1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
media / base / audio_bus_unittest.cc [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "media/base/audio_bus.h"
#include <stddef.h>
#include <stdint.h>
#include <limits>
#include <memory>
#include "base/memory/aligned_memory.h"
#include "base/memory/raw_ptr.h"
#include "base/strings/stringprintf.h"
#include "base/test/bind.h"
#include "base/time/time.h"
#include "build/build_config.h"
#include "media/base/audio_parameters.h"
#include "media/base/audio_sample_types.h"
#include "media/base/channel_layout.h"
#include "media/base/fake_audio_render_callback.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace media {
static const int kChannels = 6;
static constexpr ChannelLayout kChannelLayout = CHANNEL_LAYOUT_5_1;
// Use a buffer size which is intentionally not a multiple of kChannelAlignment.
static const int kFrameCount = media::AudioBus::kChannelAlignment * 32 - 1;
static const int kSampleRate = 48000;
class AudioBusTest : public testing::Test {
public:
AudioBusTest() = default;
AudioBusTest(const AudioBusTest&) = delete;
AudioBusTest& operator=(const AudioBusTest&) = delete;
~AudioBusTest() override {
for (size_t i = 0; i < data_.size(); ++i)
base::AlignedFree(data_[i]);
}
void VerifyChannelAndFrameCount(AudioBus* bus) {
EXPECT_EQ(kChannels, bus->channels());
EXPECT_EQ(kFrameCount, bus->frames());
}
void VerifyArrayIsFilledWithValue(const float data[], int size, float value) {
for (int i = 0; i < size; ++i)
ASSERT_FLOAT_EQ(value, data[i]) << "i=" << i;
}
// Verify values for each channel in |result| are within |epsilon| of
// |expected|. If |epsilon| exactly equals 0, uses FLOAT_EQ macro.
void VerifyAreEqualWithEpsilon(const AudioBus* result,
const AudioBus* expected,
float epsilon) {
ASSERT_EQ(expected->channels(), result->channels());
ASSERT_EQ(expected->frames(), result->frames());
ASSERT_EQ(expected->is_bitstream_format(), result->is_bitstream_format());
if (expected->is_bitstream_format()) {
ASSERT_EQ(expected->GetBitstreamDataSize(),
result->GetBitstreamDataSize());
ASSERT_EQ(expected->GetBitstreamFrames(), result->GetBitstreamFrames());
ASSERT_EQ(0, memcmp(expected->channel(0), result->channel(0),
result->GetBitstreamDataSize()));
return;
}
for (int ch = 0; ch < result->channels(); ++ch) {
for (int i = 0; i < result->frames(); ++i) {
SCOPED_TRACE(base::StringPrintf("ch=%d, i=%d", ch, i));
if (epsilon == 0) {
ASSERT_FLOAT_EQ(expected->channel(ch)[i], result->channel(ch)[i]);
} else {
ASSERT_NEAR(expected->channel(ch)[i], result->channel(ch)[i],
epsilon);
}
}
}
}
// Verify values for each channel in |result| against |expected|.
void VerifyAreEqual(const AudioBus* result, const AudioBus* expected) {
VerifyAreEqualWithEpsilon(result, expected, 0);
}
// Read and write to the full extent of the allocated channel data. Also test
// the Zero() method and verify it does as advertised. Also test data if data
// is 16-byte aligned as advertised (see kChannelAlignment in audio_bus.h).
void VerifyReadWriteAndAlignment(AudioBus* bus) {
for (int i = 0; i < bus->channels(); ++i) {
// Verify that the address returned by channel(i) is a multiple of
// AudioBus::kChannelAlignment.
