1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
gpu / vulkan / vulkan_device_queue.cc [blame]
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "gpu/vulkan/vulkan_device_queue.h"
#include <bit>
#include <cstring>
#include <unordered_set>
#include <utility>
#include <vector>
#include "base/feature_list.h"
#include "base/logging.h"
#include "base/ranges/algorithm.h"
#include "base/strings/stringprintf.h"
#include "base/task/single_thread_task_runner.h"
#include "base/trace_event/memory_dump_manager.h"
#include "base/trace_event/process_memory_dump.h"
#include "build/build_config.h"
#include "gpu/config/gpu_info.h" // nogncheck
#include "gpu/config/vulkan_info.h"
#include "gpu/vulkan/vulkan_command_pool.h"
#include "gpu/vulkan/vulkan_crash_keys.h"
#include "gpu/vulkan/vulkan_fence_helper.h"
#include "gpu/vulkan/vulkan_function_pointers.h"
#include "gpu/vulkan/vulkan_util.h"
#include "ui/gl/gl_angle_util_vulkan.h"
namespace features {
// Based on Finch experiment results, the VMA block size does not significantly
// affect performance. Too small sizes (such as 4KB) result in instability,
// likely due to running out of allowed allocations (the
// |maxMemoryAllocationCount| Vulkan limit). Too large sizes (such as 4MB)
// result in significant memory waste due to fragmentation. Finch results
// have shown that with a block size of 64KB and below, the amount of
// fragmentation is ~1MB in the 99th percentile. For 128KB and higher block
// sizes, the amount of fragmentation exponentially increases (with 2MB for
// 128KB block size, 4MB for 256KB, etc).
BASE_FEATURE(kVulkanVMALargeHeapBlockSizeExperiment,
"VulkanVMALargeHeapBlockSizeExperiment",
base::FEATURE_ENABLED_BY_DEFAULT);
constexpr base::FeatureParam<int> kVulkanVMALargeHeapBlockSize{
&kVulkanVMALargeHeapBlockSizeExperiment, "VulkanVMALargeHeapBlockSize",
64 * 1024};
} // namespace features
namespace gpu {
namespace {
VkDeviceSize GetPreferredVMALargeHeapBlockSize() {
const VkDeviceSize block_size =
::features::kVulkanVMALargeHeapBlockSize.Get();
DCHECK(std::has_single_bit(block_size));
return block_size;
}
#if BUILDFLAG(IS_ANDROID)
class VulkanMetric final
: public base::android::PreFreezeBackgroundMemoryTrimmer::PreFreezeMetric {
public:
explicit VulkanMetric(VmaAllocator vma_allocator)
: PreFreezeMetric("Vulkan"), vma_allocator_(vma_allocator) {
base::android::PreFreezeBackgroundMemoryTrimmer::RegisterMemoryMetric(this);
}
~VulkanMetric() override {
base::android::PreFreezeBackgroundMemoryTrimmer::UnregisterMemoryMetric(
this);
}
private:
std::optional<uint64_t> Measure() const override {
auto allocated_used = vma::GetTotalAllocatedAndUsedMemory(vma_allocator_);
return allocated_used.first;
}
VmaAllocator vma_allocator_;
};
#endif // BUILDFLAG(IS_ANDROID)
} // anonymous namespace
VulkanDeviceQueue::VulkanDeviceQueue(VkInstance vk_instance)
: vk_instance_(vk_instance) {}
VulkanDeviceQueue::VulkanDeviceQueue(VulkanInstance* instance)
: vk_instance_(instance->vk_instance()), instance_(instance) {}
VulkanDeviceQueue::~VulkanDeviceQueue() {
// Destroy() should have been called.
