1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
media / audio / win / audio_output_win_unittest.cc [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include <windows.h>
#include <mmsystem.h>
#include <stddef.h>
#include <stdint.h>
#include <memory>
#include "base/base_paths.h"
#include "base/containers/span.h"
#include "base/logging.h"
#include "base/memory/aligned_memory.h"
#include "base/memory/ptr_util.h"
#include "base/memory/raw_ptr.h"
#include "base/memory/raw_ptr_exclusion.h"
#include "base/run_loop.h"
#include "base/sync_socket.h"
#include "base/test/task_environment.h"
#include "base/time/time.h"
#include "base/win/scoped_com_initializer.h"
#include "media/audio/audio_device_info_accessor_for_tests.h"
#include "media/audio/audio_io.h"
#include "media/audio/audio_manager.h"
#include "media/audio/audio_unittest_util.h"
#include "media/audio/mock_audio_source_callback.h"
#include "media/audio/simple_sources.h"
#include "media/audio/test_audio_thread.h"
#include "media/base/limits.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
using ::testing::_;
using ::testing::AnyNumber;
using ::testing::DoAll;
using ::testing::Field;
using ::testing::Invoke;
using ::testing::InSequence;
using ::testing::NiceMock;
using ::testing::NotNull;
using ::testing::Return;
namespace media {
static int ClearData(base::TimeDelta /* delay */,
base::TimeTicks /* delay_timestamp */,
const AudioGlitchInfo& /* glitch_info */,
AudioBus* dest) {
dest->Zero();
return dest->frames();
}
// This class allows to find out if the callbacks are occurring as
// expected and if any error has been reported.
class TestSourceBasic : public AudioOutputStream::AudioSourceCallback {
public:
TestSourceBasic()
: callback_count_(0),
had_error_(0) {
}
// AudioSourceCallback::OnMoreData implementation:
int OnMoreData(base::TimeDelta /* delay */,
base::TimeTicks /* delay_timestamp */,
const AudioGlitchInfo& /* glitch_info */,
AudioBus* dest) override {
++callback_count_;
// Touch the channel memory value to make sure memory is good.
dest->Zero();
return dest->frames();
}
// AudioSourceCallback::OnError implementation:
void OnError(ErrorType type) override { ++had_error_; }
// Returns how many times OnMoreData() has been called.
int callback_count() const {
return callback_count_;
}
// Returns how many times the OnError callback was called.
int had_error() const {
return had_error_;
}
void set_error(bool error) {
had_error_ += error ? 1 : 0;
}
private:
int callback_count_;
int had_error_;
};
const int kMaxNumBuffers = 3;
// Specializes TestSourceBasic to simulate a source that blocks for some time
// in the OnMoreData callback.
class TestSourceLaggy : public TestSourceBasic {
public:
explicit TestSourceLaggy(int lag_in_ms)
: lag_in_ms_(lag_in_ms) {
}
int OnMoreData(base::TimeDelta delay,
base::TimeTicks delay_timestamp,
const AudioGlitchInfo& glitch_info,
AudioBus* dest) override {
// Call the base, which increments the callback_count_.
TestSourceBasic::OnMoreData(delay, delay_timestamp, glitch_info, dest);
if (callback_count() > kMaxNumBuffers) {
::Sleep(lag_in_ms_);
}
return dest->frames();
}
private:
int lag_in_ms_;
};
// Helper class to memory map an entire file. The mapping is read-only. Don't
// use for gigabyte-sized files. Attempts to write to this memory generate
// memory access violations.
class ReadOnlyMappedFile {
public:
explicit ReadOnlyMappedFile(const wchar_t* file_name)
: fmap_(NULL), start_(nullptr), size_(0) {
HANDLE file = ::CreateFileW(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
if (INVALID_HANDLE_VALUE == file)
return;
fmap_ = ::CreateFileMappingW(file, NULL, PAGE_READONLY, 0, 0, NULL);
::CloseHandle(file);
if (!fmap_)
return;
start_ = reinterpret_cast<char*>(::MapViewOfFile(fmap_, FILE_MAP_READ,
0, 0, 0));
if (!start_)
return;
MEMORY_BASIC_INFORMATION mbi = {0};
::VirtualQuery(start_, &mbi, sizeof(mbi));
size_ = mbi.RegionSize;
}
~ReadOnlyMappedFile() {
if (start_) {
::UnmapViewOfFile(start_);
::CloseHandle(fmap_);
}
}
// Returns true if the file was successfully mapped.