ASSERT_EQ(0U, reinterpret_cast<uintptr_t>(
bus->channel(i)) & (AudioBus::kChannelAlignment - 1));
// Write into the channel buffer.
std::fill(bus->channel(i), bus->channel(i) + bus->frames(), i);
}
for (int i = 0; i < bus->channels(); ++i)
VerifyArrayIsFilledWithValue(bus->channel(i), bus->frames(), i);
bus->Zero();
for (int i = 0; i < bus->channels(); ++i)
VerifyArrayIsFilledWithValue(bus->channel(i), bus->frames(), 0);
}
// Verify copying to and from |bus1| and |bus2|.
void CopyTest(AudioBus* bus1, AudioBus* bus2) {
// Fill |bus1| with dummy data.
for (int i = 0; i < bus1->channels(); ++i)
std::fill(bus1->channel(i), bus1->channel(i) + bus1->frames(), i);
// Verify copy from |bus1| to |bus2|.
bus2->Zero();
bus1->CopyTo(bus2);
VerifyAreEqual(bus1, bus2);
// Verify copy from |bus2| to |bus1|.
bus1->Zero();
bus2->CopyTo(bus1);
VerifyAreEqual(bus2, bus1);
}
protected:
void AllocateDataPerChannel() {
data_.reserve(kChannels);
for (int i = 0; i < kChannels; ++i) {
data_.push_back(static_cast<float*>(base::AlignedAlloc(
sizeof(*data_[i]) * kFrameCount, AudioBus::kChannelAlignment)));
}
}
std::vector<float*> data_;
};
// Verify basic Create(...) method works as advertised.
TEST_F(AudioBusTest, Create) {
std::unique_ptr<AudioBus> bus = AudioBus::Create(kChannels, kFrameCount);
VerifyChannelAndFrameCount(bus.get());
VerifyReadWriteAndAlignment(bus.get());
}
// Verify Create(...) using AudioParameters works as advertised.
TEST_F(AudioBusTest, CreateUsingAudioParameters) {
std::unique_ptr<AudioBus> bus = AudioBus::Create(
AudioParameters(AudioParameters::AUDIO_PCM_LINEAR,
ChannelLayoutConfig::FromLayout<kChannelLayout>(),
kSampleRate, kFrameCount));
VerifyChannelAndFrameCount(bus.get());
VerifyReadWriteAndAlignment(bus.get());
}
// Verify an AudioBus created via CreateWrapper(...) works as advertised.
TEST_F(AudioBusTest, CreateWrapper) {
AllocateDataPerChannel();
std::unique_ptr<AudioBus> bus = AudioBus::CreateWrapper(kChannels);
bus->set_frames(kFrameCount);
for (int i = 0; i < bus->channels(); ++i) {
bus->SetChannelData(i,
base::span(data_[i], static_cast<size_t>(kFrameCount)));
}
bool deleted = false;
bus->SetWrappedDataDeleter(
base::BindLambdaForTesting([&]() { deleted = true; }));
VerifyChannelAndFrameCount(bus.get());
VerifyReadWriteAndAlignment(bus.get());
EXPECT_FALSE(deleted);
bus.reset();
EXPECT_TRUE(deleted);
}
TEST_F(AudioBusTest, AllChannels) {
AllocateDataPerChannel();
std::unique_ptr<AudioBus> bus = AudioBus::CreateWrapper(kChannels);
bus->set_frames(kFrameCount);
AudioBus::ChannelVector channels;
int value = 1;
for (float* data : data_) {
AudioBus::Channel channel(data, static_cast<size_t>(kFrameCount));
// Fill each channel with a different value.
std::ranges::fill(channel, value++);
channels.push_back(channel);
}
bus->SetAllChannels(channels);
VerifyChannelAndFrameCount(bus.get());
// Verify looping through `AllChannels()` is equivalent to getting each
// channel individually.
int current_channel = 0;
for (auto channel : bus->AllChannels()) {
EXPECT_EQ(channel, bus->channel_span(current_channel++));
}
EXPECT_EQ(current_channel, kChannels);
}
TEST_F(AudioBusTest, AllChannelsSubspan) {
AllocateDataPerChannel();
std::unique_ptr<AudioBus> bus = AudioBus::CreateWrapper(kChannels);
bus->set_frames(kFrameCount);
AudioBus::ChannelVector channels;
int value = 1;
for (float* data : data_) {
AudioBus::Channel channel(data, static_cast<size_t>(kFrameCount));
// Fill each sample with a different value.
for (float& sample : channel) {
sample = value++;
}
channels.push_back(channel);
}
bus->SetAllChannels(channels);
// Verify looping through `AllChannelsSubspan()` is equivalent to getting each
// channel individually and applying `subspan()` to them.
int current_channel = 0;
constexpr size_t kOffset = 3;
constexpr size_t kCount = 25;
for (auto channel : bus->AllChannelsSubspan(kOffset, kCount)) {
EXPECT_EQ(channel,
bus->channel_span(current_channel++).subspan(kOffset, kCount));
}
EXPECT_EQ(current_channel, kChannels);
}
// Verify an AudioBus created via wrapping a vector works as advertised.
