1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
media / base / audio_buffer_converter.cc [blame]
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "media/base/audio_buffer_converter.h"
#include <algorithm>
#include <cmath>
#include <memory>
#include "base/check_op.h"
#include "base/numerics/safe_conversions.h"
#include "media/base/audio_bus.h"
#include "media/base/audio_decoder_config.h"
#include "media/base/audio_timestamp_helper.h"
#include "media/base/sinc_resampler.h"
#include "media/base/timestamp_constants.h"
#include "media/base/vector_math.h"
namespace media {
// Is the config presented by |buffer| a config change from |params|?
static bool IsConfigChange(const AudioParameters& params,
const AudioBuffer& buffer) {
return buffer.sample_rate() != params.sample_rate() ||
buffer.channel_count() != params.channels() ||
buffer.channel_layout() != params.channel_layout();
}
AudioBufferConverter::AudioBufferConverter(const AudioParameters& output_params)
: output_params_(output_params),
input_params_(output_params),
last_input_buffer_offset_(0),
input_frames_(0),
buffered_input_frames_(0.0),
io_sample_rate_ratio_(1.0),
timestamp_helper_(output_params_.sample_rate()),
is_flushing_(false),
pool_(new AudioBufferMemoryPool()) {}
AudioBufferConverter::~AudioBufferConverter() = default;
void AudioBufferConverter::AddInput(scoped_refptr<AudioBuffer> buffer) {
// On EOS flush any remaining buffered data.
if (buffer->end_of_stream()) {
Flush();
queued_outputs_.push_back(std::move(buffer));
return;
}
// We'll need a new |audio_converter_| if there was a config change.
if (IsConfigChange(input_params_, *buffer))
ResetConverter(*buffer);
// Pass straight through if there's no work to be done.
if (!audio_converter_) {
queued_outputs_.push_back(std::move(buffer));
return;
}
if (!timestamp_helper_.base_timestamp()) {
timestamp_helper_.SetBaseTimestamp(buffer->timestamp());
}
input_frames_ += buffer->frame_count();
queued_inputs_.push_back(std::move(buffer));
ConvertIfPossible();
}
bool AudioBufferConverter::HasNextBuffer() { return !queued_outputs_.empty(); }
scoped_refptr<AudioBuffer> AudioBufferConverter::GetNextBuffer() {
DCHECK(!queued_outputs_.empty());
auto out = std::move(queued_outputs_.front());
queued_outputs_.pop_front();
return out;
}
void AudioBufferConverter::Reset() {
audio_converter_.reset();
queued_inputs_.clear();
queued_outputs_.clear();
timestamp_helper_.Reset();
input_params_ = output_params_;
input_frames_ = 0;
buffered_input_frames_ = 0.0;
last_input_buffer_offset_ = 0;
}
void AudioBufferConverter::ResetTimestampState() {
Flush();
timestamp_helper_.Reset();
}
double AudioBufferConverter::ProvideInput(AudioBus* audio_bus,
uint32_t frames_delayed,
const AudioGlitchInfo& glitch_info) {
DCHECK(is_flushing_ || input_frames_ >= audio_bus->frames());
int requested_frames_left = audio_bus->frames();
int dest_index = 0;
while (requested_frames_left > 0 && !queued_inputs_.empty()) {
const auto& input_buffer = queued_inputs_.front();
int frames_to_read =
std::min(requested_frames_left,
input_buffer->frame_count() - last_input_buffer_offset_);
input_buffer->ReadFrames(frames_to_read, last_input_buffer_offset_,
dest_index, audio_bus);
last_input_buffer_offset_ += frames_to_read;
if (last_input_buffer_offset_ == input_buffer->frame_count()) {
// We've consumed all the frames in |input_buffer|.
queued_inputs_.pop_front();
last_input_buffer_offset_ = 0;
}
requested_frames_left -= frames_to_read;
dest_index += frames_to_read;
}
// If we're flushing, zero any extra space, otherwise we should always have
// enough data to completely fulfill the request.
if (is_flushing_ && requested_frames_left > 0) {
audio_bus->ZeroFramesPartial(audio_bus->frames() - requested_frames_left,
requested_frames_left);
} else {
DCHECK_EQ(requested_frames_left, 0);
}
input_frames_ -= audio_bus->frames() - requested_frames_left;
DCHECK_GE(input_frames_, 0);
buffered_input_frames_ += audio_bus->frames() - requested_frames_left;
// Full volume.