bool is_valid() const { return (start_ && (size_ > 0)); }
// Returns the size in bytes of the mapped memory.
uint32_t size() const { return size_; }
// Returns the memory backing the file.
const void* GetChunkAt(uint32_t offset) { return &start_[offset]; }
private:
HANDLE fmap_;
raw_ptr<char, AllowPtrArithmetic> start_;
uint32_t size_;
};
class WinAudioTest : public ::testing::Test {
public:
WinAudioTest() {
audio_manager_ =
AudioManager::CreateForTesting(std::make_unique<TestAudioThread>());
audio_manager_device_info_ =
std::make_unique<AudioDeviceInfoAccessorForTests>(audio_manager_.get());
base::RunLoop().RunUntilIdle();
}
~WinAudioTest() override { audio_manager_->Shutdown(); }
protected:
base::test::SingleThreadTaskEnvironment task_environment_;
std::unique_ptr<AudioManager> audio_manager_;
std::unique_ptr<AudioDeviceInfoAccessorForTests> audio_manager_device_info_;
};
// ===========================================================================
// Validation of AudioManager::AUDIO_PCM_LINEAR
//
// NOTE:
// The tests can fail on the build bots when somebody connects to them via
// remote-desktop and the rdp client installs an audio device that fails to open
// at some point, possibly when the connection goes idle.
// Test that can it be created and closed.
TEST_F(WinAudioTest, PCMWaveStreamGetAndClose) {
ABORT_AUDIO_TEST_IF_NOT(audio_manager_device_info_->HasAudioOutputDevices());
AudioOutputStream* oas = audio_manager_->MakeAudioOutputStream(
AudioParameters(AudioParameters::AUDIO_PCM_LINEAR,
ChannelLayoutConfig::Stereo(), 8000, 256),
std::string(), AudioManager::LogCallback());
ASSERT_TRUE(NULL != oas);
oas->Close();
}
// Test that it can be opened and closed.
TEST_F(WinAudioTest, PCMWaveStreamOpenAndClose) {
ABORT_AUDIO_TEST_IF_NOT(audio_manager_device_info_->HasAudioOutputDevices());
AudioOutputStream* oas = audio_manager_->MakeAudioOutputStream(
AudioParameters(AudioParameters::AUDIO_PCM_LINEAR,
ChannelLayoutConfig::Stereo(), 8000, 256),
std::string(), AudioManager::LogCallback());
ASSERT_TRUE(NULL != oas);
EXPECT_TRUE(oas->Open());
oas->Close();
}
// Test potential deadlock situation if the source is slow or blocks for some
// time. The actual EXPECT_GT are mostly meaningless and the real test is that
// the test completes in reasonable time.
TEST_F(WinAudioTest, PCMWaveSlowSource) {
ABORT_AUDIO_TEST_IF_NOT(audio_manager_device_info_->HasAudioOutputDevices());
AudioOutputStream* oas = audio_manager_->MakeAudioOutputStream(
AudioParameters(AudioParameters::AUDIO_PCM_LINEAR,
ChannelLayoutConfig::Mono(), 16000, 256),
std::string(), AudioManager::LogCallback());
ASSERT_TRUE(NULL != oas);
TestSourceLaggy test_laggy(90);
EXPECT_TRUE(oas->Open());
// The test parameters cause a callback every 32 ms and the source is
// sleeping for 90 ms, so it is guaranteed that we run out of ready buffers.
oas->Start(&test_laggy);
::Sleep(500);
EXPECT_GT(test_laggy.callback_count(), 2);
EXPECT_FALSE(test_laggy.had_error());
oas->Stop();
::Sleep(500);
oas->Close();
}
// Test another potential deadlock situation if the thread that calls Start()
// gets paused. This test is best when run over RDP with audio enabled. See
// bug 19276 for more details.
TEST_F(WinAudioTest, PCMWaveStreamPlaySlowLoop) {
ABORT_AUDIO_TEST_IF_NOT(audio_manager_device_info_->HasAudioOutputDevices());
uint32_t samples_100_ms = AudioParameters::kAudioCDSampleRate / 10;
AudioOutputStream* oas = audio_manager_->MakeAudioOutputStream(
AudioParameters(AudioParameters::AUDIO_PCM_LINEAR,
ChannelLayoutConfig::Mono(),
AudioParameters::kAudioCDSampleRate, samples_100_ms),
std::string(), AudioManager::LogCallback());
ASSERT_TRUE(NULL != oas);
SineWaveAudioSource source(1, 200.0, AudioParameters::kAudioCDSampleRate);
EXPECT_TRUE(oas->Open());
oas->SetVolume(1.0);
for (int ix = 0; ix != 5; ++ix) {
oas->Start(&source);
::Sleep(10);
oas->Stop();
}
oas->Close();
}
// This test produces actual audio for .5 seconds on the default wave
// device at 44.1K s/sec. Parameters have been chosen carefully so you should
// not hear pops or noises while the sound is playing.