TEST_F(AudioBusTest, WrapVector) {
data_.reserve(kChannels);
for (int i = 0; i < kChannels; ++i) {
data_.push_back(static_cast<float*>(base::AlignedAlloc(
sizeof(*data_[i]) * kFrameCount, AudioBus::kChannelAlignment)));
}
std::unique_ptr<AudioBus> bus = AudioBus::WrapVector(kFrameCount, data_);
VerifyChannelAndFrameCount(bus.get());
VerifyReadWriteAndAlignment(bus.get());
}
// Verify an AudioBus created via wrapping a memory block works as advertised.
TEST_F(AudioBusTest, WrapMemory) {
AudioParameters params(AudioParameters::AUDIO_PCM_LINEAR,
ChannelLayoutConfig::FromLayout<kChannelLayout>(),
kSampleRate, kFrameCount);
int data_size = AudioBus::CalculateMemorySize(params);
std::unique_ptr<float, base::AlignedFreeDeleter> data(static_cast<float*>(
base::AlignedAlloc(data_size, AudioBus::kChannelAlignment)));
// Fill the memory with a test value we can check for after wrapping.
static const float kTestValue = 3;
std::fill(data.get(), data.get() + data_size / sizeof(*data.get()),
kTestValue);
std::unique_ptr<AudioBus> bus = AudioBus::WrapMemory(params, data.get());
// Verify the test value we filled prior to wrapping.
for (int i = 0; i < bus->channels(); ++i)
VerifyArrayIsFilledWithValue(bus->channel(i), bus->frames(), kTestValue);
VerifyChannelAndFrameCount(bus.get());
VerifyReadWriteAndAlignment(bus.get());
// Verify the channel vectors lie within the provided memory block.
EXPECT_GE(bus->channel(0), data.get());
EXPECT_LT(bus->channel(bus->channels() - 1) + bus->frames(),
data.get() + data_size / sizeof(*data.get()));
}
// Simulate a shared memory transfer and verify results.
TEST_F(AudioBusTest, CopyTo) {
// Create one bus with AudioParameters and the other through direct values to
// test for parity between the Create() functions.
AudioParameters params(AudioParameters::AUDIO_PCM_LINEAR,
ChannelLayoutConfig::FromLayout<kChannelLayout>(),
kSampleRate, kFrameCount);
std::unique_ptr<AudioBus> bus1 = AudioBus::Create(kChannels, kFrameCount);
std::unique_ptr<AudioBus> bus2 = AudioBus::Create(params);
{
SCOPED_TRACE("Created");
CopyTest(bus1.get(), bus2.get());
}
{
SCOPED_TRACE("Wrapped Vector");
// Try a copy to an AudioBus wrapping a vector.
AllocateDataPerChannel();
bus2 = AudioBus::WrapVector(kFrameCount, data_);
CopyTest(bus1.get(), bus2.get());
}
{
SCOPED_TRACE("Wrapped Memory");
// Try a copy to an AudioBus wrapping a memory block.
std::unique_ptr<float, base::AlignedFreeDeleter> data(static_cast<float*>(
base::AlignedAlloc(AudioBus::CalculateMemorySize(params),
AudioBus::kChannelAlignment)));
bus2 = AudioBus::WrapMemory(params, data.get());
CopyTest(bus1.get(), bus2.get());
}
}
// Verify Zero() and ZeroFrames(...) utility methods work as advertised.
