1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
media / base / audio_push_fifo_unittest.cc [blame]
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include <limits>
#include <memory>
#include <vector>
#include "base/functional/bind.h"
#include "base/functional/callback_helpers.h"
#include "media/base/audio_bus.h"
#include "media/base/audio_push_fifo.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace media {
namespace {
class AudioPushFifoTest : public testing::TestWithParam<int> {
public:
AudioPushFifoTest() = default;
AudioPushFifoTest(const AudioPushFifoTest&) = delete;
AudioPushFifoTest& operator=(const AudioPushFifoTest&) = delete;
~AudioPushFifoTest() override = default;
int output_chunk_size() const { return GetParam(); }
void SetUp() final {
fifo_ = std::make_unique<AudioPushFifo>(base::BindRepeating(
&AudioPushFifoTest::ReceiveAndCheckNextChunk, base::Unretained(this)));
fifo_->Reset(output_chunk_size());
ASSERT_EQ(output_chunk_size(), fifo_->frames_per_buffer());
}
protected:
struct OutputChunkResult {
int num_frames;
float first_sample_value;
float last_sample_value;
int frame_delay;
};
// Returns the number of output chunks that should have been emitted given the
// number of input frames pushed so far.
size_t GetExpectedOutputChunks(int frames_pushed) const {
return static_cast<size_t>(frames_pushed / output_chunk_size());
}
// Returns the number of Push() calls to make in order to get at least 3
// output chunks.
int GetNumPushTestIterations(int input_chunk_size) const {
return 3 * std::max(1, output_chunk_size() / input_chunk_size);
}
// Repeatedly pushes constant-sized batches of input samples and checks that
// the input data is re-chunked correctly.
void RunSimpleRechunkTest(int input_chunk_size) {
const int num_iterations = GetNumPushTestIterations(input_chunk_size);
int sample_value = 0;
const std::unique_ptr<AudioBus> audio_bus =
AudioBus::Create(1, input_chunk_size);
for (int i = 0; i < num_iterations; ++i) {
EXPECT_EQ(GetExpectedOutputChunks(i * input_chunk_size), results_.size());
// Fill audio data with predictable values.
for (int j = 0; j < audio_bus->frames(); ++j)
audio_bus->channel(0)[j] = static_cast<float>(sample_value++);
fifo_->Push(*audio_bus);
// Note: AudioPushFifo has just called ReceiveAndCheckNextChunk() zero or
// more times.
}
EXPECT_EQ(GetExpectedOutputChunks(num_iterations * input_chunk_size),
results_.size());
// Confirm first and last sample values that have been output are the
// expected ones.
ASSERT_FALSE(results_.empty());
EXPECT_EQ(0.0f, results_.front().first_sample_value);
const float last_value_in_last_chunk = static_cast<float>(
GetExpectedOutputChunks(num_iterations * input_chunk_size) *
output_chunk_size() -
1);
EXPECT_EQ(last_value_in_last_chunk, results_.back().last_sample_value);
// Confirm the expected frame delays for the first output chunk (or two).
if (input_chunk_size < output_chunk_size()) {
const int num_queued_before_first_output =
((output_chunk_size() - 1) / input_chunk_size) * input_chunk_size;
EXPECT_EQ(-num_queued_before_first_output, results_.front().frame_delay);
} else if (input_chunk_size >= output_chunk_size()) {
EXPECT_EQ(0, results_[0].frame_delay);
if (input_chunk_size >= 2 * output_chunk_size()) {
EXPECT_EQ(output_chunk_size(), results_[1].frame_delay);
} else {
const int num_remaining_after_first_output =
input_chunk_size - output_chunk_size();
EXPECT_EQ(-num_remaining_after_first_output, results_[1].frame_delay);
}
}
const size_t num_results_before_flush = results_.size();
fifo_->Flush();
const size_t num_results_after_flush = results_.size();
if (num_results_after_flush > num_results_before_flush) {
EXPECT_NE(0, results_.back().frame_delay);
EXPECT_LT(-output_chunk_size(), results_.back().frame_delay);
}
}
// Returns a "random" integer in the range [begin,end).
int GetRandomInRange(int begin, int end) {
const int len = end - begin;
const int rand_offset = (len == 0) ? 0 : (NextRandomInt() % (end - begin));
return begin + rand_offset;
}
std::unique_ptr<AudioPushFifo> fifo_;
std::vector<OutputChunkResult> results_;
private:
// Called by |fifo_| to deliver another chunk of audio. Sanity checks
// the sample values are as expected, and without any dropped/duplicated, and
// adds a result to |results_|.
void ReceiveAndCheckNextChunk(const AudioBus& audio_bus, int frame_delay) {
OutputChunkResult result;
result.num_frames = audio_bus.frames();
result.first_sample_value = audio_bus.channel(0)[0];
result.last_sample_value = audio_bus.channel(0)[audio_bus.frames() - 1];
result.frame_delay = frame_delay;
// Check that each sample value is the previous sample value plus one.
for (int i = 1; i < audio_bus.frames(); ++i) {
const float expected_value = result.first_sample_value + i;
const float actual_value = audio_bus.channel(0)[i];
if (actual_value != expected_value) {
if (actual_value == 0.0f) {
// This chunk is probably being emitted by a Flush(). If that's true
// then the frame_delay will be negative and the rest of the
// |audio_bus| should be all zeroes.