TEST_F(WinAudioTest, PCMWaveStreamPlay200HzTone44Kss) {
if (!audio_manager_device_info_->HasAudioOutputDevices()) {
LOG(WARNING) << "No output device detected.";
return;
}
uint32_t samples_100_ms = AudioParameters::kAudioCDSampleRate / 10;
AudioOutputStream* oas = audio_manager_->MakeAudioOutputStream(
AudioParameters(AudioParameters::AUDIO_PCM_LINEAR,
ChannelLayoutConfig::Mono(),
AudioParameters::kAudioCDSampleRate, samples_100_ms),
std::string(), AudioManager::LogCallback());
ASSERT_TRUE(NULL != oas);
SineWaveAudioSource source(1, 200.0, AudioParameters::kAudioCDSampleRate);
EXPECT_TRUE(oas->Open());
oas->SetVolume(1.0);
oas->Start(&source);
::Sleep(500);
oas->Stop();
oas->Close();
}
// This test produces actual audio for for .5 seconds on the default wave
// device at 22K s/sec. Parameters have been chosen carefully so you should
// not hear pops or noises while the sound is playing. The audio also should
// sound with a lower volume than PCMWaveStreamPlay200HzTone44Kss.
TEST_F(WinAudioTest, PCMWaveStreamPlay200HzTone22Kss) {
ABORT_AUDIO_TEST_IF_NOT(audio_manager_device_info_->HasAudioOutputDevices());
uint32_t samples_100_ms = AudioParameters::kAudioCDSampleRate / 20;
AudioOutputStream* oas = audio_manager_->MakeAudioOutputStream(
AudioParameters(AudioParameters::AUDIO_PCM_LINEAR,
ChannelLayoutConfig::Mono(),
AudioParameters::kAudioCDSampleRate / 2, samples_100_ms),
std::string(), AudioManager::LogCallback());
ASSERT_TRUE(NULL != oas);
SineWaveAudioSource source(1, 200.0, AudioParameters::kAudioCDSampleRate/2);
EXPECT_TRUE(oas->Open());
oas->SetVolume(0.5);
oas->Start(&source);
::Sleep(500);
// Test that the volume is within the set limits.
double volume = 0.0;
oas->GetVolume(&volume);
EXPECT_LT(volume, 0.51);
EXPECT_GT(volume, 0.49);
oas->Stop();
oas->Close();
}
// Uses a restricted source to play ~2 seconds of audio for about 5 seconds. We
// try hard to generate situation where the two threads are accessing the
// object roughly at the same time.
TEST_F(WinAudioTest, PushSourceFile16KHz) {
ABORT_AUDIO_TEST_IF_NOT(audio_manager_device_info_->HasAudioOutputDevices());
static const int kSampleRate = 16000;
SineWaveAudioSource source(1, 200.0, kSampleRate);
// Compute buffer size for 100ms of audio.
const uint32_t kSamples100ms = (kSampleRate / 1000) * 100;
// Restrict SineWaveAudioSource to 100ms of samples.
source.CapSamples(kSamples100ms);
AudioOutputStream* oas = audio_manager_->MakeAudioOutputStream(
AudioParameters(AudioParameters::AUDIO_PCM_LINEAR,
ChannelLayoutConfig::Mono(), kSampleRate, kSamples100ms),
std::string(), AudioManager::LogCallback());
ASSERT_TRUE(NULL != oas);
EXPECT_TRUE(oas->Open());
oas->SetVolume(1.0);
oas->Start(&source);
// We buffer and play at the same time, buffering happens every ~10ms and the
// consuming of the buffer happens every ~100ms. We do 100 buffers which
// effectively wrap around the file more than once.
for (uint32_t ix = 0; ix != 100; ++ix) {
::Sleep(10);
source.Reset();
}
// Play a little bit more of the file.
::Sleep(500);
oas->Stop();
oas->Close();
}
// This test is to make sure an AudioOutputStream can be started after it was
// stopped. You will here two .5 seconds wave signal separated by 0.5 seconds
// of silence.
