1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591

gpu / vulkan / vulkan_device_queue.cc [blame]

// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif

#include "gpu/vulkan/vulkan_device_queue.h"

#include <bit>
#include <cstring>
#include <unordered_set>
#include <utility>
#include <vector>

#include "base/feature_list.h"
#include "base/logging.h"
#include "base/ranges/algorithm.h"
#include "base/strings/stringprintf.h"
#include "base/task/single_thread_task_runner.h"
#include "base/trace_event/memory_dump_manager.h"
#include "base/trace_event/process_memory_dump.h"
#include "build/build_config.h"
#include "gpu/config/gpu_info.h"  // nogncheck
#include "gpu/config/vulkan_info.h"
#include "gpu/vulkan/vulkan_command_pool.h"
#include "gpu/vulkan/vulkan_crash_keys.h"
#include "gpu/vulkan/vulkan_fence_helper.h"
#include "gpu/vulkan/vulkan_function_pointers.h"
#include "gpu/vulkan/vulkan_util.h"
#include "ui/gl/gl_angle_util_vulkan.h"

namespace features {
// Based on Finch experiment results, the VMA block size does not significantly
// affect performance.  Too small sizes (such as 4KB) result in instability,
// likely due to running out of allowed allocations (the
// |maxMemoryAllocationCount| Vulkan limit).  Too large sizes (such as 4MB)
// result in significant memory waste due to fragmentation.  Finch results
// have shown that with a block size of 64KB and below, the amount of
// fragmentation is ~1MB in the 99th percentile.  For 128KB and higher block
// sizes, the amount of fragmentation exponentially increases (with 2MB for
// 128KB block size, 4MB for 256KB, etc).
BASE_FEATURE(kVulkanVMALargeHeapBlockSizeExperiment,
             "VulkanVMALargeHeapBlockSizeExperiment",
             base::FEATURE_ENABLED_BY_DEFAULT);
constexpr base::FeatureParam<int> kVulkanVMALargeHeapBlockSize{
    &kVulkanVMALargeHeapBlockSizeExperiment, "VulkanVMALargeHeapBlockSize",
    64 * 1024};
}  // namespace features

namespace gpu {
namespace {
VkDeviceSize GetPreferredVMALargeHeapBlockSize() {
  const VkDeviceSize block_size =
      ::features::kVulkanVMALargeHeapBlockSize.Get();
  DCHECK(std::has_single_bit(block_size));
  return block_size;
}

#if BUILDFLAG(IS_ANDROID)
class VulkanMetric final
    : public base::android::PreFreezeBackgroundMemoryTrimmer::PreFreezeMetric {
 public:
  explicit VulkanMetric(VmaAllocator vma_allocator)
      : PreFreezeMetric("Vulkan"), vma_allocator_(vma_allocator) {
    base::android::PreFreezeBackgroundMemoryTrimmer::RegisterMemoryMetric(this);
  }

  ~VulkanMetric() override {
    base::android::PreFreezeBackgroundMemoryTrimmer::UnregisterMemoryMetric(
        this);
  }

 private:
  std::optional<uint64_t> Measure() const override {
    auto allocated_used = vma::GetTotalAllocatedAndUsedMemory(vma_allocator_);
    return allocated_used.first;
  }
  VmaAllocator vma_allocator_;
};
#endif  // BUILDFLAG(IS_ANDROID)

}  // anonymous namespace

VulkanDeviceQueue::VulkanDeviceQueue(VkInstance vk_instance)
    : vk_instance_(vk_instance) {}

VulkanDeviceQueue::VulkanDeviceQueue(VulkanInstance* instance)
    : vk_instance_(instance->vk_instance()), instance_(instance) {}

