1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
media / base / sinc_resampler.cc [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Initial input buffer layout, dividing into regions r0_ to r4_ (note: r0_, r3_
// and r4_ will move after the first load):
//
// |----------------|-----------------------------------------|----------------|
//
// request_frames_
// <--------------------------------------------------------->
// r0_ (during first load)
//
// kernel_size_ / 2 kernel_size_ / 2 kernel_size_ / 2 kernel_size_ / 2
// <---------------> <---------------> <---------------> <--------------->
// r1_ r2_ r3_ r4_
//
// block_size_ == r4_ - r2_
// <--------------------------------------->
//
// request_frames_
// <------------------ ... ----------------->
// r0_ (during second load)
//
// On the second request r0_ slides to the right by kernel_size_ / 2 and r3_,
// r4_ and block_size_ are reinitialized via step (3) in the algorithm below.
//
// These new regions remain constant until a Flush() occurs. While complicated,
// this allows us to reduce jitter by always requesting the same amount from the
// provided callback.
//
// The algorithm:
//
// 1) Allocate input_buffer of size: request_frames_ + kernel_size_; this
// ensures
// there's enough room to read request_frames_ from the callback into region
// r0_ (which will move between the first and subsequent passes).
//
// 2) Let r1_, r2_ each represent half the kernel centered around r0_:
//
// r0_ = input_buffer_ + kernel_size_ / 2
// r1_ = input_buffer_
// r2_ = r0_
//
// r0_ is always request_frames_ in size. r1_, r2_ are kernel_size_ / 2 in
// size. r1_ must be zero initialized to avoid convolution with garbage (see
// step (5) for why).
//
// 3) Let r3_, r4_ each represent half the kernel right aligned with the end of
// r0_ and choose block_size_ as the distance in frames between r4_ and r2_:
//
// r3_ = r0_ + request_frames_ - kernel_size_
// r4_ = r0_ + request_frames_ - kernel_size_ / 2
// block_size_ = r4_ - r2_ = request_frames_ - kernel_size_ / 2
//
// 4) Consume request_frames_ frames into r0_.
//
// 5) Position kernel centered at start of r2_ and generate output frames until
// the kernel is centered at the start of r4_ or we've finished generating
// all the output frames.
//
// 6) Wrap left over data from the r3_ to r1_ and r4_ to r2_.
//
// 7) If we're on the second load, in order to avoid overwriting the frames we
// just wrapped from r4_ we need to slide r0_ to the right by the size of
// r4_, which is kernel_size_ / 2:
//
// r0_ = r0_ + kernel_size_ / 2 = input_buffer_ + kernel_size_
//
// r3_, r4_, and block_size_ then need to be reinitialized, so goto (3).
//
// 8) Else, if we're not on the second load, goto (4).
//
// Note: we're glossing over how the sub-sample handling works with
// |virtual_source_idx_|, etc.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "media/base/sinc_resampler.h"
#include <limits>
#include <numbers>
#include "base/check_op.h"
#include "base/cpu.h"
#include "base/trace_event/trace_event.h"
#include "build/build_config.h"
#include "cc/base/math_util.h"
#if defined(ARCH_CPU_X86_FAMILY)
#include <immintrin.h>
// Including these headers directly should generally be avoided. Since
// Chrome is compiled with -msse3 (the minimal requirement), we include the
// headers directly to make the intrinsics available.
#include <avx2intrin.h>
#include <avxintrin.h>
#include <fmaintrin.h>
#elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
#include <arm_neon.h>
#endif
namespace media {
static double SincScaleFactor(double io_ratio, int kernel_size) {
// |sinc_scale_factor| is basically the normalized cutoff frequency of the
// low-pass filter.
double sinc_scale_factor = io_ratio > 1.0 ? 1.0 / io_ratio : 1.0;
// The sinc function is an idealized brick-wall filter, but since we're
// windowing it the transition from pass to stop does not happen right away.
// So we should adjust the low pass filter cutoff slightly downward to avoid
// some aliasing at the very high-end.
