1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
media / audio / wav_audio_handler.cc [blame]
// Copyright 2013 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/audio/wav_audio_handler.h"
#include <algorithm>
#include <cstring>
#include "base/check.h"
#include "base/check_op.h"
#include "base/containers/span.h"
#include "base/containers/span_reader.h"
#include "base/logging.h"
#include "base/memory/ptr_util.h"
#include "base/notreached.h"
#include "base/numerics/byte_conversions.h"
#include "build/build_config.h"
#include "media/base/audio_bus.h"
#include "media/base/audio_timestamp_helper.h"
#include "media/base/limits.h"
namespace media {
namespace {
const uint8_t kChunkId[] = {'R', 'I', 'F', 'F'};
const uint8_t kFormat[] = {'W', 'A', 'V', 'E'};
const uint8_t kFmtSubchunkId[] = {'f', 'm', 't', ' '};
const uint8_t kDataSubchunkId[] = {'d', 'a', 't', 'a'};
// The size of a chunk header in wav file format. A chunk header consists of a
// tag ('fmt ' or 'data') and 4 bytes of chunk length.
const size_t kChunkHeaderSize = 8;
// The minimum size of 'fmt' chunk.
const size_t kFmtChunkMinimumSize = 16;
const size_t kFmtChunkExtensibleMinimumSize = 40;
// The offsets of 'fmt' fields.
const size_t kAudioFormatOffset = 0;
const size_t kChannelOffset = 2;
const size_t kSampleRateOffset = 4;
const size_t kBitsPerSampleOffset = 14;
const size_t kValidBitsPerSampleOffset = 18;
const size_t kSubFormatOffset = 24;
// A convenience struct for passing WAV parameters around. AudioParameters is
// too heavyweight for this. Keep this class internal to this implementation.
struct WavAudioParameters {
// TODO(crbug.com/340824112): note that zero-initializing this field does not
// correspond to any enumerator value defined in the `AudioFormat` enum.
// However, not initializing is also problematic: `ParseFmtChunk()` simply
// early-returns on failure, leaving random fields uninitialized and causing
// MSan errors elsewhere. A better long-term solution would be for
// `ParseFmtChunk` to return a `std::optional<WavAudioParameters>`. For now,
// zero-initializing this field has a (small) benefit that it won't
// correspond to any valid format and is guaranteed to fail the
// `ParamsAreValid()` check.
WavAudioHandler::AudioFormat audio_format = {};
uint16_t num_channels = 0;
uint32_t sample_rate = 0;
uint16_t bits_per_sample = 0;
uint16_t valid_bits_per_sample = 0;
bool is_extensible = false;
};
bool ParamsAreValid(const WavAudioParameters& params) {
return (
// Check number of channels
params.num_channels != 0u &&
params.num_channels <= static_cast<uint16_t>(limits::kMaxChannels) &&
// Check sample rate
params.sample_rate != 0u &&
(
// Check bits per second for PCM data
(params.audio_format ==
WavAudioHandler::AudioFormat::kAudioFormatPCM &&
(params.bits_per_sample == 8u || params.bits_per_sample == 16u ||
params.bits_per_sample == 32u)) ||
// Check bits per second for float data
(params.audio_format ==
WavAudioHandler::AudioFormat::kAudioFormatFloat &&
(params.bits_per_sample == 32u || params.bits_per_sample == 64u))) &&
// Check extensible format bps
(!params.is_extensible ||
params.valid_bits_per_sample == params.bits_per_sample));
}
// Parse a "fmt " chunk from wav data into its parameters. The `data` is in
// little endian encoding.
bool ParseFmtChunk(base::span<const uint8_t> data, WavAudioParameters& params) {
// If the chunk is too small, return false.
if (data.size() < kFmtChunkMinimumSize) {
LOG(ERROR) << "Data size " << data.size() << " is too short.";
return false;
}
// Read in serialized parameters.