VulkanDeviceQueue::~VulkanDeviceQueue() {
  // Destroy() should have been called.
  DCHECK_EQ(static_cast<VkPhysicalDevice>(VK_NULL_HANDLE), vk_physical_device_);
  DCHECK_EQ(static_cast<VkDevice>(VK_NULL_HANDLE), vk_device_);
  DCHECK_EQ(static_cast<VkQueue>(VK_NULL_HANDLE), vk_queue_);
}

bool VulkanDeviceQueue::Initialize(
    uint32_t options,
    const GPUInfo* gpu_info,
    const std::vector<const char*>& required_extensions,
    const std::vector<const char*>& optional_extensions,
    bool allow_protected_memory,
    const GetPresentationSupportCallback& get_presentation_support,
    uint32_t heap_memory_limit,
    const bool is_thread_safe) {
  DCHECK_EQ(static_cast<VkPhysicalDevice>(VK_NULL_HANDLE), vk_physical_device_);
  DCHECK_EQ(static_cast<VkDevice>(VK_NULL_HANDLE), owned_vk_device_);
  DCHECK_EQ(static_cast<VkDevice>(VK_NULL_HANDLE), vk_device_);
  DCHECK_EQ(static_cast<VkQueue>(VK_NULL_HANDLE), vk_queue_);
  DCHECK_EQ(static_cast<VmaAllocator>(VK_NULL_HANDLE), owned_vma_allocator_);
  DCHECK_EQ(static_cast<VmaAllocator>(VK_NULL_HANDLE), vma_allocator_);

  if (VK_NULL_HANDLE == vk_instance_)
    return false;

  const VulkanInfo& info = instance_->vulkan_info();

  VkResult result = VK_SUCCESS;

  VkQueueFlags queue_flags = 0;
  if (options & DeviceQueueOption::GRAPHICS_QUEUE_FLAG) {
    queue_flags |= VK_QUEUE_GRAPHICS_BIT;
  }
  if (allow_protected_memory) {
    queue_flags |= VK_QUEUE_PROTECTED_BIT;
  }

  // We prefer to use discrete GPU, integrated GPU is the second, and then
  // others.
  static constexpr int kDeviceTypeScores[] = {
      0,  // VK_PHYSICAL_DEVICE_TYPE_OTHER
      3,  // VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU
      4,  // VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU
      2,  // VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU
      1,  // VK_PHYSICAL_DEVICE_TYPE_CPU
  };
  static_assert(VK_PHYSICAL_DEVICE_TYPE_OTHER == 0, "");
  static_assert(VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU == 1, "");
  static_assert(VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU == 2, "");
  static_assert(VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU == 3, "");
  static_assert(VK_PHYSICAL_DEVICE_TYPE_CPU == 4, "");

  int device_index = -1;
  int queue_index = -1;
  int device_score = -1;
  for (size_t i = 0; i < info.physical_devices.size(); ++i) {
    const auto& device_info = info.physical_devices[i];
    const auto& device_properties = device_info.properties;
    if (device_properties.apiVersion < info.used_api_version)
      continue;

      // In dual-CPU cases, we cannot detect the active GPU correctly on Linux,
      // so don't select GPU device based on the |gpu_info|.
#if !BUILDFLAG(IS_LINUX)
    // If gpu_info is provided, the device should match it.
    if (gpu_info && (device_properties.vendorID != gpu_info->gpu.vendor_id ||
                     device_properties.deviceID != gpu_info->gpu.device_id)) {
      continue;
    }
#endif

    if (device_properties.deviceType < 0 ||
        device_properties.deviceType > VK_PHYSICAL_DEVICE_TYPE_CPU) {
      DLOG(ERROR) << "Unsupported device type: "
                  << device_properties.deviceType;
      continue;
    }

    const VkPhysicalDevice& device = device_info.device;
    bool found = false;
    for (size_t n = 0; n < device_info.queue_families.size(); ++n) {
      if ((device_info.queue_families[n].queueFlags & queue_flags) !=
          queue_flags) {
        continue;
      }

      if (options & DeviceQueueOption::PRESENTATION_SUPPORT_QUEUE_FLAG &&
          !get_presentation_support.Run(device, device_info.queue_families,
                                        n)) {
        continue;
      }

      if (kDeviceTypeScores[device_properties.deviceType] > device_score) {
        device_index = i;
        queue_index = static_cast<int>(n);
        device_score = kDeviceTypeScores[device_properties.deviceType];
        found = true;
        break;
      }
    }

    if (!found)
      continue;

    // Use the device, if it matches gpu_info.
    if (gpu_info)
      break;

