1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148

media / base / multi_channel_resampler_unittest.cc [blame]

// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif

#include "media/base/multi_channel_resampler.h"

#include <cmath>
#include <memory>

#include "base/functional/bind.h"
#include "base/functional/callback_helpers.h"
#include "media/base/audio_bus.h"
#include "testing/gtest/include/gtest/gtest.h"

namespace media {

// Just test a basic resampling case.  The SincResampler unit test will take
// care of accuracy testing; we just need to check that multichannel works as
// expected within some tolerance.
static const float kScaleFactor = 192000.0f / 44100.0f;

// Simulate large and small sample requests used by the different audio paths.
static const int kHighLatencySize = 8192;
// Low latency buffers show a larger error than high latency ones.  Which makes
// sense since each error represents a larger portion of the total request.
static const int kLowLatencySize = 128;

// Test fill value.
static const float kFillValue = 0.1f;

// Chosen arbitrarily based on what each resampler reported during testing.
static const double kLowLatencyMaxRMSError = 0.0036;
static const double kLowLatencyMaxError = 0.04;
static const double kHighLatencyMaxRMSError = 0.0036;
static const double kHighLatencyMaxError = 0.04;

class MultiChannelResamplerTest
    : public testing::TestWithParam<int> {
 public:
  MultiChannelResamplerTest()
      : last_frame_delay_(-1) {
  }

  MultiChannelResamplerTest(const MultiChannelResamplerTest&) = delete;
  MultiChannelResamplerTest& operator=(const MultiChannelResamplerTest&) =
      delete;

  virtual ~MultiChannelResamplerTest() = default;

  void InitializeAudioData(int channels, int frames) {
    frames_ = frames;
    audio_bus_ = AudioBus::Create(channels, frames);
  }

  // MultiChannelResampler::MultiChannelAudioSourceProvider implementation, just
  // fills the provided audio_data with |kFillValue|.
  virtual void ProvideInput(int frame_delay, AudioBus* audio_bus) {
    EXPECT_GE(frame_delay, last_frame_delay_);
    last_frame_delay_ = frame_delay;

    float fill_value = fill_junk_values_ ? (1 / kFillValue) : kFillValue;
    EXPECT_EQ(audio_bus->channels(), audio_bus_->channels());
    for (int i = 0; i < audio_bus->channels(); ++i)
      for (int j = 0; j < audio_bus->frames(); ++j)
        audio_bus->channel(i)[j] = fill_value;
  }

  void MultiChannelTest(int channels, int frames, double expected_max_rms_error,
                        double expected_max_error) {
    InitializeAudioData(channels, frames);
    MultiChannelResampler resampler(
        channels, kScaleFactor, SincResampler::kDefaultRequestSize,
        base::BindRepeating(&MultiChannelResamplerTest::ProvideInput,
                            base::Unretained(this)));

    // First prime the resampler with some junk data, so we can verify Flush().
    fill_junk_values_ = true;
    resampler.Resample(1, audio_bus_.get());
    resampler.Flush();
    fill_junk_values_ = false;

    // The last frame delay should be strictly less than the total frame count.
    EXPECT_LT(last_frame_delay_, audio_bus_->frames());
    last_frame_delay_ = -1;

    // If Flush() didn't work, the rest of the tests will fail.
    resampler.Resample(frames, audio_bus_.get());
    TestValues(expected_max_rms_error, expected_max_error);
  }

  void HighLatencyTest(int channels) {
    MultiChannelTest(channels, kHighLatencySize, kHighLatencyMaxRMSError,
                     kHighLatencyMaxError);
  }

  void LowLatencyTest(int channels) {
    MultiChannelTest(channels, kLowLatencySize, kLowLatencyMaxRMSError,
                     kLowLatencyMaxError);
  }

  void TestValues(double expected_max_rms_error, double expected_max_error ) {
    // Calculate Root-Mean-Square-Error for the resampling.
    double max_error = 0.0;
    double sum_of_squares = 0.0;
    for (int i = 0; i < audio_bus_->channels(); ++i) {
      for (int j = 0; j < frames_; ++j) {
        // Ensure all values are accounted for.
        ASSERT_NE(audio_bus_->channel(i)[j], 0);

        double error = fabs(audio_bus_->channel(i)[j] - kFillValue);
        max_error = std::max(max_error, error);
        sum_of_squares += error * error;
      }
    }

    double rms_error = sqrt(
        sum_of_squares / (frames_ * audio_bus_->channels()));

    EXPECT_LE(rms_error, expected_max_rms_error);
    EXPECT_LE(max_error, expected_max_error);
  }

 protected:
  int frames_;
  bool fill_junk_values_;
  std::unique_ptr<AudioBus> audio_bus_;
  int last_frame_delay_;
};

TEST_P(MultiChannelResamplerTest, HighLatency) {
  HighLatencyTest(GetParam());
}

TEST_P(MultiChannelResamplerTest, LowLatency) {
  LowLatencyTest(GetParam());
}

// Test common channel layouts: mono, stereo, 5.1, 7.1.
INSTANTIATE_TEST_SUITE_P(MultiChannelResamplerTest,
                         MultiChannelResamplerTest,
                         testing::Values(1, 2, 6, 8));

}  // namespace media