// Note: these values are derived empirically.
if (kernel_size == SincResampler::kMaxKernelSize) {
sinc_scale_factor *= 0.92;
} else {
DCHECK_EQ(kernel_size, SincResampler::kMinKernelSize);
sinc_scale_factor *= 0.90;
}
return sinc_scale_factor;
}
// If we know the minimum architecture at compile time, avoid CPU detection.
void SincResampler::InitializeCPUSpecificFeatures() {
#if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
convolve_proc_ = Convolve_NEON;
#elif defined(ARCH_CPU_X86_FAMILY)
base::CPU cpu;
// Using AVX2 instead of SSE2 when AVX2/FMA3 supported.
if (cpu.has_avx2() && cpu.has_fma3()) {
convolve_proc_ = Convolve_AVX2;
} else if (cpu.has_sse2()) {
convolve_proc_ = Convolve_SSE;
} else {
convolve_proc_ = Convolve_C;
}
#else
// Unknown architecture.
convolve_proc_ = Convolve_C;
#endif
}
static int CalculateChunkSize(int block_size_, double io_ratio) {
return block_size_ / io_ratio;
}
// Static
int SincResampler::KernelSizeFromRequestFrames(int request_frames) {
// We want the kernel size to *more* than 1.5 * `request_frames`.
constexpr int kSmallKernelLimit = kMaxKernelSize * 3 / 2;
return request_frames <= kSmallKernelLimit ? kMinKernelSize : kMaxKernelSize;
}
SincResampler::SincResampler(double io_sample_rate_ratio,
int request_frames,
const ReadCB read_cb)
: kernel_size_(KernelSizeFromRequestFrames(request_frames)),
kernel_storage_size_(kernel_size_ * (kKernelOffsetCount + 1)),
io_sample_rate_ratio_(io_sample_rate_ratio),
read_cb_(std::move(read_cb)),
request_frames_(request_frames),
input_buffer_size_(request_frames_ + kernel_size_),
// Create input buffers with a 32-byte alignment for SIMD optimizations.
kernel_storage_(static_cast<float*>(
base::AlignedAlloc(sizeof(float) * kernel_storage_size_, 32))),
kernel_pre_sinc_storage_(static_cast<float*>(
base::AlignedAlloc(sizeof(float) * kernel_storage_size_, 32))),
kernel_window_storage_(static_cast<float*>(
base::AlignedAlloc(sizeof(float) * kernel_storage_size_, 32))),
input_buffer_(static_cast<float*>(
base::AlignedAlloc(sizeof(float) * input_buffer_size_, 32))),
r1_(input_buffer_.get()),
r2_(input_buffer_.get() + kernel_size_ / 2) {
CHECK_GT(request_frames, kernel_size_ * 3 / 2)
<< "request_frames must be greater than 1.5 kernels to allow sufficient "
"data for resampling";
// This means that after the first call to Flush we will have
// block_size_ > kernel_size_ and r2_ < r3_.
InitializeCPUSpecificFeatures();
DCHECK(convolve_proc_);
CHECK_GT(request_frames_, 0);
Flush();
memset(kernel_storage_.get(), 0,
sizeof(*kernel_storage_.get()) * kernel_storage_size_);
memset(kernel_pre_sinc_storage_.get(), 0,
sizeof(*kernel_pre_sinc_storage_.get()) * kernel_storage_size_);
memset(kernel_window_storage_.get(), 0,
sizeof(*kernel_window_storage_.get()) * kernel_storage_size_);
InitializeKernel();
}
SincResampler::~SincResampler() = default;
void SincResampler::UpdateRegions(bool second_load) {
// Setup various region pointers in the buffer (see diagram above). If we're
// on the second load we need to slide r0_ to the right by kernel_size_ / 2.
r0_ = input_buffer_.get() + (second_load ? kernel_size_ : kernel_size_ / 2);
r3_ = r0_ + request_frames_ - kernel_size_;
r4_ = r0_ + request_frames_ - kernel_size_ / 2;
block_size_ = r4_ - r2_;
chunk_size_ = CalculateChunkSize(block_size_, io_sample_rate_ratio_);
// r1_ at the beginning of the buffer.