params.audio_format =
static_cast<WavAudioHandler::AudioFormat>(base::U16FromLittleEndian(
data.subspan<kAudioFormatOffset,
sizeof(WavAudioHandler::AudioFormat)>()));
params.num_channels =
base::U16FromLittleEndian(data.subspan<kChannelOffset, 2u>());
params.sample_rate =
base::U32FromLittleEndian(data.subspan<kSampleRateOffset, 4u>());
params.bits_per_sample =
base::U16FromLittleEndian(data.subspan<kBitsPerSampleOffset, 2u>());
if (params.audio_format ==
WavAudioHandler::AudioFormat::kAudioFormatExtensible) {
if (data.size() < kFmtChunkExtensibleMinimumSize) {
LOG(ERROR) << "Data size " << data.size() << " is too short.";
return false;
}
params.is_extensible = true;
params.audio_format =
static_cast<WavAudioHandler::AudioFormat>(base::U16FromLittleEndian(
data.subspan<kSubFormatOffset,
sizeof(WavAudioHandler::AudioFormat)>()));
params.valid_bits_per_sample = base::U16FromLittleEndian(
data.subspan<kValidBitsPerSampleOffset, 2u>());
} else {
params.is_extensible = false;
}
return true;
}
// The `wav_data` is encoded in little endian, as will be `audio_data_out`.
bool ParseWavData(base::span<const uint8_t> wav_data,
base::span<const uint8_t>& audio_data_out,
WavAudioParameters& params_out) {
// The header should look like: |R|I|F|F|1|2|3|4|W|A|V|E|
auto buf = base::SpanReader(wav_data);
// Read the chunk ID and compare to "RIFF".
std::optional<base::span<const uint8_t, 4u>> chunk_id = buf.Read<4u>();
if (chunk_id != kChunkId) {
DLOG(ERROR) << "missing or incorrect chunk ID in wav header";
return false;
}
// The RIFF chunk length comes next, but we don't actually care what it says.
if (!buf.Skip(sizeof(uint32_t))) {
DLOG(ERROR) << "missing length in wav header";
return false;
}
// Read format and compare to "WAVE".
std::optional<base::span<const uint8_t, 4u>> format = buf.Read<4u>();
if (format != kFormat) {
DLOG(ERROR) << "missing or incorrect format ID in wav header";
return false;
}
bool got_format = false;
// If the number of remaining bytes is smaller than |kChunkHeaderSize|, it's
// just junk at the end.
while (buf.remaining() >= kChunkHeaderSize) {
// We should be at the beginning of a subsection. The next 8 bytes are the
// header and should look like: "|f|m|t| |1|2|3|4|" or "|d|a|t|a|1|2|3|4|".
base::span<const uint8_t, 4u> chunk_fmt = *buf.Read<4u>();
uint32_t chunk_length = base::U32FromLittleEndian(*buf.Read<4u>());
// Read `chunk_length` bytes of payload. If that is impossible, read all
// remaining bytes as the payload.
base::span<const uint8_t> chunk_payload =
*buf.Read(std::min(size_t{chunk_length}, buf.remaining()));
// Parse the subsection header, handling it if it is a "data" or "fmt "
// chunk. Skip it otherwise.
if (chunk_fmt == kFmtSubchunkId) {
got_format = true;
if (!ParseFmtChunk(chunk_payload, params_out))
return false;
} else if (chunk_fmt == kDataSubchunkId) {
audio_data_out = chunk_payload;
} else {
DVLOG(1) << "Skipping unknown data chunk: "
<< base::as_string_view(chunk_fmt) << ".";
}
}
// Check that data format has been read in and is valid.