TEST_F(AudioBusTest, Zero) {
std::unique_ptr<AudioBus> bus = AudioBus::Create(kChannels, kFrameCount);
// Fill the bus with dummy data.
for (int i = 0; i < bus->channels(); ++i)
std::fill(bus->channel(i), bus->channel(i) + bus->frames(), i + 1);
EXPECT_FALSE(bus->AreFramesZero());
// Zero first half the frames of each channel.
bus->ZeroFrames(kFrameCount / 2);
for (int i = 0; i < bus->channels(); ++i) {
SCOPED_TRACE("First Half Zero");
VerifyArrayIsFilledWithValue(bus->channel(i), kFrameCount / 2, 0);
VerifyArrayIsFilledWithValue(bus->channel(i) + kFrameCount / 2,
kFrameCount - kFrameCount / 2, i + 1);
}
EXPECT_FALSE(bus->AreFramesZero());
// Fill the bus with dummy data.
for (int i = 0; i < bus->channels(); ++i)
std::fill(bus->channel(i), bus->channel(i) + bus->frames(), i + 1);
// Zero the last half of the frames.
bus->ZeroFramesPartial(kFrameCount / 2, kFrameCount - kFrameCount / 2);
for (int i = 0; i < bus->channels(); ++i) {
SCOPED_TRACE("Last Half Zero");
VerifyArrayIsFilledWithValue(bus->channel(i) + kFrameCount / 2,
kFrameCount - kFrameCount / 2, 0);
VerifyArrayIsFilledWithValue(bus->channel(i), kFrameCount / 2, i + 1);
}
EXPECT_FALSE(bus->AreFramesZero());
// Fill the bus with dummy data.
for (int i = 0; i < bus->channels(); ++i)
std::fill(bus->channel(i), bus->channel(i) + bus->frames(), i + 1);
// Zero all the frames of each channel.
bus->Zero();
for (int i = 0; i < bus->channels(); ++i) {
SCOPED_TRACE("All Zero");
VerifyArrayIsFilledWithValue(bus->channel(i), bus->frames(), 0);
}
EXPECT_TRUE(bus->AreFramesZero());
}
// Each test vector represents two channels of data in the following arbitrary
// layout: <min, zero, max, min, max / 2, min / 2, zero, max, zero, zero>.
static const int kTestVectorSize = 10;
static const uint8_t kTestVectorUint8[kTestVectorSize] = {
0, -INT8_MIN, UINT8_MAX,
0, INT8_MAX / 2 + 128, INT8_MIN / 2 + 128,
-INT8_MIN, UINT8_MAX, -INT8_MIN,
-INT8_MIN};
static const int16_t kTestVectorInt16[kTestVectorSize] = {
INT16_MIN, 0, INT16_MAX, INT16_MIN, INT16_MAX / 2,
INT16_MIN / 2, 0, INT16_MAX, 0, 0};
static const int32_t kTestVectorInt32[kTestVectorSize] = {
INT32_MIN, 0, INT32_MAX, INT32_MIN, INT32_MAX / 2,
INT32_MIN / 2, 0, INT32_MAX, 0, 0};
static const float kTestVectorFloat32[kTestVectorSize] = {
-1.0f, 0.0f, 1.0f, -1.0f, 0.5f, -0.5f, 0.0f, 1.0f, 0.0f, 0.0f};
// This is based on kTestVectorFloat32, but has some of the values outside of
// sanity.
static const float kTestVectorFloat32Invalid[kTestVectorSize] = {
-5.0f,
0.0f,
5.0f,
-1.0f,
0.5f,
-0.5f,
0.0f,
std::numeric_limits<float>::infinity(),
std::numeric_limits<float>::signaling_NaN(),
std::numeric_limits<float>::quiet_NaN()};
static const float kTestVectorFloat32Sanitized[kTestVectorSize] = {
-1.0f, 0.0f, 1.0f, -1.0f, 0.5f, -0.5f, 0.0f, 1.0f, -1.0f, -1.0f};
// Expected results.
static const int kTestVectorFrameCount = kTestVectorSize / 2;
static const float kTestVectorResult[][kTestVectorFrameCount] = {
{-1.0f, 1.0f, 0.5f, 0.0f, 0.0f},
{0.0f, -1.0f, -0.5f, 1.0f, 0.0f}};
static const int kTestVectorChannelCount = std::size(kTestVectorResult);
// Verify FromInterleaved() deinterleaves audio in supported formats correctly.