DCHECK_EQ(static_cast<VkPhysicalDevice>(VK_NULL_HANDLE), vk_physical_device_);
DCHECK_EQ(static_cast<VkDevice>(VK_NULL_HANDLE), vk_device_);
DCHECK_EQ(static_cast<VkQueue>(VK_NULL_HANDLE), vk_queue_);
}
bool VulkanDeviceQueue::Initialize(
uint32_t options,
const GPUInfo* gpu_info,
const std::vector<const char*>& required_extensions,
const std::vector<const char*>& optional_extensions,
bool allow_protected_memory,
const GetPresentationSupportCallback& get_presentation_support,
uint32_t heap_memory_limit,
const bool is_thread_safe) {
DCHECK_EQ(static_cast<VkPhysicalDevice>(VK_NULL_HANDLE), vk_physical_device_);
DCHECK_EQ(static_cast<VkDevice>(VK_NULL_HANDLE), owned_vk_device_);
DCHECK_EQ(static_cast<VkDevice>(VK_NULL_HANDLE), vk_device_);
DCHECK_EQ(static_cast<VkQueue>(VK_NULL_HANDLE), vk_queue_);
DCHECK_EQ(static_cast<VmaAllocator>(VK_NULL_HANDLE), owned_vma_allocator_);
DCHECK_EQ(static_cast<VmaAllocator>(VK_NULL_HANDLE), vma_allocator_);
if (VK_NULL_HANDLE == vk_instance_)
return false;
const VulkanInfo& info = instance_->vulkan_info();
VkResult result = VK_SUCCESS;
VkQueueFlags queue_flags = 0;
if (options & DeviceQueueOption::GRAPHICS_QUEUE_FLAG) {
queue_flags |= VK_QUEUE_GRAPHICS_BIT;
}
if (allow_protected_memory) {
queue_flags |= VK_QUEUE_PROTECTED_BIT;
}
// We prefer to use discrete GPU, integrated GPU is the second, and then
// others.
static constexpr int kDeviceTypeScores[] = {
0, // VK_PHYSICAL_DEVICE_TYPE_OTHER
3, // VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU
4, // VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU
2, // VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU
1, // VK_PHYSICAL_DEVICE_TYPE_CPU
};
static_assert(VK_PHYSICAL_DEVICE_TYPE_OTHER == 0, "");
static_assert(VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU == 1, "");
static_assert(VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU == 2, "");
static_assert(VK_PHYSICAL_DEVICE_TYPE_VIRTUAL_GPU == 3, "");
static_assert(VK_PHYSICAL_DEVICE_TYPE_CPU == 4, "");
int device_index = -1;
int queue_index = -1;
int device_score = -1;
for (size_t i = 0; i < info.physical_devices.size(); ++i) {
const auto& device_info = info.physical_devices[i];
const auto& device_properties = device_info.properties;
if (device_properties.apiVersion < info.used_api_version)
continue;
// In dual-CPU cases, we cannot detect the active GPU correctly on Linux,
// so don't select GPU device based on the |gpu_info|.
#if !BUILDFLAG(IS_LINUX)
// If gpu_info is provided, the device should match it.
if (gpu_info && (device_properties.vendorID != gpu_info->gpu.vendor_id ||
device_properties.deviceID != gpu_info->gpu.device_id)) {
continue;
}
#endif
if (device_properties.deviceType < 0 ||
device_properties.deviceType > VK_PHYSICAL_DEVICE_TYPE_CPU) {
DLOG(ERROR) << "Unsupported device type: "
<< device_properties.deviceType;
continue;
}
const VkPhysicalDevice& device = device_info.device;
bool found = false;
for (size_t n = 0; n < device_info.queue_families.size(); ++n) {
if ((device_info.queue_families[n].queueFlags & queue_flags) !=
queue_flags) {
continue;
}
if (options & DeviceQueueOption::PRESENTATION_SUPPORT_QUEUE_FLAG &&
!get_presentation_support.Run(device, device_info.queue_families,
n)) {
continue;
}
if (kDeviceTypeScores[device_properties.deviceType] > device_score) {
device_index = i;
queue_index = static_cast<int>(n);
device_score = kDeviceTypeScores[device_properties.deviceType];
found = true;
break;
}
}
if (!found)
continue;
// Use the device, if it matches gpu_info.
if (gpu_info)
break;
// If the device is a discrete GPU, we will use it. Otherwise go through
// all the devices and find the device with the highest score.