    // If the device is a discrete GPU, we will use it. Otherwise go through
    // all the devices and find the device with the highest score.
    if (device_properties.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU)
      break;
  }

  if (device_index == -1) {
    DLOG(ERROR) << "Cannot find capable device.";
    return false;
  }

  const auto& physical_device_info = info.physical_devices[device_index];
  vk_physical_device_ = physical_device_info.device;
  vk_physical_device_properties_ = physical_device_info.properties;
  vk_physical_device_driver_properties_ =
      physical_device_info.driver_properties;
  drm_device_id_ = physical_device_info.drm_device_id;
  vk_queue_index_ = queue_index;

  float queue_priority = 0.0f;
  VkDeviceQueueCreateInfo queue_create_info = {};
  queue_create_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
  queue_create_info.queueFamilyIndex = queue_index;
  queue_create_info.queueCount = 1;
  queue_create_info.pQueuePriorities = &queue_priority;
  queue_create_info.flags =
      allow_protected_memory ? VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT : 0;

  std::vector<const char*> enabled_extensions;
  for (const char* extension : required_extensions) {
    if (base::ranges::none_of(physical_device_info.extensions,
                              [extension](const VkExtensionProperties& p) {
                                return std::strcmp(extension,
                                                   p.extensionName) == 0;
                              })) {
      // On Fuchsia, some device extensions are provided by layers.
      // TODO(penghuang): checking extensions against layer device extensions
      // too.
#if !BUILDFLAG(IS_FUCHSIA)
      DLOG(ERROR) << "Required Vulkan extension " << extension
                  << " is not supported.";
      return false;
#endif
    }
    enabled_extensions.push_back(extension);
  }

  for (const char* extension : optional_extensions) {
    if (base::ranges::none_of(physical_device_info.extensions,
                              [extension](const VkExtensionProperties& p) {
                                return std::strcmp(extension,
                                                   p.extensionName) == 0;
                              })) {
      DLOG(ERROR) << "Optional Vulkan extension " << extension
                  << " is not supported.";
    } else {
      enabled_extensions.push_back(extension);
    }
  }

  crash_keys::vulkan_device_api_version.Set(
      VkVersionToString(vk_physical_device_properties_.apiVersion));
  if (vk_physical_device_properties_.vendorID == 0x10DE) {
    // NVIDIA
    // 10 bits = major version (up to r1023)
    // 8 bits = minor version (up to 255)
    // 8 bits = secondary branch version/build version (up to 255)
    // 6 bits = tertiary branch/build version (up to 63)
    auto version = vk_physical_device_properties_.driverVersion;
    uint32_t major = (version >> 22) & 0x3ff;
    uint32_t minor = (version >> 14) & 0x0ff;
    uint32_t secondary_branch = (version >> 6) & 0x0ff;
    uint32_t tertiary_branch = version & 0x003f;
    crash_keys::vulkan_device_driver_version.Set(base::StringPrintf(
        "%d.%d.%d.%d", major, minor, secondary_branch, tertiary_branch));
  } else {
    crash_keys::vulkan_device_driver_version.Set(
        VkVersionToString(vk_physical_device_properties_.driverVersion));
  }
  crash_keys::vulkan_device_vendor_id.Set(
      base::StringPrintf("0x%04x", vk_physical_device_properties_.vendorID));
  crash_keys::vulkan_device_id.Set(
      base::StringPrintf("0x%04x", vk_physical_device_properties_.deviceID));
  static const char* kDeviceTypeNames[] = {
      "other", "integrated", "discrete", "virtual", "cpu",
  };
  uint32_t gpu_type = vk_physical_device_properties_.deviceType;
  if (gpu_type >= std::size(kDeviceTypeNames))
    gpu_type = 0;
  crash_keys::vulkan_device_type.Set(kDeviceTypeNames[gpu_type]);
  crash_keys::vulkan_device_name.Set(vk_physical_device_properties_.deviceName);

  // Disable all physical device features by default.
  enabled_device_features_2_ = {VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2};

  // Android, Fuchsia, Linux, and CrOS (VaapiVideoDecoder) need YCbCr sampler
  // support.
#if BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_FUCHSIA) || BUILDFLAG(IS_LINUX) || \
    BUILDFLAG(IS_CHROMEOS)
  if (!physical_device_info.feature_sampler_ycbcr_conversion) {
    LOG(ERROR) << "samplerYcbcrConversion is not supported.";
    return false;
  }
  sampler_ycbcr_conversion_features_ = {
      VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES};
  sampler_ycbcr_conversion_features_.samplerYcbcrConversion = VK_TRUE;