CHECK_EQ(r1_, input_buffer_.get());
// r1_ left of r2_, r4_ left of r3_ and size correct.
CHECK_EQ(r2_ - r1_, r4_ - r3_);
// r2_ left of r3.
CHECK_LT(r2_, r3_);
}
void SincResampler::InitializeKernel() {
// Blackman window parameters.
static const double kAlpha = 0.16;
static const double kA0 = 0.5 * (1.0 - kAlpha);
static const double kA1 = 0.5;
static const double kA2 = 0.5 * kAlpha;
// Generates a set of windowed sinc() kernels.
// We generate a range of sub-sample offsets from 0.0 to 1.0.
const double sinc_scale_factor =
SincScaleFactor(io_sample_rate_ratio_, kernel_size_);
for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
const float subsample_offset =
static_cast<float>(offset_idx) / kKernelOffsetCount;
for (int i = 0; i < kernel_size_; ++i) {
const int idx = i + offset_idx * kernel_size_;
const float pre_sinc =
std::numbers::pi_v<float> * (i - kernel_size_ / 2 - subsample_offset);
kernel_pre_sinc_storage_[idx] = pre_sinc;
// Compute Blackman window, matching the offset of the sinc().
const float x = (i - subsample_offset) / kernel_size_;
const float window =
static_cast<float>(kA0 - kA1 * cos(2.0 * std::numbers::pi * x) +
kA2 * cos(4.0 * std::numbers::pi * x));
kernel_window_storage_[idx] = window;
// Compute the sinc with offset, then window the sinc() function and store
// at the correct offset.
kernel_storage_[idx] = static_cast<float>(
window * (pre_sinc ? sin(sinc_scale_factor * pre_sinc) / pre_sinc
: sinc_scale_factor));
}
}
}
void SincResampler::SetRatio(double io_sample_rate_ratio) {
if (fabs(io_sample_rate_ratio_ - io_sample_rate_ratio) <
std::numeric_limits<double>::epsilon()) {
return;
}
io_sample_rate_ratio_ = io_sample_rate_ratio;
chunk_size_ = CalculateChunkSize(block_size_, io_sample_rate_ratio_);
// Optimize reinitialization by reusing values which are independent of
// |sinc_scale_factor|. Provides a 3x speedup.
const double sinc_scale_factor =
SincScaleFactor(io_sample_rate_ratio_, kernel_size_);
for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
for (int i = 0; i < kernel_size_; ++i) {
const int idx = i + offset_idx * kernel_size_;
const float window = kernel_window_storage_[idx];
const float pre_sinc = kernel_pre_sinc_storage_[idx];
kernel_storage_[idx] = static_cast<float>(
window * (pre_sinc ? sin(sinc_scale_factor * pre_sinc) / pre_sinc
: sinc_scale_factor));
}
}
}
void SincResampler::Resample(int frames, float* destination) {
TRACE_EVENT1(TRACE_DISABLED_BY_DEFAULT("audio"), "SincResampler::Resample",
"io sample rate ratio", io_sample_rate_ratio_);
int remaining_frames = frames;
// Step (1) -- Prime the input buffer at the start of the input stream.
if (!buffer_primed_ && remaining_frames) {
read_cb_.Run(request_frames_, r0_.get());
buffer_primed_ = true;
}
// Step (2) -- Resample!
while (remaining_frames) {
// Silent audio can contain non-zero samples small enough to result in
// subnormals internally. Disabling subnormals can be significantly faster.
{
cc::ScopedSubnormalFloatDisabler disable_subnormals;
while (virtual_source_idx_ < block_size_) {
// |virtual_source_idx_| lies in between two kernel offsets so figure
// out what they are.
const int source_idx = static_cast<int>(virtual_source_idx_);
const double virtual_offset_idx =
(virtual_source_idx_ - source_idx) * kKernelOffsetCount;
const int offset_idx = static_cast<int>(virtual_offset_idx);
// We'll compute "convolutions" for the two kernels which straddle
// |virtual_source_idx_|.
const float* k1 = kernel_storage_.get() + offset_idx * kernel_size_;
const float* k2 = k1 + kernel_size_;
// Ensure |k1|, |k2| are 32-byte aligned for SIMD usage. Should always
// be true so long as `kernel_size_` is a multiple of 32.
DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(k1) & 0x1F);
DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(k2) & 0x1F);
// Initialize input pointer based on quantized |virtual_source_idx_|.
const float* input_ptr = r1_ + source_idx;
// Figure out how much to weight each kernel's "convolution".
const double kernel_interpolation_factor =
virtual_offset_idx - offset_idx;
*destination++ = convolve_proc_(kernel_size_, input_ptr, k1, k2,
kernel_interpolation_factor);
// Advance the virtual index.
virtual_source_idx_ += io_sample_rate_ratio_;
if (!--remaining_frames) {
return;
}
}
}
// Wrap back around to the start.
DCHECK_GE(virtual_source_idx_, block_size_);
virtual_source_idx_ -= block_size_;
// Step (3) -- Copy r3_, r4_ to r1_, r2_.
// This wraps the last input frames back to the start of the buffer.
memcpy(r1_, r3_, sizeof(*input_buffer_.get()) * kernel_size_);
// Step (4) -- Reinitialize regions if necessary.
if (r0_ == r2_) {
UpdateRegions(true);
}
// Step (5) -- Refresh the buffer with more input.
read_cb_.Run(request_frames_, r0_.get());
}
}
void SincResampler::PrimeWithSilence() {
// By enforcing the buffer hasn't been primed, we ensure the input buffer has
// already been zeroed during construction or by a previous Flush() call.
DCHECK(!buffer_primed_);
DCHECK_EQ(input_buffer_[0], 0.0f);
UpdateRegions(true);
}
void SincResampler::Flush() {
virtual_source_idx_ = 0;
buffer_primed_ = false;
memset(input_buffer_.get(), 0,
sizeof(*input_buffer_.get()) * input_buffer_size_);
UpdateRegions(false);
}
int SincResampler::GetMaxInputFramesRequested(
int output_frames_requested) const {
const int num_chunks = static_cast<int>(
std::ceil(static_cast<float>(output_frames_requested) / chunk_size_));
return num_chunks * request_frames_;
}
double SincResampler::BufferedFrames() const {
return buffer_primed_ ? request_frames_ - virtual_source_idx_ : 0;
}
int SincResampler::KernelSize() const {
return kernel_size_;
}
float SincResampler::Convolve_C(const int kernel_size,
const float* input_ptr,
const float* k1,
const float* k2,
double kernel_interpolation_factor) {
float sum1 = 0;
float sum2 = 0;
// Generate a single output sample. Unrolling this loop hurt performance in
// local testing.
int n = kernel_size;
while (n--) {
sum1 += *input_ptr * *k1++;
sum2 += *input_ptr++ * *k2++;
}
// Linearly interpolate the two "convolutions".
return static_cast<float>((1.0 - kernel_interpolation_factor) * sum1 +
kernel_interpolation_factor * sum2);
}
#if defined(ARCH_CPU_X86_FAMILY)
float SincResampler::Convolve_SSE(const int kernel_size,
const float* input_ptr,
const float* k1,
const float* k2,
double kernel_interpolation_factor) {
__m128 m_input;
__m128 m_sums1 = _mm_setzero_ps();
__m128 m_sums2 = _mm_setzero_ps();
// Based on |input_ptr| alignment, we need to use loadu or load. Unrolling
// these loops hurt performance in local testing.
if (reinterpret_cast<uintptr_t>(input_ptr) & 0x0F) {
for (int i = 0; i < kernel_size; i += 4) {
m_input = _mm_loadu_ps(input_ptr + i);
m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i)));
m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i)));
}
} else {
for (int i = 0; i < kernel_size; i += 4) {
m_input = _mm_load_ps(input_ptr + i);
m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i)));
m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i)));
}
}
// Linearly interpolate the two "convolutions".