if (device_properties.deviceType == VK_PHYSICAL_DEVICE_TYPE_DISCRETE_GPU)
break;
}
if (device_index == -1) {
DLOG(ERROR) << "Cannot find capable device.";
return false;
}
const auto& physical_device_info = info.physical_devices[device_index];
vk_physical_device_ = physical_device_info.device;
vk_physical_device_properties_ = physical_device_info.properties;
vk_physical_device_driver_properties_ =
physical_device_info.driver_properties;
drm_device_id_ = physical_device_info.drm_device_id;
vk_queue_index_ = queue_index;
float queue_priority = 0.0f;
VkDeviceQueueCreateInfo queue_create_info = {};
queue_create_info.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_CREATE_INFO;
queue_create_info.queueFamilyIndex = queue_index;
queue_create_info.queueCount = 1;
queue_create_info.pQueuePriorities = &queue_priority;
queue_create_info.flags =
allow_protected_memory ? VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT : 0;
std::vector<const char*> enabled_extensions;
for (const char* extension : required_extensions) {
if (base::ranges::none_of(physical_device_info.extensions,
[extension](const VkExtensionProperties& p) {
return std::strcmp(extension,
p.extensionName) == 0;
})) {
// On Fuchsia, some device extensions are provided by layers.
// TODO(penghuang): checking extensions against layer device extensions
// too.
#if !BUILDFLAG(IS_FUCHSIA)
DLOG(ERROR) << "Required Vulkan extension " << extension
<< " is not supported.";
return false;
#endif
}
enabled_extensions.push_back(extension);
}
for (const char* extension : optional_extensions) {
if (base::ranges::none_of(physical_device_info.extensions,
[extension](const VkExtensionProperties& p) {
return std::strcmp(extension,
p.extensionName) == 0;
})) {
DLOG(ERROR) << "Optional Vulkan extension " << extension
<< " is not supported.";
} else {
enabled_extensions.push_back(extension);
}
}
crash_keys::vulkan_device_api_version.Set(
VkVersionToString(vk_physical_device_properties_.apiVersion));
if (vk_physical_device_properties_.vendorID == 0x10DE) {
// NVIDIA
// 10 bits = major version (up to r1023)
// 8 bits = minor version (up to 255)
// 8 bits = secondary branch version/build version (up to 255)
// 6 bits = tertiary branch/build version (up to 63)
auto version = vk_physical_device_properties_.driverVersion;
uint32_t major = (version >> 22) & 0x3ff;
uint32_t minor = (version >> 14) & 0x0ff;
uint32_t secondary_branch = (version >> 6) & 0x0ff;
uint32_t tertiary_branch = version & 0x003f;
crash_keys::vulkan_device_driver_version.Set(base::StringPrintf(
"%d.%d.%d.%d", major, minor, secondary_branch, tertiary_branch));
} else {
crash_keys::vulkan_device_driver_version.Set(
VkVersionToString(vk_physical_device_properties_.driverVersion));
}
crash_keys::vulkan_device_vendor_id.Set(
base::StringPrintf("0x%04x", vk_physical_device_properties_.vendorID));
crash_keys::vulkan_device_id.Set(
base::StringPrintf("0x%04x", vk_physical_device_properties_.deviceID));
static const char* kDeviceTypeNames[] = {
"other", "integrated", "discrete", "virtual", "cpu",
};
uint32_t gpu_type = vk_physical_device_properties_.deviceType;
if (gpu_type >= std::size(kDeviceTypeNames))
gpu_type = 0;
crash_keys::vulkan_device_type.Set(kDeviceTypeNames[gpu_type]);
crash_keys::vulkan_device_name.Set(vk_physical_device_properties_.deviceName);
// Disable all physical device features by default.
enabled_device_features_2_ = {VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_FEATURES_2};
// Android, Fuchsia, Linux, and CrOS (VaapiVideoDecoder) need YCbCr sampler
// support.