TEST_F(AudioBusTest, FromInterleaved) {
std::unique_ptr<AudioBus> bus =
AudioBus::Create(kTestVectorChannelCount, kTestVectorFrameCount);
std::unique_ptr<AudioBus> expected =
AudioBus::Create(kTestVectorChannelCount, kTestVectorFrameCount);
for (int ch = 0; ch < kTestVectorChannelCount; ++ch) {
memcpy(expected->channel(ch), kTestVectorResult[ch],
kTestVectorFrameCount * sizeof(*expected->channel(ch)));
}
{
SCOPED_TRACE("UnsignedInt8SampleTypeTraits");
bus->Zero();
bus->FromInterleaved<UnsignedInt8SampleTypeTraits>(kTestVectorUint8,
kTestVectorFrameCount);
// Biased uint8_t calculations have poor precision, so the epsilon here is
// slightly more permissive than int16_t and int32_t calculations.
VerifyAreEqualWithEpsilon(bus.get(), expected.get(),
1.0f / (std::numeric_limits<uint8_t>::max() - 1));
}
{
SCOPED_TRACE("SignedInt16SampleTypeTraits");
bus->Zero();
bus->FromInterleaved<SignedInt16SampleTypeTraits>(kTestVectorInt16,
kTestVectorFrameCount);
VerifyAreEqualWithEpsilon(
bus.get(), expected.get(),
1.0f /
(static_cast<float>(std::numeric_limits<uint16_t>::max()) + 1.0f));
}
{
SCOPED_TRACE("SignedInt32SampleTypeTraits");
bus->Zero();
bus->FromInterleaved<SignedInt32SampleTypeTraits>(kTestVectorInt32,
kTestVectorFrameCount);
VerifyAreEqualWithEpsilon(
bus.get(), expected.get(),
1.0f / static_cast<float>(std::numeric_limits<uint32_t>::max()));
}
{
SCOPED_TRACE("Float32SampleTypeTraits");
bus->Zero();
bus->FromInterleaved<Float32SampleTypeTraits>(kTestVectorFloat32,
kTestVectorFrameCount);
VerifyAreEqual(bus.get(), expected.get());
}
}
// Verify FromInterleavedPartial() deinterleaves audio correctly.
TEST_F(AudioBusTest, FromInterleavedPartial) {
// Only deinterleave the middle two frames in each channel.
static const int kPartialStart = 1;
static const int kPartialFrames = 2;
ASSERT_LE(kPartialStart + kPartialFrames, kTestVectorFrameCount);
std::unique_ptr<AudioBus> bus =
AudioBus::Create(kTestVectorChannelCount, kTestVectorFrameCount);
std::unique_ptr<AudioBus> expected =
AudioBus::Create(kTestVectorChannelCount, kTestVectorFrameCount);
expected->Zero();
for (int ch = 0; ch < kTestVectorChannelCount; ++ch) {
memcpy(expected->channel(ch) + kPartialStart,
kTestVectorResult[ch] + kPartialStart,
kPartialFrames * sizeof(*expected->channel(ch)));
}
{
SCOPED_TRACE("SignedInt32SampleTypeTraits");
bus->Zero();
bus->FromInterleavedPartial<SignedInt32SampleTypeTraits>(
kTestVectorInt32 + kPartialStart * bus->channels(), kPartialStart,
kPartialFrames);
VerifyAreEqual(bus.get(), expected.get());
}
}
// Verify ToInterleaved() interleaves audio in supported formats correctly.