TEST_F(WinAudioTest, PCMWaveStreamPlayTwice200HzTone44Kss) {
ABORT_AUDIO_TEST_IF_NOT(audio_manager_device_info_->HasAudioOutputDevices());
uint32_t samples_100_ms = AudioParameters::kAudioCDSampleRate / 10;
AudioOutputStream* oas = audio_manager_->MakeAudioOutputStream(
AudioParameters(AudioParameters::AUDIO_PCM_LINEAR,
ChannelLayoutConfig::Mono(),
AudioParameters::kAudioCDSampleRate, samples_100_ms),
std::string(), AudioManager::LogCallback());
ASSERT_TRUE(NULL != oas);
SineWaveAudioSource source(1, 200.0, AudioParameters::kAudioCDSampleRate);
EXPECT_TRUE(oas->Open());
oas->SetVolume(1.0);
// Play the wave for .5 seconds.
oas->Start(&source);
::Sleep(500);
oas->Stop();
// Sleep to give silence after stopping the AudioOutputStream.
::Sleep(250);
// Start again and play for .5 seconds.
oas->Start(&source);
::Sleep(500);
oas->Stop();
oas->Close();
}
// With the low latency mode, WASAPI is utilized by default for Vista and
// higher and Wave is used for XP and lower. It is possible to utilize a
// smaller buffer size for WASAPI than for Wave.
TEST_F(WinAudioTest, PCMWaveStreamPlay200HzToneLowLatency) {
ABORT_AUDIO_TEST_IF_NOT(audio_manager_device_info_->HasAudioOutputDevices());
// Use 10 ms buffer size for WASAPI and 50 ms buffer size for Wave.
// Take the existing native sample rate into account.
std::string default_device_id =
audio_manager_device_info_->GetDefaultOutputDeviceID();
const AudioParameters params =
audio_manager_device_info_->GetOutputStreamParameters(default_device_id);
int sample_rate = params.sample_rate();
uint32_t samples_10_ms = sample_rate / 100;
AudioOutputStream* oas = audio_manager_->MakeAudioOutputStream(
AudioParameters(AudioParameters::AUDIO_PCM_LOW_LATENCY,
ChannelLayoutConfig::Mono(), sample_rate, samples_10_ms),
std::string(), AudioManager::LogCallback());
ASSERT_TRUE(NULL != oas);
SineWaveAudioSource source(1, 200, sample_rate);
bool opened = oas->Open();
if (!opened) {
// It was not possible to open this audio device in mono.
// No point in continuing the test so let's break here.
LOG(WARNING) << "Mono is not supported. Skipping test.";
oas->Close();
return;
}
oas->SetVolume(1.0);
// Play the wave for .8 seconds.
oas->Start(&source);
::Sleep(800);
oas->Stop();
oas->Close();
}
// Check that the pending bytes value is correct what the stream starts.
TEST_F(WinAudioTest, PCMWaveStreamPendingBytes) {
ABORT_AUDIO_TEST_IF_NOT(audio_manager_device_info_->HasAudioOutputDevices());
uint32_t samples_100_ms = AudioParameters::kAudioCDSampleRate / 10;
AudioOutputStream* oas = audio_manager_->MakeAudioOutputStream(
AudioParameters(AudioParameters::AUDIO_PCM_LINEAR,
ChannelLayoutConfig::Mono(),
AudioParameters::kAudioCDSampleRate, samples_100_ms),
std::string(), AudioManager::LogCallback());
ASSERT_TRUE(NULL != oas);
NiceMock<MockAudioSourceCallback> source;
EXPECT_TRUE(oas->Open());
const base::TimeDelta delay_100_ms = base::Milliseconds(100);
const base::TimeDelta delay_200_ms = base::Milliseconds(200);
// Audio output stream has either a double or triple buffer scheme. We expect
// the delay to reach up to 200 ms depending on the number of buffers used.
// From that it would decrease as we are playing the data but not providing
// new one. And then we will try to provide zero data so the amount of
// pending bytes will go down and eventually read zero.
InSequence s;
EXPECT_CALL(source,
OnMoreData(base::TimeDelta(), _, AudioGlitchInfo(), NotNull()))
.WillOnce(Invoke(ClearData));
// Note: If AudioManagerWin::NumberOfWaveOutBuffers() ever changes, or if this
// test is run on Vista, these expectations will fail.