#if BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_FUCHSIA) || BUILDFLAG(IS_LINUX) || \
BUILDFLAG(IS_CHROMEOS)
if (!physical_device_info.feature_sampler_ycbcr_conversion) {
LOG(ERROR) << "samplerYcbcrConversion is not supported.";
return false;
}
sampler_ycbcr_conversion_features_ = {
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SAMPLER_YCBCR_CONVERSION_FEATURES};
sampler_ycbcr_conversion_features_.samplerYcbcrConversion = VK_TRUE;
// Add VkPhysicalDeviceSamplerYcbcrConversionFeatures struct to pNext chain
// of VkPhysicalDeviceFeatures2 to enable YCbCr sampler support.
sampler_ycbcr_conversion_features_.pNext = enabled_device_features_2_.pNext;
enabled_device_features_2_.pNext = &sampler_ycbcr_conversion_features_;
#endif // BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_FUCHSIA) || BUILDFLAG(IS_LINUX)
// || BUILDFLAG(IS_CHROMEOS)
if (allow_protected_memory) {
if (!physical_device_info.feature_protected_memory) {
LOG(DFATAL)
<< "Protected memory is not supported. Vulkan is unavailable.";
return false;
}
protected_memory_features_ = {
VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_PROTECTED_MEMORY_FEATURES};
protected_memory_features_.protectedMemory = VK_TRUE;
// Add VkPhysicalDeviceProtectedMemoryFeatures struct to pNext chain
// of VkPhysicalDeviceFeatures2 to enable YCbCr sampler support.
protected_memory_features_.pNext = enabled_device_features_2_.pNext;
enabled_device_features_2_.pNext = &protected_memory_features_;
}
VkDeviceCreateInfo device_create_info = {
VK_STRUCTURE_TYPE_DEVICE_CREATE_INFO};
device_create_info.pNext = enabled_device_features_2_.pNext;
device_create_info.queueCreateInfoCount = 1;
device_create_info.pQueueCreateInfos = &queue_create_info;
device_create_info.enabledExtensionCount = enabled_extensions.size();
device_create_info.ppEnabledExtensionNames = enabled_extensions.data();
device_create_info.pEnabledFeatures = &enabled_device_features_2_.features;
result = vkCreateDevice(vk_physical_device_, &device_create_info, nullptr,
&owned_vk_device_);
if (VK_SUCCESS != result) {
DLOG(ERROR) << "vkCreateDevice failed. result:" << result;
return false;
}
enabled_extensions_ = gfx::ExtensionSet(std::begin(enabled_extensions),
std::end(enabled_extensions));
if (!gpu::GetVulkanFunctionPointers()->BindDeviceFunctionPointers(
owned_vk_device_, info.used_api_version, enabled_extensions_)) {
vkDestroyDevice(owned_vk_device_, nullptr);
owned_vk_device_ = VK_NULL_HANDLE;
return false;
}
vk_device_ = owned_vk_device_;
if (allow_protected_memory) {
VkDeviceQueueInfo2 queue_info2 = {};
queue_info2.sType = VK_STRUCTURE_TYPE_DEVICE_QUEUE_INFO_2;
queue_info2.flags = VK_DEVICE_QUEUE_CREATE_PROTECTED_BIT;
queue_info2.queueFamilyIndex = queue_index;
queue_info2.queueIndex = 0;
vkGetDeviceQueue2(vk_device_, &queue_info2, &vk_queue_);
} else {
vkGetDeviceQueue(vk_device_, queue_index, 0, &vk_queue_);
}
std::vector<VkDeviceSize> heap_size_limit(
VK_MAX_MEMORY_HEAPS,
heap_memory_limit ? heap_memory_limit : VK_WHOLE_SIZE);
vma::CreateAllocator(vk_physical_device_, vk_device_, vk_instance_,
enabled_extensions_, GetPreferredVMALargeHeapBlockSize(),
heap_size_limit.data(), is_thread_safe,
&owned_vma_allocator_);
vma_allocator_ = owned_vma_allocator_;
cleanup_helper_ = std::make_unique<VulkanFenceHelper>(this);
allow_protected_memory_ = allow_protected_memory;
#if BUILDFLAG(IS_ANDROID)
if (!metric_) {
metric_ = std::make_unique<VulkanMetric>(vma_allocator());
}
#endif // BUILDFLAG(IS_ANDROID)
if (base::SingleThreadTaskRunner::HasCurrentDefault()) {
base::trace_event::MemoryDumpManager::GetInstance()->RegisterDumpProvider(
this, "vulkan", base::SingleThreadTaskRunner::GetCurrentDefault());
}
return true;
}