TEST_F(AudioBusTest, ToInterleaved) {
std::unique_ptr<AudioBus> bus =
AudioBus::Create(kTestVectorChannelCount, kTestVectorFrameCount);
// Fill the bus with our test vector.
for (int ch = 0; ch < bus->channels(); ++ch) {
memcpy(bus->channel(ch), kTestVectorResult[ch],
kTestVectorFrameCount * sizeof(*bus->channel(ch)));
}
{
SCOPED_TRACE("UnsignedInt8SampleTypeTraits");
uint8_t test_array[std::size(kTestVectorUint8)];
bus->ToInterleaved<UnsignedInt8SampleTypeTraits>(bus->frames(), test_array);
ASSERT_EQ(0,
memcmp(test_array, kTestVectorUint8, sizeof(kTestVectorUint8)));
}
{
SCOPED_TRACE("SignedInt16SampleTypeTraits");
int16_t test_array[std::size(kTestVectorInt16)];
bus->ToInterleaved<SignedInt16SampleTypeTraits>(bus->frames(), test_array);
ASSERT_EQ(0,
memcmp(test_array, kTestVectorInt16, sizeof(kTestVectorInt16)));
}
{
SCOPED_TRACE("SignedInt32SampleTypeTraits");
int32_t test_array[std::size(kTestVectorInt32)];
bus->ToInterleaved<SignedInt32SampleTypeTraits>(bus->frames(), test_array);
// Some compilers get better precision than others on the half-max test, so
// let the test pass with an off by one check on the half-max.
int32_t alternative_acceptable_result[std::size(kTestVectorInt32)];
memcpy(alternative_acceptable_result, kTestVectorInt32,
sizeof(kTestVectorInt32));
ASSERT_EQ(alternative_acceptable_result[4],
std::numeric_limits<int32_t>::max() / 2);
alternative_acceptable_result[4]++;
ASSERT_TRUE(
memcmp(test_array, kTestVectorInt32, sizeof(kTestVectorInt32)) == 0 ||
memcmp(test_array, alternative_acceptable_result,
sizeof(alternative_acceptable_result)) == 0);
}
{
SCOPED_TRACE("Float32SampleTypeTraits");
float test_array[std::size(kTestVectorFloat32)];
bus->ToInterleaved<Float32SampleTypeTraits>(bus->frames(), test_array);
ASSERT_EQ(
0, memcmp(test_array, kTestVectorFloat32, sizeof(kTestVectorFloat32)));
}
}
TEST_F(AudioBusTest, ToInterleavedSanitized) {
std::unique_ptr<AudioBus> bus =
AudioBus::Create(kTestVectorChannelCount, kTestVectorFrameCount);
bus->FromInterleaved<Float32SampleTypeTraits>(kTestVectorFloat32Invalid,
bus->frames());
// Verify FromInterleaved applied no sanity.
ASSERT_EQ(bus->channel(0)[0], kTestVectorFloat32Invalid[0]);
float test_array[std::size(kTestVectorFloat32Sanitized)];
bus->ToInterleaved<Float32SampleTypeTraits>(bus->frames(), test_array);
for (size_t i = 0; i < std::size(kTestVectorFloat32Sanitized); ++i)
ASSERT_EQ(kTestVectorFloat32Sanitized[i], test_array[i]);
// Verify that Float32SampleTypeTraitsNoClip applied no sanity. Note: We don't
// use memcmp() here since the NaN type may change on x86 platforms in certain
// circumstances, see https://gcc.gnu.org/bugzilla/show_bug.cgi?id=57484
bus->ToInterleaved<Float32SampleTypeTraitsNoClip>(bus->frames(), test_array);
for (int i = 0; i < kTestVectorSize; ++i) {
if (std::isnan(test_array[i]))
EXPECT_TRUE(std::isnan(kTestVectorFloat32Invalid[i]));
else
EXPECT_FLOAT_EQ(test_array[i], kTestVectorFloat32Invalid[i]);
}
}
TEST_F(AudioBusTest, CopyAndClipTo) {
auto bus = AudioBus::Create(kTestVectorChannelCount, kTestVectorFrameCount);
bus->FromInterleaved<Float32SampleTypeTraits>(kTestVectorFloat32Invalid,
bus->frames());
auto expected =
AudioBus::Create(kTestVectorChannelCount, kTestVectorFrameCount);
expected->FromInterleaved<Float32SampleTypeTraits>(
kTestVectorFloat32Sanitized, bus->frames());
// Verify FromInterleaved applied no sanity.