ASSERT_GT(0, frame_delay);
for (int j = i + 1; j < audio_bus.frames(); ++j)
ASSERT_EQ(0.0f, audio_bus.channel(0)[j]);
break;
} else {
ASSERT_EQ(expected_value, actual_value) << "Sample at offset " << i
<< " is incorrect.";
}
}
}
results_.push_back(result);
}
// Note: Not using base::RandInt() because it is horribly slow on debug
// builds. The following is a very simple, deterministic LCG:
int NextRandomInt() {
rand_seed_ = (1103515245 * rand_seed_ + 12345) % (1 << 31);
return static_cast<int>(rand_seed_);
}
uint32_t rand_seed_ = 0x7e110;
};
// Tests an atypical edge case: Push()ing one frame at a time.
TEST_P(AudioPushFifoTest, PushOneFrameAtATime) {
RunSimpleRechunkTest(1);
}
// Tests that re-chunking the audio from common platform input chunk sizes
// works.
TEST_P(AudioPushFifoTest, Push128FramesAtATime) {
RunSimpleRechunkTest(128);
}
TEST_P(AudioPushFifoTest, Push512FramesAtATime) {
RunSimpleRechunkTest(512);
}
// Tests that re-chunking the audio from common "10 ms" input chunk sizes
// works (44100 Hz * 10 ms = 441, and 48000 Hz * 10 ms = 480).
TEST_P(AudioPushFifoTest, Push441FramesAtATime) {
RunSimpleRechunkTest(441);
}
TEST_P(AudioPushFifoTest, Push480FramesAtATime) {
RunSimpleRechunkTest(480);
}
// Tests that re-chunking when input audio is provided in varying chunk sizes
// works.
TEST_P(AudioPushFifoTest, PushArbitraryNumbersOfFramesAtATime) {
// The loop below will run until both: 1) kMinNumIterations loops have
// occurred; and 2) there are at least 3 entries in |results_|.
const int kMinNumIterations = 30;
int sample_value = 0;
int frames_pushed_so_far = 0;
for (int i = 0; i < kMinNumIterations || results_.size() < 3; ++i) {
EXPECT_EQ(GetExpectedOutputChunks(frames_pushed_so_far), results_.size());
// Create an AudioBus of a random length, populated with sample values.
const int input_chunk_size = GetRandomInRange(1, 1920);
const std::unique_ptr<AudioBus> audio_bus =
AudioBus::Create(1, input_chunk_size);
for (int j = 0; j < audio_bus->frames(); ++j)
audio_bus->channel(0)[j] = static_cast<float>(sample_value++);
fifo_->Push(*audio_bus);
// Note: AudioPushFifo has just called ReceiveAndCheckNextChunk() zero or
// more times.
frames_pushed_so_far += input_chunk_size;
}
EXPECT_EQ(GetExpectedOutputChunks(frames_pushed_so_far), results_.size());
ASSERT_FALSE(results_.empty());
EXPECT_EQ(0.0f, results_.front().first_sample_value);
const float last_value_in_last_chunk = static_cast<float>(
GetExpectedOutputChunks(frames_pushed_so_far) * output_chunk_size() - 1);
EXPECT_EQ(last_value_in_last_chunk, results_.back().last_sample_value);
const size_t num_results_before_flush = results_.size();
fifo_->Flush();
const size_t num_results_after_flush = results_.size();
if (num_results_after_flush > num_results_before_flush) {
EXPECT_NE(0, results_.back().frame_delay);
EXPECT_LT(-output_chunk_size(), results_.back().frame_delay);
}
}
INSTANTIATE_TEST_SUITE_P(All,
AudioPushFifoTest,
::testing::Values(
// 1 ms output chunks at common sample rates.
16, // 16000 Hz
22, // 22050 Hz
44, // 44100 Hz
48, // 48000 Hz
// 10 ms output chunks at common sample rates.
160, // 16000 Hz
220, // 22050 Hz
441, // 44100 Hz
480, // 48000 Hz
// 60 ms output chunks at common sample rates.
960, // 16000 Hz
1323, // 22050 Hz
2646, // 44100 Hz
2880 // 48000 Hz
));
} // namespace
} // namespace media