  // Add VkPhysicalDeviceSamplerYcbcrConversionFeatures struct to pNext chain
  // of VkPhysicalDeviceFeatures2 to enable YCbCr sampler support.
  sampler_ycbcr_conversion_features_.pNext = enabled_device_features_2_.pNext;
  enabled_device_features_2_.pNext = &sampler_ycbcr_conversion_features_;
#endif  // BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_FUCHSIA) || BUILDFLAG(IS_LINUX)
        // || BUILDFLAG(IS_CHROMEOS)

  if (allow_protected_memory) {
    if (!physical_device_info.feature_protected_memory) {
      LOG(DFATAL)
          << "Protected memory is not supported. Vulkan is unavailable.";
      return false;
    }
    protected_memory_features_ = {
        VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES};
    protected_memory_features_.protectedMemory = VK_TRUE;

    // Add VkPhysicalDeviceProtectedMemoryFeatures struct to pNext chain
    // of VkPhysicalDeviceFeatures2 to enable YCbCr sampler support.
    protected_memory_features_.pNext = enabled_device_features_2_.pNext;
    enabled_device_features_2_.pNext = &protected_memory_features_;
  }

  VkDeviceCreateInfo device_create_info = {
      VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO};
  device_create_info.pNext = enabled_device_features_2_.pNext;
  device_create_info.queueCreateInfoCount = 1;
  device_create_info.pQueueCreateInfos = &queue_create_info;
  device_create_info.enabledExtensionCount = enabled_extensions.size();
  device_create_info.ppEnabledExtensionNames = enabled_extensions.data();
  device_create_info.pEnabledFeatures = &enabled_device_features_2_.features;

  result = vkCreateDevice(vk_physical_device_, &device_create_info, nullptr,
                          &owned_vk_device_);
  if (VK_SUCCESS != result) {
    DLOG(ERROR) << "vkCreateDevice failed. result:" << result;
    return false;
  }

  enabled_extensions_ = gfx::ExtensionSet(std::begin(enabled_extensions),
                                          std::end(enabled_extensions));

  if (!gpu::GetVulkanFunctionPointers()->BindDeviceFunctionPointers(
          owned_vk_device_, info.used_api_version, enabled_extensions_)) {
    vkDestroyDevice(owned_vk_device_, nullptr);
    owned_vk_device_ = VK_NULL_HANDLE;
    return false;
  }

  vk_device_ = owned_vk_device_;

  if (allow_protected_memory) {
    VkDeviceQueueInfo2 queue_info2 = {};
    queue_info2.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2;
    queue_info2.flags = VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT;
    queue_info2.queueFamilyIndex = queue_index;
    queue_info2.queueIndex = 0;
    vkGetDeviceQueue2(vk_device_, &queue_info2, &vk_queue_);
  } else {
    vkGetDeviceQueue(vk_device_, queue_index, 0, &vk_queue_);
  }

  std::vector<VkDeviceSize> heap_size_limit(
      VK_MAX_MEMORY_HEAPS,
      heap_memory_limit ? heap_memory_limit : VK_WHOLE_SIZE);
  vma::CreateAllocator(vk_physical_device_, vk_device_, vk_instance_,
                       enabled_extensions_, GetPreferredVMALargeHeapBlockSize(),
                       heap_size_limit.data(), is_thread_safe,
                       &owned_vma_allocator_);
  vma_allocator_ = owned_vma_allocator_;

  cleanup_helper_ = std::make_unique<VulkanFenceHelper>(this);

  allow_protected_memory_ = allow_protected_memory;

#if BUILDFLAG(IS_ANDROID)
  if (!metric_) {
    metric_ = std::make_unique<VulkanMetric>(vma_allocator());
  }
#endif  // BUILDFLAG(IS_ANDROID)

  if (base::SingleThreadTaskRunner::HasCurrentDefault()) {
    base::trace_event::MemoryDumpManager::GetInstance()->RegisterDumpProvider(
        this, "vulkan", base::SingleThreadTaskRunner::GetCurrentDefault());
  }