EXPECT_CALL(source, OnMoreData(delay_100_ms, _, AudioGlitchInfo(), NotNull()))
.WillOnce(Invoke(ClearData));
EXPECT_CALL(source, OnMoreData(delay_200_ms, _, AudioGlitchInfo(), NotNull()))
.WillOnce(Invoke(ClearData));
EXPECT_CALL(source, OnMoreData(delay_200_ms, _, AudioGlitchInfo(), NotNull()))
.Times(AnyNumber())
.WillRepeatedly(Return(0));
EXPECT_CALL(source, OnMoreData(delay_100_ms, _, AudioGlitchInfo(), NotNull()))
.Times(AnyNumber())
.WillRepeatedly(Return(0));
EXPECT_CALL(source,
OnMoreData(base::TimeDelta(), _, AudioGlitchInfo(), NotNull()))
.Times(AnyNumber())
.WillRepeatedly(Return(0));
oas->Start(&source);
::Sleep(500);
oas->Stop();
oas->Close();
}
// Simple source that uses a SyncSocket to retrieve the audio data
// from a potentially remote thread.
class SyncSocketSource : public AudioOutputStream::AudioSourceCallback {
public:
SyncSocketSource(base::SyncSocket* socket,
const AudioParameters& params,
int expected_packet_count)
: socket_(socket),
params_(params),
expected_packet_count_(expected_packet_count) {
// Setup AudioBus wrapping data we'll receive over the sync socket.
packet_size_ = AudioBus::CalculateMemorySize(params);
data_.reset(static_cast<float*>(
base::AlignedAlloc(packet_size_ + sizeof(AudioOutputBufferParameters),
AudioBus::kChannelAlignment)));
audio_bus_ = AudioBus::WrapMemory(params, output_buffer()->audio);
}
~SyncSocketSource() override {}
// AudioSourceCallback::OnMoreData implementation:
int OnMoreData(base::TimeDelta delay,
base::TimeTicks delay_timestamp,
const AudioGlitchInfo& glitch_info,
AudioBus* dest) override {
// If we ask for more data once the producer has shutdown, we will hang
// on |socket_->Receive()|.
if (current_packet_count_ < expected_packet_count_) {
uint32_t control_signal = 0;
socket_->Send(base::byte_span_from_ref(control_signal));
output_buffer()->params.delay_us = delay.InMicroseconds();
output_buffer()->params.delay_timestamp_us =
(delay_timestamp - base::TimeTicks()).InMicroseconds();
const size_t span_size =
static_cast<size_t>(packet_size_) / sizeof(decltype(*data_.get()));
uint32_t size = socket_->Receive(base::as_writable_bytes(
base::allow_nonunique_obj, base::span(data_.get(), span_size)));
++current_packet_count_;
DCHECK_EQ(static_cast<size_t>(size) % sizeof(*audio_bus_->channel(0)),
0U);
audio_bus_->CopyTo(dest);
return audio_bus_->frames();
}
return 0;
}
int packet_size() const { return packet_size_; }
AudioOutputBuffer* output_buffer() const {
return reinterpret_cast<AudioOutputBuffer*>(data_.get());
}
// AudioSourceCallback::OnError implementation:
void OnError(ErrorType type) override {}
private:
raw_ptr<base::SyncSocket> socket_;
const AudioParameters params_;
int packet_size_;
std::unique_ptr<float, base::AlignedFreeDeleter> data_;
std::unique_ptr<AudioBus> audio_bus_;
// This test produces a fixed number of packets, we need these so we know
// when to stop listening.
const int expected_packet_count_;
int current_packet_count_ = 0;
};
struct SyncThreadContext {
// This field is not a raw_ptr<> because it was filtered by the rewriter for:
// #reinterpret-cast-trivial-type
RAW_PTR_EXCLUSION base::SyncSocket* socket;
int sample_rate;
int channels;
int frames;
double sine_freq;
uint32_t packet_size_bytes;
// This field is not a raw_ptr<> because it was filtered by the rewriter for:
// #reinterpret-cast-trivial-type
RAW_PTR_EXCLUSION AudioOutputBuffer* buffer;
int total_packets;
};
// This thread provides the data that the SyncSocketSource above needs
// using the other end of a SyncSocket. The protocol is as follows:
//
// SyncSocketSource ---send 4 bytes ------------> SyncSocketThread
// <--- audio packet ----------
//
DWORD __stdcall SyncSocketThread(void* context) {
SyncThreadContext& ctx = *(reinterpret_cast<SyncThreadContext*>(context));
// Setup AudioBus wrapping data we'll pass over the sync socket.
