1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
media / audio / audio_debug_file_writer.cc [blame]
// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "media/audio/audio_debug_file_writer.h"
#include <stdint.h>
#include <array>
#include <limits>
#include <memory>
#include <utility>
#include "base/containers/span.h"
#include "base/containers/span_writer.h"
#include "base/functional/bind.h"
#include "base/logging.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/raw_span.h"
#include "base/numerics/safe_conversions.h"
#include "base/task/sequenced_task_runner.h"
#include "media/base/audio_bus.h"
#include "media/base/audio_bus_pool.h"
#include "media/base/audio_sample_types.h"
namespace media {
namespace {
// Windows WAVE format header
// Byte order: Little-endian
// Offset Length Content
// 0 4 "RIFF"
// 4 4 <file length - 8>
// 8 4 "WAVE"
// 12 4 "fmt "
// 16 4 <length of the fmt data> (=16)
// 20 2 <WAVE file encoding tag>
// 22 2 <channels>
// 24 4 <sample rate>
// 28 4 <bytes per second> (sample rate * block align)
// 32 2 <block align> (channels * bits per sample / 8)
// 34 2 <bits per sample>
// 36 4 "data"
// 40 4 <sample data size(n)>
// 44 (n) <sample data>
// We write 16 bit PCM only.
static const uint16_t kBytesPerSample = 2;
static const uint32_t kWavHeaderSize = 44;
static const uint32_t kFmtChunkSize = 16;
// 4 bytes for ID + 4 bytes for size.
static const uint32_t kChunkHeaderSize = 8;
static const uint16_t kWavFormatPcm = 1;
static const uint8_t kRiff[] = {'R', 'I', 'F', 'F'};
static const uint8_t kWave[] = {'W', 'A', 'V', 'E'};
static const uint8_t kFmt[] = {'f', 'm', 't', ' '};
static const uint8_t kData[] = {'d', 'a', 't', 'a'};
using WavHeaderBuffer = std::array<char, kWavHeaderSize>;
// Writes Wave header to the specified address, there should be at least
// kWavHeaderSize bytes allocated for it.
void WriteWavHeader(WavHeaderBuffer* buf,
uint32_t channels,
uint32_t sample_rate,
uint64_t samples) {
// We'll need to add (kWavHeaderSize - kChunkHeaderSize) to payload to
// calculate Riff chunk size.
static const uint32_t kMaxBytesInPayload =
std::numeric_limits<uint32_t>::max() -
(kWavHeaderSize - kChunkHeaderSize);
const uint64_t bytes_in_payload_64 = samples * kBytesPerSample;
// In case payload is too large and causes uint32_t overflow, we just specify
// the maximum possible value; all the payload above that count will be
// interpreted as garbage.
const uint32_t bytes_in_payload = bytes_in_payload_64 > kMaxBytesInPayload
? kMaxBytesInPayload
: bytes_in_payload_64;
LOG_IF(WARNING, bytes_in_payload < bytes_in_payload_64)
<< "Number of samples is too large and will be clipped by Wave header,"
<< " all the data above " << kMaxBytesInPayload
<< " bytes will appear as junk";
const uint32_t block_align = channels * kBytesPerSample;
const uint32_t byte_rate = channels * sample_rate * kBytesPerSample;
const uint32_t riff_chunk_size =
bytes_in_payload + kWavHeaderSize - kChunkHeaderSize;
base::SpanWriter writer(
base::as_writable_bytes(base::span(*buf).first(kWavHeaderSize)));
writer.Write(kRiff);
writer.WriteU32LittleEndian(riff_chunk_size);
writer.Write(kWave);
writer.Write(kFmt);
writer.WriteU32LittleEndian(kFmtChunkSize);
writer.WriteU16LittleEndian(kWavFormatPcm);
writer.WriteU16LittleEndian(channels);
writer.WriteU32LittleEndian(sample_rate);
writer.WriteU32LittleEndian(byte_rate);
writer.WriteU16LittleEndian(block_align);
writer.WriteU16LittleEndian(kBytesPerSample * 8);
writer.Write(kData);
writer.WriteU32LittleEndian(bytes_in_payload);
}
} // namespace
AudioDebugFileWriter::~AudioDebugFileWriter() {
DCHECK(task_runner_->RunsTasksInCurrentSequence());
if (file_.IsValid())
WriteHeader();
}
void AudioDebugFileWriter::Write(const AudioBus& data) {
std::unique_ptr<AudioBus> data_copy = audio_bus_pool_->GetAudioBus();
DCHECK(data_copy);
data.CopyTo(data_copy.get());
task_runner_->PostTask(
FROM_HERE, base::BindOnce(&AudioDebugFileWriter::DoWrite, weak_this_,
std::move(data_copy)));
}
AudioDebugFileWriter::Ptr AudioDebugFileWriter::Create(
const AudioParameters& params,
base::File file) {
return Create(params, std::move(file),
std::make_unique<AudioBusPoolImpl>(
params, kPreallocatedAudioBuses, kMaxCachedAudioBuses));
}
AudioDebugFileWriter::AudioDebugFileWriter(
const AudioParameters& params,
base::File file,
std::unique_ptr<AudioBusPool> audio_bus_pool)
: params_(params),
file_(std::move(file)),
audio_bus_pool_(std::move(audio_bus_pool)) {
weak_this_ = weak_factory_.GetWeakPtr();
}
AudioDebugFileWriter::Ptr AudioDebugFileWriter::Create(
const AudioParameters& params,
base::File file,
std::unique_ptr<AudioBusPool> audio_bus_pool) {
AudioDebugFileWriter* writer = new AudioDebugFileWriter(
params, std::move(file), std::move(audio_bus_pool));
writer->task_runner_->PostTask(
FROM_HERE,
base::BindOnce(&AudioDebugFileWriter::WriteHeader, writer->weak_this_));
return Ptr(writer, base::OnTaskRunnerDeleter(writer->task_runner_));
}
void AudioDebugFileWriter::DoWrite(std::unique_ptr<AudioBus> data) {
DCHECK(task_runner_->RunsTasksInCurrentSequence());
DCHECK_EQ(params_.channels(), data->channels());
if (!file_.IsValid())
return;
// Convert to 16 bit audio and write to file.
auto data_size =
base::checked_cast<size_t>(data->frames() * data->channels());
if (!interleaved_data_ || interleaved_data_->size() < data_size) {
// This buffer will be initialized fully by the ToInterleaved() call below.
interleaved_data_.emplace(base::HeapArray<int16_t>::Uninit(data_size));
}
data->ToInterleaved<media::SignedInt16SampleTypeTraits>(
data->frames(), interleaved_data_->data());
samples_ += data_size;
// `interleaved_data_` is in little endian format, which is what we want
// to write to the file.
static_assert(ARCH_CPU_LITTLE_ENDIAN);
file_.WriteAtCurrentPos(base::as_bytes(interleaved_data_->as_span()));
// Cache the AudioBus for later use.
audio_bus_pool_->InsertAudioBus(std::move(data));
}
void AudioDebugFileWriter::WriteHeader() {
DCHECK(task_runner_->RunsTasksInCurrentSequence());
if (!file_.IsValid())
return;
WavHeaderBuffer buf;
WriteWavHeader(&buf, params_.channels(), params_.sample_rate(), samples_);
file_.Write(0, &buf[0], kWavHeaderSize);
// Write() does not move the cursor if file is not in APPEND mode; Seek() so
// that the header is not overwritten by the following writes.
file_.Seek(base::File::FROM_BEGIN, kWavHeaderSize);
}
} // namespace media