bool VulkanDeviceQueue::InitCommon(VkPhysicalDevice vk_physical_device,
VkDevice vk_device,
VkQueue vk_queue,
uint32_t vk_queue_index,
gfx::ExtensionSet enabled_extensions) {
DCHECK_EQ(static_cast<VkPhysicalDevice>(VK_NULL_HANDLE), vk_physical_device_);
DCHECK_EQ(static_cast<VkDevice>(VK_NULL_HANDLE), owned_vk_device_);
DCHECK_EQ(static_cast<VkDevice>(VK_NULL_HANDLE), vk_device_);
DCHECK_EQ(static_cast<VkQueue>(VK_NULL_HANDLE), vk_queue_);
DCHECK_EQ(static_cast<VmaAllocator>(VK_NULL_HANDLE), owned_vma_allocator_);
vk_physical_device_ = vk_physical_device;
vk_device_ = vk_device;
vk_queue_ = vk_queue;
vk_queue_index_ = vk_queue_index;
enabled_extensions_ = std::move(enabled_extensions);
if (vma_allocator_ == VK_NULL_HANDLE) {
vma::CreateAllocator(vk_physical_device_, vk_device_, vk_instance_,
enabled_extensions_,
GetPreferredVMALargeHeapBlockSize(),
/*heap_size_limit=*/nullptr,
/*is_thread_safe =*/false, &owned_vma_allocator_);
vma_allocator_ = owned_vma_allocator_;
#if BUILDFLAG(IS_ANDROID)
if (!metric_) {
metric_ = std::make_unique<VulkanMetric>(vma_allocator());
}
#endif // BUILDFLAG(IS_ANDROID)
}
cleanup_helper_ = std::make_unique<VulkanFenceHelper>(this);
if (base::SingleThreadTaskRunner::HasCurrentDefault()) {
base::trace_event::MemoryDumpManager::GetInstance()->RegisterDumpProvider(
this, "vulkan", base::SingleThreadTaskRunner::GetCurrentDefault());
}
return true;
}
bool VulkanDeviceQueue::InitializeFromANGLE() {
const VulkanInfo& info = instance_->vulkan_info();
VkPhysicalDevice vk_physical_device = gl::QueryVkPhysicalDeviceFromANGLE();
if (vk_physical_device == VK_NULL_HANDLE)
return false;
int device_index = -1;
for (size_t i = 0; i < info.physical_devices.size(); ++i) {
if (info.physical_devices[i].device == vk_physical_device) {
device_index = i;
break;
}
}
if (device_index == -1) {
DLOG(ERROR) << "Cannot find physical device match ANGLE.";
return false;
}
const auto& physical_device_info = info.physical_devices[device_index];
vk_physical_device_properties_ = physical_device_info.properties;
vk_physical_device_driver_properties_ =
physical_device_info.driver_properties;
VkDevice vk_device = gl::QueryVkDeviceFromANGLE();
VkQueue vk_queue = gl::QueryVkQueueFromANGLE();
uint32_t vk_queue_index = gl::QueryVkQueueFramiliyIndexFromANGLE();
auto enabled_extensions = gl::QueryVkDeviceExtensionsFromANGLE();
if (!gpu::GetVulkanFunctionPointers()->BindDeviceFunctionPointers(
vk_device, info.used_api_version, enabled_extensions)) {
return false;
}
enabled_device_features_2_from_angle_ =
gl::QueryVkEnabledDeviceFeaturesFromANGLE();
if (!enabled_device_features_2_from_angle_)
return false;
return InitCommon(vk_physical_device, vk_device, vk_queue, vk_queue_index,
enabled_extensions);
}
bool VulkanDeviceQueue::InitializeForWebView(
VkPhysicalDevice vk_physical_device,
VkDevice vk_device,
VkQueue vk_queue,
uint32_t vk_queue_index,
gfx::ExtensionSet enabled_extensions) {
return InitCommon(vk_physical_device, vk_device, vk_queue, vk_queue_index,
enabled_extensions);
}
bool VulkanDeviceQueue::InitializeForCompositorGpuThread(
VkPhysicalDevice vk_physical_device,
VkDevice vk_device,
VkQueue vk_queue,
uint32_t vk_queue_index,
gfx::ExtensionSet enabled_extensions,
const VkPhysicalDeviceFeatures2& vk_physical_device_features2,
VmaAllocator vma_allocator) {
// Currently VulkanDeviceQueue for drdc thread(aka CompositorGpuThread) uses
// the same vulkan queue as the gpu main thread. Now since both gpu main and
// drdc threads would be accessing/submitting work to the same queue, all the
// queue access should be made thread safe. This is done by using locks. This
// lock is per |vk_queue|. Note that we are intentionally overwriting a
// previous lock if any.