std::unique_ptr<float, base::AlignedFreeDeleter> data(static_cast<float*>(
base::AlignedAlloc(ctx.packet_size_bytes, AudioBus::kChannelAlignment)));
std::unique_ptr<AudioBus> audio_bus =
AudioBus::WrapMemory(ctx.channels, ctx.frames, data.get());
SineWaveAudioSource sine(1, ctx.sine_freq, ctx.sample_rate);
uint32_t control_signal = 0;
for (int ix = 0; ix < ctx.total_packets; ++ix) {
// Listen for a signal from the Audio Stream that it wants data. This is a
// blocking call and will not proceed until we receive the signal.
if (ctx.socket->Receive(base::byte_span_from_ref(control_signal)) == 0) {
break;
}
base::TimeDelta delay = base::Microseconds(ctx.buffer->params.delay_us);
base::TimeTicks delay_timestamp =
base::TimeTicks() +
base::Microseconds(ctx.buffer->params.delay_timestamp_us);
sine.OnMoreData(delay, delay_timestamp, {}, audio_bus.get());
// Send the audio data to the Audio Stream.
// SAFETY: `data`'s allocation has size `ctx.packet_size_bytes`.
ctx.socket->Send(UNSAFE_BUFFERS(base::span(
reinterpret_cast<uint8_t*>(data.get()), ctx.packet_size_bytes)));
}
return 0;
}
// Test the basic operation of AudioOutputStream used with a SyncSocket.
// The emphasis is to verify that it is possible to feed data to the audio
// layer using a source based on SyncSocket. In a real situation we would
// go for the low-latency version in combination with SyncSocket, but to keep
// the test more simple, AUDIO_PCM_LINEAR is utilized instead. The main
// principle of the test still remains and we avoid the additional complexity
// related to the two different audio-layers for AUDIO_PCM_LOW_LATENCY.
// In this test you should hear a continuous 200Hz tone for 2 seconds.
TEST_F(WinAudioTest, SyncSocketBasic) {
ABORT_AUDIO_TEST_IF_NOT(audio_manager_device_info_->HasAudioOutputDevices());
static const int sample_rate = AudioParameters::kAudioCDSampleRate;
static const uint32_t kSamples20ms = sample_rate / 50;
// We want 2 seconds of audio, which means we need 100 packets as each packet
// contains 20ms worth of audio samples.
static const int kPackets2s = 100;
AudioParameters params(AudioParameters::AUDIO_PCM_LINEAR,
ChannelLayoutConfig::Mono(), sample_rate,
kSamples20ms);
AudioOutputStream* oas = audio_manager_->MakeAudioOutputStream(
params, std::string(), AudioManager::LogCallback());
ASSERT_TRUE(NULL != oas);
ASSERT_TRUE(oas->Open());
// Create two sockets and connect them with a named pipe.
base::SyncSocket sockets[2];
ASSERT_TRUE(base::SyncSocket::CreatePair(&sockets[0], &sockets[1]));
// Give one socket to the source, which receives requests from the
// AudioOutputStream for more data. On such a request, it will send a control
// signal to the SyncThreadContext, then it will receive
// an audio packet back which it will give to the AudioOutputStream.
SyncSocketSource source(&sockets[0], params, kPackets2s);
// Give the other socket to the thread. This thread runs a loop that will
// generate enough audio packets for 2 seconds worth of audio. It will listen
// for a control signal and when it gets one it will write one audio packet
// to the pipe that connects the two sockets.
SyncThreadContext thread_context;
thread_context.sample_rate = params.sample_rate();
thread_context.sine_freq = 200.0;
thread_context.packet_size_bytes = source.packet_size();
thread_context.frames = params.frames_per_buffer();
thread_context.channels = params.channels();
thread_context.socket = &sockets[1];
thread_context.buffer = source.output_buffer();
thread_context.total_packets = kPackets2s;
HANDLE thread = ::CreateThread(NULL, 0, SyncSocketThread,
&thread_context, 0, NULL);
// Start the AudioOutputStream, which will request data via
// SyncSocketSource::OnMoreData until the SyncThreadContext has run out of
// data to give.
oas->Start(&source);
// Wait for the SyncThreadContext to finish its loop, should take 2 seconds.
// During this time it is providing audio data as described above.
::WaitForSingleObject(thread, INFINITE);
::CloseHandle(thread);
// Once no more data is being sent, we can stop and close the stream.
oas->Stop();
oas->Close();
}
} // namespace media