return 1.0;
}
void AudioBufferConverter::ResetConverter(const AudioBuffer& buffer) {
Flush();
audio_converter_.reset();
input_params_.Reset(
input_params_.format(), {buffer.channel_layout(), buffer.channel_count()},
buffer.sample_rate(),
// If resampling is needed and the FIFO disabled, the AudioConverter will
// always request SincResampler::kDefaultRequestSize frames. Otherwise it
// will use the output frame size.
buffer.sample_rate() == output_params_.sample_rate()
? output_params_.frames_per_buffer()
: SincResampler::kDefaultRequestSize);
io_sample_rate_ratio_ = static_cast<double>(input_params_.sample_rate()) /
output_params_.sample_rate();
// If |buffer| matches |output_params_| we don't need an AudioConverter at
// all, and can early-out here.
if (!IsConfigChange(output_params_, buffer))
return;
// Note: The FIFO is disabled to avoid extraneous memcpy().
audio_converter_ =
std::make_unique<AudioConverter>(input_params_, output_params_, true);
audio_converter_->AddInput(this);
}
void AudioBufferConverter::ConvertIfPossible() {
DCHECK(audio_converter_);
int request_frames = 0;
if (is_flushing_) {
// If we're flushing we want to convert *everything* even if this means
// we'll have to pad some silence in ProvideInput().
request_frames =
ceil((buffered_input_frames_ + input_frames_) / io_sample_rate_ratio_);
} else {
// How many calls to ProvideInput() we can satisfy completely.
int chunks = input_frames_ / input_params_.frames_per_buffer();
// How many output frames that corresponds to:
request_frames = chunks * audio_converter_->ChunkSize();
}
if (!request_frames)
return;
auto output_buffer = AudioBuffer::CreateBuffer(
kSampleFormatPlanarF32, output_params_.channel_layout(),
output_params_.channels(), output_params_.sample_rate(), request_frames,
pool_);
std::unique_ptr<AudioBus> output_bus =
AudioBus::CreateWrapper(output_buffer->channel_count());
int frames_remaining = request_frames;
// The AudioConverter wants requests of a fixed size, so we'll slide an
// AudioBus of that size across the |output_buffer|.
while (frames_remaining != 0) {
// It's important that this is a multiple of AudioBus::kChannelAlignment in
// all requests except for the last, otherwise downstream SIMD optimizations
// will crash on unaligned data.
const int frames_this_iteration = std::min(
static_cast<int>(SincResampler::kDefaultRequestSize), frames_remaining);
const size_t offset_into_buffer =
output_buffer->frame_count() - frames_remaining;
// Wrap the portion of the AudioBuffer in an AudioBus so the AudioConverter
// can fill it.
output_bus->set_frames(frames_this_iteration);
for (int ch = 0; ch < output_buffer->channel_count(); ++ch) {
AudioBus::Channel output_channel = base::span(
reinterpret_cast<float*>(output_buffer->channel_data()[ch]),
base::checked_cast<size_t>(output_buffer->frame_count()));
output_bus->SetChannelData(
ch, output_channel.subspan(
offset_into_buffer,
base::checked_cast<size_t>(frames_this_iteration)));
}
// Do the actual conversion.
audio_converter_->Convert(output_bus.get());
frames_remaining -= frames_this_iteration;
buffered_input_frames_ -= frames_this_iteration * io_sample_rate_ratio_;
}
// Compute the timestamp.
output_buffer->set_timestamp(timestamp_helper_.GetTimestamp());
timestamp_helper_.AddFrames(request_frames);
queued_outputs_.push_back(std::move(output_buffer));
}
void AudioBufferConverter::Flush() {
if (!audio_converter_)
return;
is_flushing_ = true;
ConvertIfPossible();
is_flushing_ = false;
audio_converter_->Reset();
DCHECK_EQ(input_frames_, 0);
DCHECK_EQ(last_input_buffer_offset_, 0);
DCHECK_LT(buffered_input_frames_, 1.0);
DCHECK(queued_inputs_.empty());
buffered_input_frames_ = 0.0;
}
} // namespace media