ASSERT_EQ(bus->channel(0)[0], kTestVectorFloat32Invalid[0]);
std::unique_ptr<AudioBus> copy_to_bus =
AudioBus::Create(kTestVectorChannelCount, kTestVectorFrameCount);
bus->CopyAndClipTo(copy_to_bus.get());
for (int ch = 0; ch < expected->channels(); ++ch) {
for (int i = 0; i < expected->frames(); ++i)
ASSERT_EQ(copy_to_bus->channel(ch)[i], expected->channel(ch)[i]);
}
ASSERT_EQ(expected->channels(), copy_to_bus->channels());
ASSERT_EQ(expected->frames(), copy_to_bus->frames());
ASSERT_EQ(expected->is_bitstream_format(),
copy_to_bus->is_bitstream_format());
}
// Verify ToInterleavedPartial() interleaves audio correctly.
TEST_F(AudioBusTest, ToInterleavedPartial) {
// Only interleave the middle two frames in each channel.
static const int kPartialStart = 1;
static const int kPartialFrames = 2;
ASSERT_LE(kPartialStart + kPartialFrames, kTestVectorFrameCount);
std::unique_ptr<AudioBus> expected =
AudioBus::Create(kTestVectorChannelCount, kTestVectorFrameCount);
for (int ch = 0; ch < kTestVectorChannelCount; ++ch) {
memcpy(expected->channel(ch), kTestVectorResult[ch],
kTestVectorFrameCount * sizeof(*expected->channel(ch)));
}
{
SCOPED_TRACE("Float32SampleTypeTraits");
float test_array[std::size(kTestVectorFloat32)];
expected->ToInterleavedPartial<Float32SampleTypeTraits>(
kPartialStart, kPartialFrames, test_array);
ASSERT_EQ(0, memcmp(test_array, kTestVectorFloat32 +
kPartialStart * kTestVectorChannelCount,
kPartialFrames * sizeof(*kTestVectorFloat32) *
kTestVectorChannelCount));
}
}
struct ZeroingOutTestData {
static constexpr int kChannelCount = 2;
static constexpr int kFrameCount = 10;
static constexpr int kInterleavedFrameCount = 3;
std::unique_ptr<AudioBus> bus_under_test;
std::vector<float> interleaved_dummy_frames;
ZeroingOutTestData() {
// Create a bus and fill each channel with a test pattern of form
// [1.0, 2.0, 3.0, ...]
bus_under_test = AudioBus::Create(kChannelCount, kFrameCount);
for (int ch = 0; ch < kChannelCount; ++ch) {
auto* sample_array_for_current_channel = bus_under_test->channel(ch);
for (int frame_index = 0; frame_index < kFrameCount; frame_index++) {
sample_array_for_current_channel[frame_index] =
static_cast<float>(frame_index + 1);
}
}
// Create a vector containing dummy interleaved samples.
static const float kDummySampleValue = 0.123f;
interleaved_dummy_frames.resize(kChannelCount * kInterleavedFrameCount);
std::fill(interleaved_dummy_frames.begin(), interleaved_dummy_frames.end(),
kDummySampleValue);
}
};
TEST_F(AudioBusTest, FromInterleavedZerosOutUntouchedFrames) {
ZeroingOutTestData test_data;
// Exercise
test_data.bus_under_test->FromInterleaved<Float32SampleTypeTraits>(
&test_data.interleaved_dummy_frames[0], test_data.kInterleavedFrameCount);
// Verification
for (int ch = 0; ch < test_data.kChannelCount; ++ch) {
auto* sample_array_for_current_channel =
test_data.bus_under_test->channel(ch);
for (int frame_index = test_data.kInterleavedFrameCount;
frame_index < test_data.kFrameCount; frame_index++) {
ASSERT_EQ(0.0f, sample_array_for_current_channel[frame_index]);
}
}
}
TEST_F(AudioBusTest, FromInterleavedPartialDoesNotZeroOutUntouchedFrames) {
{
SCOPED_TRACE("Zero write offset");
ZeroingOutTestData test_data;