  return true;
}

bool VulkanDeviceQueue::InitCommon(VkPhysicalDevice vk_physical_device,
                                   VkDevice vk_device,
                                   VkQueue vk_queue,
                                   uint32_t vk_queue_index,
                                   gfx::ExtensionSet enabled_extensions) {
  DCHECK_EQ(static_cast<VkPhysicalDevice>(VK_NULL_HANDLE), vk_physical_device_);
  DCHECK_EQ(static_cast<VkDevice>(VK_NULL_HANDLE), owned_vk_device_);
  DCHECK_EQ(static_cast<VkDevice>(VK_NULL_HANDLE), vk_device_);
  DCHECK_EQ(static_cast<VkQueue>(VK_NULL_HANDLE), vk_queue_);
  DCHECK_EQ(static_cast<VmaAllocator>(VK_NULL_HANDLE), owned_vma_allocator_);

  vk_physical_device_ = vk_physical_device;
  vk_device_ = vk_device;
  vk_queue_ = vk_queue;
  vk_queue_index_ = vk_queue_index;
  enabled_extensions_ = std::move(enabled_extensions);

  if (vma_allocator_ == VK_NULL_HANDLE) {
    vma::CreateAllocator(vk_physical_device_, vk_device_, vk_instance_,
                         enabled_extensions_,
                         GetPreferredVMALargeHeapBlockSize(),
                         /*heap_size_limit=*/nullptr,
                         /*is_thread_safe =*/false, &owned_vma_allocator_);
    vma_allocator_ = owned_vma_allocator_;
#if BUILDFLAG(IS_ANDROID)
    if (!metric_) {
      metric_ = std::make_unique<VulkanMetric>(vma_allocator());
    }
#endif  // BUILDFLAG(IS_ANDROID)
  }

  cleanup_helper_ = std::make_unique<VulkanFenceHelper>(this);

  if (base::SingleThreadTaskRunner::HasCurrentDefault()) {
    base::trace_event::MemoryDumpManager::GetInstance()->RegisterDumpProvider(
        this, "vulkan", base::SingleThreadTaskRunner::GetCurrentDefault());
  }
  return true;
}

bool VulkanDeviceQueue::InitializeFromANGLE() {
  const VulkanInfo& info = instance_->vulkan_info();
  VkPhysicalDevice vk_physical_device = gl::QueryVkPhysicalDeviceFromANGLE();
  if (vk_physical_device == VK_NULL_HANDLE)
    return false;

  int device_index = -1;
  for (size_t i = 0; i < info.physical_devices.size(); ++i) {
    if (info.physical_devices[i].device == vk_physical_device) {
      device_index = i;
      break;
    }
  }

  if (device_index == -1) {
    DLOG(ERROR) << "Cannot find physical device match ANGLE.";
    return false;
  }

  const auto& physical_device_info = info.physical_devices[device_index];
  vk_physical_device_properties_ = physical_device_info.properties;
  vk_physical_device_driver_properties_ =
      physical_device_info.driver_properties;

  VkDevice vk_device = gl::QueryVkDeviceFromANGLE();
  VkQueue vk_queue = gl::QueryVkQueueFromANGLE();
  uint32_t vk_queue_index = gl::QueryVkQueueFramiliyIndexFromANGLE();
  auto enabled_extensions = gl::QueryVkDeviceExtensionsFromANGLE();

  if (!gpu::GetVulkanFunctionPointers()->BindDeviceFunctionPointers(
          vk_device, info.used_api_version, enabled_extensions)) {
    return false;
  }

  enabled_device_features_2_from_angle_ =
      gl::QueryVkEnabledDeviceFeaturesFromANGLE();
  if (!enabled_device_features_2_from_angle_)
    return false;

  return InitCommon(vk_physical_device, vk_device, vk_queue, vk_queue_index,
                    enabled_extensions);
}

bool VulkanDeviceQueue::InitializeForWebView(
    VkPhysicalDevice vk_physical_device,
    VkDevice vk_device,
    VkQueue vk_queue,
    uint32_t vk_queue_index,
    gfx::ExtensionSet enabled_extensions) {
  return InitCommon(vk_physical_device, vk_device, vk_queue, vk_queue_index,
                    enabled_extensions);
}

