantic constraints for a
// representation being able to return true are the following:
// * It is valid to call BeginScopedReadAccess() concurrently on two
// different representations of the same image
// * The backing supports true concurrent read access rather than emulating
// concurrent reads by "pausing" a first read when a second read of a
// different representation type begins, which requires that the second
// representation's read finish within the scope of its GPU task in order
// to ensure that nothing actually accesses the first representation
// while it is paused. Some backings that support only exclusive access
// from the SI perspective do the latter (e.g.,
// ExternalVulkanImageBacking as its "support" of concurrent GL and
// Vulkan access). SupportsMultipleConcurrentReadAccess() results in the
// compositor's read access being long-lived (i.e., beyond the scope of
// a single GPU task).
// The Graphite Skia representation returns true if the underlying Dawn
// representation does so. This representation meets both of the above
// constraints.
bool DawnD3DImageRepresentation::SupportsMultipleConcurrentReadAccess() {
D3DImageBacking* d3d_image_backing = static_cast<D3DImageBacking*>(backing());
// KeyedMutex does not support concurrent read access.
return !d3d_image_backing->has_keyed_mutex();
}
DawnD3DBufferRepresentation::DawnD3DBufferRepresentation(
SharedImageManager* manager,
SharedImageBacking* backing,
MemoryTypeTracker* tracker,
const wgpu::Device& device,
wgpu::BackendType backend_type)
: DawnBufferRepresentation(manager, backing, tracker),
device_(device),
backend_type_(backend_type) {
DCHECK(device_);
}
DawnD3DBufferRepresentation::~DawnD3DBufferRepresentation() {
EndAccess();
}
wgpu::Buffer DawnD3DBufferRepresentation::BeginAccess(wgpu::BufferUsage usage) {
D3DImageBacking* d3d_image_backing = static_cast<D3DImageBacking*>(backing());
buffer_ =
d3d_image_backing->BeginAccessDawnBuffer(device_, backend_type_, usage);
return buffer_;
}
void DawnD3DBufferRepresentation::EndAccess() {
if (!buffer_) {
return;
}
// Do this before further operations since those could end up destroying the
// Dawn device and we want the fence to be duplicated before then.
D3DImageBacking* d3d_image_backing = static_cast<D3DImageBacking*>(backing());
d3d_image_backing->EndAccessDawnBuffer(device_, buffer_);
// All further operations on the buffer are errors (they would be racy
// with other backings).
buffer_ = nullptr;
}
OverlayD3DImageRepresentation::OverlayD3DImageRepresentation(
SharedImageManager* manager,
SharedImageBacking* backing,
MemoryTypeTracker* tracker,
Microsoft::WRL::ComPtr<ID3D11Device> d3d11_device)
: OverlayImageRepresentation(manager, backing, tracker),
d3d11_device_(std::move(d3d11_device)) {}
OverlayD3DImageRepresentation::~OverlayD3DImageRepresentation() = default;
bool OverlayD3DImageRepresentation::BeginReadAccess(
gfx::GpuFenceHandle& acquire_fence) {
return static_cast<D3DImageBacking*>(backing())->BeginAccessD3D11(
d3d11_device_, /*write_access=*/false);
}
void OverlayD3DImageRepresentation::EndReadAccess(
gfx::GpuFenceHandle release_fence) {
DCHECK(release_fence.is_null());
static_cast<D3DImageBacking*>(backing())->EndAccessD3D11(d3d11_device_);
#if DCHECK_IS_ON()
// Sanity check that we can get the availability fence, meaning that the
// texture is either immediately available or soon-to-be available. We
// should not cache this since the eventual wait may be one or more frames
// later and the fence becomes invalidated by DComp commit.
std::ignore = static_cast<D3DImageBacking*>(backing())
->GetDCompTextureAvailabilityFenceForCurrentFrame();
#endif
}
std::optional<gl::DCLayerOverlayImage>
OverlayD3DImageRepresentation::GetDCLayerOverlayImage() {
return static_cast<D3DImageBacking*>(backing())->GetDCLayerOverlayImage();
}
D3D11VideoImageRepresentation::D3D11VideoImageRepresentation(
SharedImageManager* manager,
SharedImageBacking* backing,
MemoryTypeTracker* tracker,
Microsoft::WRL::ComPtr<ID3D11Device> d3d11_device,
Microsoft::WRL::ComPtr<ID3D11Texture2D> d3d11_texture)
: VideoImageRepresentation(manager, backing, tracker),
d3d11_device_(std::move(d3d11_device)),
d3d11_texture_(std::move(d3d11_texture)) {}
D3D11VideoImageRepresentation::~D3D11VideoImageRepresentation() = default;
bool D3D11VideoImageRepresentation::BeginWriteAccess() {
D3DImageBacking* d3d_image_backing = static_cast<D3DImageBacking*>(backing());
if (!d3d_image_backing->BeginAccessD3D11(d3d11_device_,
/*write_access=*/true)) {
return false;
}
return true;
}
void D3D11VideoImageRepresentation::EndWriteAccess() {
D3DImageBacking* d3d_image_backing = static_cast<D3DImageBacking*>(backing());
d3d_image_backing->EndAccessD3D11(d3d11_device_);
}
bool D3D11VideoImageRepresentation::BeginReadAccess() {
D3DImageBacking* d3d_image_backing = static_cast<D3DImageBacking*>(backing());
if (!d3d_image_backing->BeginAccessD3D11(d3d11_device_,
/*write_access=*/false)) {
return false;
}
return true;
}
void D3D11VideoImageRepresentation::EndReadAccess() {
D3DImageBacking* d3d_image_backing = static_cast<D3DImageBacking*>(backing());
d3d_image_backing->EndAccessD3D11(d3d11_device_);
}
Microsoft::WRL::ComPtr<ID3D11Texture2D>
D3D11VideoImageRepresentation::GetD3D11Texture() const {
return d3d11_texture_;
}
} // namespace gpu