if (!got_format) {
LOG(ERROR) << "Invalid: No \"" << kFmtSubchunkId << "\" header found!";
return false;
} else if (!ParamsAreValid(params_out)) {
LOG(ERROR) << "Format is invalid. "
<< "num_channels: " << params_out.num_channels << " "
<< "sample_rate: " << params_out.sample_rate << " "
<< "bits_per_sample: " << params_out.bits_per_sample << " "
<< "valid_bits_per_sample: " << params_out.valid_bits_per_sample
<< " "
<< "is_extensible: " << params_out.is_extensible;
return false;
}
return true;
}
} // namespace
WavAudioHandler::WavAudioHandler(base::span<const uint8_t> audio_data,
uint16_t num_channels,
uint32_t sample_rate,
uint16_t bits_per_sample,
AudioFormat audio_format)
: audio_data_(audio_data),
num_channels_(num_channels),
sample_rate_(sample_rate),
bits_per_sample_(bits_per_sample),
audio_format_(audio_format) {
DCHECK_NE(num_channels_, 0u);
DCHECK_NE(sample_rate_, 0u);
DCHECK_NE(bits_per_sample_, 0u);
total_frames_ = audio_data_.size() * 8 / num_channels_ / bits_per_sample_;
}
WavAudioHandler::~WavAudioHandler() = default;
// static
std::unique_ptr<WavAudioHandler> WavAudioHandler::Create(
base::span<const uint8_t> wav_data) {
WavAudioParameters params;
base::span<const uint8_t> audio_data;
// Attempt to parse the WAV data.
if (!ParseWavData(wav_data, audio_data, params)) {
return nullptr;
}
return base::WrapUnique(
new WavAudioHandler(audio_data, params.num_channels, params.sample_rate,
params.bits_per_sample, params.audio_format));
}
bool WavAudioHandler::Initialize() {
return true;
}
int WavAudioHandler::GetNumChannels() const {
return static_cast<int>(num_channels_);
}
int WavAudioHandler::GetSampleRate() const {
return static_cast<int>(sample_rate_);
}
bool WavAudioHandler::AtEnd() const {
return audio_data_.size() <= cursor_;
}
bool WavAudioHandler::CopyTo(AudioBus* bus, size_t* frames_written) {
DCHECK(bus);
DCHECK_EQ(bus->channels(), num_channels_);
if (AtEnd()) {
bus->Zero();
return true;
}
const int bytes_per_frame = num_channels_ * bits_per_sample_ / 8;
const int remaining_frames = (audio_data_.size() - cursor_) / bytes_per_frame;
const int frames = std::min(bus->frames(), remaining_frames);
const auto* source = audio_data_.subspan(cursor_).data();
switch (audio_format_) {
case AudioFormat::kAudioFormatPCM:
switch (bits_per_sample_) {
case 8:
bus->FromInterleaved<UnsignedInt8SampleTypeTraits>(
reinterpret_cast<const uint8_t*>(source), frames);
break;
case 16:
bus->FromInterleaved<SignedInt16SampleTypeTraits>(
reinterpret_cast<const int16_t*>(source), frames);
break;
case 32:
bus->FromInterleaved<SignedInt32SampleTypeTraits>(
reinterpret_cast<const int32_t*>(source), frames);
break;
default:
NOTREACHED()
<< "Unsupported bytes per sample encountered for integer PCM: "
<< bytes_per_frame;
}
break;
case AudioFormat::kAudioFormatFloat:
switch (bits_per_sample_) {
case 32:
bus->FromInterleaved<Float32SampleTypeTraitsNoClip>(
reinterpret_cast<const float*>(source), frames);
break;
case 64:
bus->FromInterleaved<Float64SampleTypeTraits>(
reinterpret_cast<const double*>(source), frames);
break;
default:
NOTREACHED()
<< "Unsupported bytes per sample encountered for float PCM: "
<< bytes_per_frame;
}
break;
default:
NOTREACHED() << "Unsupported audio format encountered: "
<< static_cast<uint16_t>(audio_format_);
}
*frames_written = frames;
cursor_ += frames * bytes_per_frame;
bus->ZeroFramesPartial(frames, bus->frames() - frames);
return true;
}
base::TimeDelta WavAudioHandler::GetDuration() const {
return AudioTimestampHelper::FramesToTime(total_frames_, sample_rate_);
}
void WavAudioHandler::Reset() {
cursor_ = 0;
}
} // namespace media