// Since the map itself would be accessed by multiple gpu threads, we need to
// ensure that the access are thread safe. Here the locks are created and
// written into the map only when drdc thread is initialized which happens
// during GpuServiceImpl init. At this point none of the gpu threads would be
// doing read access until GpuServiceImpl init completed. Hence its safe to
// access map here.
GetVulkanFunctionPointers()->per_queue_lock_map[vk_queue] =
std::make_unique<base::Lock>();
enabled_device_features_2_ = vk_physical_device_features2;
// Note that CompositorGpuThread uses same vma allocator as gpu main thread.
vma_allocator_ = vma_allocator;
return InitCommon(vk_physical_device, vk_device, vk_queue, vk_queue_index,
enabled_extensions);
}
void VulkanDeviceQueue::Destroy() {
base::trace_event::MemoryDumpManager::GetInstance()->UnregisterDumpProvider(
this);
#if BUILDFLAG(IS_ANDROID)
metric_ = nullptr;
#endif
if (cleanup_helper_) {
cleanup_helper_->Destroy();
cleanup_helper_.reset();
}
if (owned_vma_allocator_ != VK_NULL_HANDLE) {
vma::DestroyAllocator(owned_vma_allocator_);
owned_vma_allocator_ = VK_NULL_HANDLE;
}
if (owned_vk_device_ != VK_NULL_HANDLE) {
vkDestroyDevice(owned_vk_device_, nullptr);
owned_vk_device_ = VK_NULL_HANDLE;
// Clear all the entries from this map since the device and hence all the
// generated queue(and their corresponding lock) from this device is
// destroyed.
// This happens when VulkanDeviceQueue is destroyed on gpu main thread
// during GpuServiceImpl destruction which happens after CompositorGpuThread
// is destroyed. Hence CompositorGpuThread would not be accessing the map at
// this point and its thread safe to delete map entries here.
GetVulkanFunctionPointers()->per_queue_lock_map.clear();
}
vk_device_ = VK_NULL_HANDLE;
vk_queue_ = VK_NULL_HANDLE;
vk_queue_index_ = 0;
vk_physical_device_ = VK_NULL_HANDLE;
vma_allocator_ = VK_NULL_HANDLE;
}
std::unique_ptr<VulkanCommandPool> VulkanDeviceQueue::CreateCommandPool() {
std::unique_ptr<VulkanCommandPool> command_pool(new VulkanCommandPool(this));
if (!command_pool->Initialize())
return nullptr;
return command_pool;
}
bool VulkanDeviceQueue::OnMemoryDump(
const base::trace_event::MemoryDumpArgs& args,
base::trace_event::ProcessMemoryDump* pmd) {
std::string path =
base::StringPrintf("gpu/vulkan/vma_allocator_%p", vma_allocator());
// There are cases where the same VMA is used by several device queues. Make
// sure to not double count by using the VMA address in the path.
//
// This is still a success case, as the other device queue may disappear, so
// return true.
if (pmd->GetAllocatorDump(path)) {
return true;
}
auto* dump = pmd->CreateAllocatorDump(path);
auto allocated_used = vma::GetTotalAllocatedAndUsedMemory(vma_allocator());
// `allocated_size` is memory allocated from the device, used is what is
// actually used.
dump->AddScalar("allocated_size", "bytes", allocated_used.first);
dump->AddScalar("used_size", "bytes", allocated_used.second);
dump->AddScalar("fragmentation_size", "bytes",
allocated_used.first - allocated_used.second);
return true;
}
} // namespace gpu