m_sums1 = _mm_mul_ps(
m_sums1,
_mm_set_ps1(static_cast<float>(1.0 - kernel_interpolation_factor)));
m_sums2 = _mm_mul_ps(
m_sums2, _mm_set_ps1(static_cast<float>(kernel_interpolation_factor)));
m_sums1 = _mm_add_ps(m_sums1, m_sums2);
// Sum components together.
float result;
m_sums2 = _mm_add_ps(_mm_movehl_ps(m_sums1, m_sums1), m_sums1);
_mm_store_ss(&result,
_mm_add_ss(m_sums2, _mm_shuffle_ps(m_sums2, m_sums2, 1)));
return result;
}
__attribute__((target("avx2,fma"))) float SincResampler::Convolve_AVX2(
const int kernel_size,
const float* input_ptr,
const float* k1,
const float* k2,
double kernel_interpolation_factor) {
__m256 m_input;
__m256 m_sums1 = _mm256_setzero_ps();
__m256 m_sums2 = _mm256_setzero_ps();
// Based on |input_ptr| alignment, we need to use loadu or load. Unrolling
// these loops has not been tested or benchmarked.
bool aligned_input = (reinterpret_cast<uintptr_t>(input_ptr) & 0x1F) == 0;
if (!aligned_input) {
for (size_t i = 0; i < static_cast<size_t>(kernel_size); i += 8) {
m_input = _mm256_loadu_ps(input_ptr + i);
m_sums1 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k1 + i), m_sums1);
m_sums2 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k2 + i), m_sums2);
}
} else {
for (size_t i = 0; i < static_cast<size_t>(kernel_size); i += 8) {
m_input = _mm256_load_ps(input_ptr + i);
m_sums1 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k1 + i), m_sums1);
m_sums2 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k2 + i), m_sums2);
}
}
// Linearly interpolate the two "convolutions".
__m128 m128_sums1 = _mm_add_ps(_mm256_extractf128_ps(m_sums1, 0),
_mm256_extractf128_ps(m_sums1, 1));
__m128 m128_sums2 = _mm_add_ps(_mm256_extractf128_ps(m_sums2, 0),
_mm256_extractf128_ps(m_sums2, 1));
m128_sums1 = _mm_mul_ps(
m128_sums1,
_mm_set_ps1(static_cast<float>(1.0 - kernel_interpolation_factor)));
m128_sums2 = _mm_mul_ps(
m128_sums2, _mm_set_ps1(static_cast<float>(kernel_interpolation_factor)));
m128_sums1 = _mm_add_ps(m128_sums1, m128_sums2);
// Sum components together.
float result;
m128_sums2 = _mm_add_ps(_mm_movehl_ps(m128_sums1, m128_sums1), m128_sums1);
_mm_store_ss(&result, _mm_add_ss(m128_sums2,
_mm_shuffle_ps(m128_sums2, m128_sums2, 1)));
return result;
}
#elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
float SincResampler::Convolve_NEON(const int kernel_size,
const float* input_ptr,
const float* k1,
const float* k2,
double kernel_interpolation_factor) {
float32x4_t m_input;
float32x4_t m_sums1 = vmovq_n_f32(0);
float32x4_t m_sums2 = vmovq_n_f32(0);
const float* upper = input_ptr + kernel_size;
for (; input_ptr < upper;) {
m_input = vld1q_f32(input_ptr);
input_ptr += 4;
m_sums1 = vmlaq_f32(m_sums1, m_input, vld1q_f32(k1));
k1 += 4;
m_sums2 = vmlaq_f32(m_sums2, m_input, vld1q_f32(k2));
k2 += 4;
}
// Linearly interpolate the two "convolutions".
m_sums1 = vmlaq_f32(
vmulq_f32(m_sums1, vmovq_n_f32(1.0 - kernel_interpolation_factor)),
m_sums2, vmovq_n_f32(kernel_interpolation_factor));
// Sum components together.
float32x2_t m_half = vadd_f32(vget_high_f32(m_sums1), vget_low_f32(m_sums1));
return vget_lane_f32(vpadd_f32(m_half, m_half), 0);
}
#endif
} // namespace media