static const int kWriteOffsetInFrames = 0;
// Exercise
test_data.bus_under_test->FromInterleavedPartial<Float32SampleTypeTraits>(
&test_data.interleaved_dummy_frames[0], kWriteOffsetInFrames,
test_data.kInterleavedFrameCount);
// Verification
for (int ch = 0; ch < test_data.kChannelCount; ++ch) {
auto* sample_array_for_current_channel =
test_data.bus_under_test->channel(ch);
for (int frame_index =
test_data.kInterleavedFrameCount + kWriteOffsetInFrames;
frame_index < test_data.kFrameCount; frame_index++) {
ASSERT_EQ(frame_index + 1,
sample_array_for_current_channel[frame_index]);
}
}
}
{
SCOPED_TRACE("Positive write offset");
ZeroingOutTestData test_data;
static const int kWriteOffsetInFrames = 2;
// Exercise
test_data.bus_under_test->FromInterleavedPartial<Float32SampleTypeTraits>(
&test_data.interleaved_dummy_frames[0], kWriteOffsetInFrames,
test_data.kInterleavedFrameCount);
// Verification
for (int ch = 0; ch < test_data.kChannelCount; ++ch) {
auto* sample_array_for_current_channel =
test_data.bus_under_test->channel(ch);
// Check untouched frames before write offset
for (int frame_index = 0; frame_index < kWriteOffsetInFrames;
frame_index++) {
ASSERT_EQ(frame_index + 1,
sample_array_for_current_channel[frame_index]);
}
// Check untouched frames after write
for (int frame_index =
test_data.kInterleavedFrameCount + kWriteOffsetInFrames;
frame_index < test_data.kFrameCount; frame_index++) {
ASSERT_EQ(frame_index + 1,
sample_array_for_current_channel[frame_index]);
}
}
}
}
TEST_F(AudioBusTest, Scale) {
std::unique_ptr<AudioBus> bus = AudioBus::Create(kChannels, kFrameCount);
// Fill the bus with dummy data.
static const float kFillValue = 1;
for (int i = 0; i < bus->channels(); ++i)
std::fill(bus->channel(i), bus->channel(i) + bus->frames(), kFillValue);
// Adjust by an invalid volume and ensure volume is unchanged.
bus->Scale(-1);
for (int i = 0; i < bus->channels(); ++i) {
SCOPED_TRACE("Invalid Scale");
VerifyArrayIsFilledWithValue(bus->channel(i), bus->frames(), kFillValue);
}
// Verify correct volume adjustment.
static const float kVolume = 0.5;
bus->Scale(kVolume);
for (int i = 0; i < bus->channels(); ++i) {
SCOPED_TRACE("Half Scale");
VerifyArrayIsFilledWithValue(bus->channel(i), bus->frames(),
kFillValue * kVolume);
}
// Verify zero volume case.
bus->Scale(0);
for (int i = 0; i < bus->channels(); ++i) {
SCOPED_TRACE("Zero Scale");
VerifyArrayIsFilledWithValue(bus->channel(i), bus->frames(), 0);
}
}
TEST_F(AudioBusTest, Bitstream) {
static const size_t kDataSize = kFrameCount / 2;
std::unique_ptr<AudioBus> bus = AudioBus::Create(1, kFrameCount);
EXPECT_FALSE(bus->is_bitstream_format());
bus->set_is_bitstream_format(true);
EXPECT_TRUE(bus->is_bitstream_format());
EXPECT_EQ(size_t{0}, bus->GetBitstreamDataSize());
bus->SetBitstreamDataSize(kDataSize);
EXPECT_EQ(kDataSize, bus->GetBitstreamDataSize());
EXPECT_EQ(0, bus->GetBitstreamFrames());
bus->SetBitstreamFrames(kFrameCount);
EXPECT_EQ(kFrameCount, bus->GetBitstreamFrames());
std::unique_ptr<AudioBus> bus2 = AudioBus::Create(1, kFrameCount);
CopyTest(bus.get(), bus2.get());
bus->Zero();
EXPECT_EQ(size_t{0}, bus->GetBitstreamDataSize());
EXPECT_EQ(0, bus->GetBitstreamFrames());
}
} // namespace media