bool VulkanDeviceQueue::InitializeForCompositorGpuThread(
    VkPhysicalDevice vk_physical_device,
    VkDevice vk_device,
    VkQueue vk_queue,
    uint32_t vk_queue_index,
    gfx::ExtensionSet enabled_extensions,
    const VkPhysicalDeviceFeatures2& vk_physical_device_features2,
    VmaAllocator vma_allocator) {
  // Currently VulkanDeviceQueue for drdc thread(aka CompositorGpuThread) uses
  // the same vulkan queue as the gpu main thread. Now since both gpu main and
  // drdc threads would be accessing/submitting work to the same queue, all the
  // queue access should be made thread safe. This is done by using locks. This
  // lock is per |vk_queue|. Note that we are intentionally overwriting a
  // previous lock if any.
  // Since the map itself would be accessed by multiple gpu threads, we need to
  // ensure that the access are thread safe. Here the locks are created and
  // written into the map only when drdc thread is initialized which happens
  // during GpuServiceImpl init. At this point none of the gpu threads would be
  // doing read access until GpuServiceImpl init completed. Hence its safe to
  // access map here.
  GetVulkanFunctionPointers()->per_queue_lock_map[vk_queue] =
      std::make_unique<base::Lock>();
  enabled_device_features_2_ = vk_physical_device_features2;

  // Note that CompositorGpuThread uses same vma allocator as gpu main thread.
  vma_allocator_ = vma_allocator;
  return InitCommon(vk_physical_device, vk_device, vk_queue, vk_queue_index,
                    enabled_extensions);
}

void VulkanDeviceQueue::Destroy() {
  base::trace_event::MemoryDumpManager::GetInstance()->UnregisterDumpProvider(
      this);
#if BUILDFLAG(IS_ANDROID)
  metric_ = nullptr;
#endif

  if (cleanup_helper_) {
    cleanup_helper_->Destroy();
    cleanup_helper_.reset();
  }

  if (owned_vma_allocator_ != VK_NULL_HANDLE) {
    vma::DestroyAllocator(owned_vma_allocator_);
    owned_vma_allocator_ = VK_NULL_HANDLE;
  }

  if (owned_vk_device_ != VK_NULL_HANDLE) {
    vkDestroyDevice(owned_vk_device_, nullptr);
    owned_vk_device_ = VK_NULL_HANDLE;

    // Clear all the entries from this map since the device and hence all the
    // generated queue(and their corresponding lock) from this device is
    // destroyed.
    // This happens when VulkanDeviceQueue is destroyed on gpu main thread
    // during GpuServiceImpl destruction which happens after CompositorGpuThread
    // is destroyed. Hence CompositorGpuThread would not be accessing the map at
    // this point and its thread safe to delete map entries here.
    GetVulkanFunctionPointers()->per_queue_lock_map.clear();
  }
  vk_device_ = VK_NULL_HANDLE;
  vk_queue_ = VK_NULL_HANDLE;
  vk_queue_index_ = 0;
  vk_physical_device_ = VK_NULL_HANDLE;
  vma_allocator_ = VK_NULL_HANDLE;
}

std::unique_ptr<VulkanCommandPool> VulkanDeviceQueue::CreateCommandPool() {
  std::unique_ptr<VulkanCommandPool> command_pool(new VulkanCommandPool(this));
  if (!command_pool->Initialize())
    return nullptr;

  return command_pool;
}

bool VulkanDeviceQueue::OnMemoryDump(
    const base::trace_event::MemoryDumpArgs& args,
    base::trace_event::ProcessMemoryDump* pmd) {
  std::string path =
      base::StringPrintf("gpu/vulkan/vma_allocator_%p", vma_allocator());
  // There are cases where the same VMA is used by several device queues. Make
  // sure to not double count by using the VMA address in the path.
  //
  // This is still a success case, as the other device queue may disappear, so
  // return true.
  if (pmd->GetAllocatorDump(path)) {
    return true;
  }

  auto* dump = pmd->CreateAllocatorDump(path);
  auto allocated_used = vma::GetTotalAllocatedAndUsedMemory(vma_allocator());
  // `allocated_size` is memory allocated from the device, used is what is
  // actually used.
  dump->AddScalar("allocated_size", "bytes", allocated_used.first);
  dump->AddScalar("used_size", "bytes", allocated_used.second);
  dump->AddScalar("fragmentation_size", "bytes",
                  allocated_used.first - allocated_used.second);
  return true;
}

}  // namespace gpu