1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526

media / base / sinc_resampler.cc [blame]

// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// Initial input buffer layout, dividing into regions r0_ to r4_ (note: r0_, r3_
// and r4_ will move after the first load):
//
// |----------------|-----------------------------------------|----------------|
//
//                                        request_frames_
//                   <--------------------------------------------------------->
//                                    r0_ (during first load)
//
//  kernel_size_ / 2  kernel_size_ / 2        kernel_size_ / 2  kernel_size_ / 2
// <---------------> <--------------->       <---------------> <--------------->
//        r1_               r2_                     r3_               r4_
//
//                             block_size_ == r4_ - r2_
//                   <--------------------------------------->
//
//                                                  request_frames_
//                                    <------------------ ... ----------------->
//                                               r0_ (during second load)
//
// On the second request r0_ slides to the right by kernel_size_ / 2 and r3_,
// r4_ and block_size_ are reinitialized via step (3) in the algorithm below.
//
// These new regions remain constant until a Flush() occurs.  While complicated,
// this allows us to reduce jitter by always requesting the same amount from the
// provided callback.
//
// The algorithm:
//
// 1) Allocate input_buffer of size: request_frames_ + kernel_size_; this
// ensures
//    there's enough room to read request_frames_ from the callback into region
//    r0_ (which will move between the first and subsequent passes).
//
// 2) Let r1_, r2_ each represent half the kernel centered around r0_:
//
//        r0_ = input_buffer_ + kernel_size_ / 2
//        r1_ = input_buffer_
//        r2_ = r0_
//
//    r0_ is always request_frames_ in size.  r1_, r2_ are kernel_size_ / 2 in
//    size.  r1_ must be zero initialized to avoid convolution with garbage (see
//    step (5) for why).
//
// 3) Let r3_, r4_ each represent half the kernel right aligned with the end of
//    r0_ and choose block_size_ as the distance in frames between r4_ and r2_:
//
//        r3_ = r0_ + request_frames_ - kernel_size_
//        r4_ = r0_ + request_frames_ - kernel_size_ / 2
//        block_size_ = r4_ - r2_ = request_frames_ - kernel_size_ / 2
//
// 4) Consume request_frames_ frames into r0_.
//
// 5) Position kernel centered at start of r2_ and generate output frames until
//    the kernel is centered at the start of r4_ or we've finished generating
//    all the output frames.
//
// 6) Wrap left over data from the r3_ to r1_ and r4_ to r2_.
//
// 7) If we're on the second load, in order to avoid overwriting the frames we
//    just wrapped from r4_ we need to slide r0_ to the right by the size of
//    r4_, which is kernel_size_ / 2:
//
//        r0_ = r0_ + kernel_size_ / 2 = input_buffer_ + kernel_size_
//
//    r3_, r4_, and block_size_ then need to be reinitialized, so goto (3).
//
// 8) Else, if we're not on the second load, goto (4).
//
// Note: we're glossing over how the sub-sample handling works with
// |virtual_source_idx_|, etc.

#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif

#include "media/base/sinc_resampler.h"

#include <limits>
#include <numbers>

#include "base/check_op.h"
#include "base/cpu.h"
#include "base/trace_event/trace_event.h"
#include "build/build_config.h"
#include "cc/base/math_util.h"

#if defined(ARCH_CPU_X86_FAMILY)
#include <immintrin.h>
// Including these headers directly should generally be avoided. Since
// Chrome is compiled with -msse3 (the minimal requirement), we include the
// headers directly to make the intrinsics available.
#include <avx2intrin.h>
#include <avxintrin.h>
#include <fmaintrin.h>
#elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
#include <arm_neon.h>
#endif

namespace media {

static double SincScaleFactor(double io_ratio, int kernel_size) {
  // |sinc_scale_factor| is basically the normalized cutoff frequency of the
  // low-pass filter.
  double sinc_scale_factor = io_ratio > 1.0 ? 1.0 / io_ratio : 1.0;

  // The sinc function is an idealized brick-wall filter, but since we're
  // windowing it the transition from pass to stop does not happen right away.
  // So we should adjust the low pass filter cutoff slightly downward to avoid
  // some aliasing at the very high-end.
  // Note: these values are derived empirically.
  if (kernel_size == SincResampler::kMaxKernelSize) {
    sinc_scale_factor *= 0.92;
  } else {
    DCHECK_EQ(kernel_size, SincResampler::kMinKernelSize);
    sinc_scale_factor *= 0.90;
  }

  return sinc_scale_factor;
}

// If we know the minimum architecture at compile time, avoid CPU detection.
void SincResampler::InitializeCPUSpecificFeatures() {
#if defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
  convolve_proc_ = Convolve_NEON;
#elif defined(ARCH_CPU_X86_FAMILY)
  base::CPU cpu;
  // Using AVX2 instead of SSE2 when AVX2/FMA3 supported.
  if (cpu.has_avx2() && cpu.has_fma3()) {
    convolve_proc_ = Convolve_AVX2;
  } else if (cpu.has_sse2()) {
    convolve_proc_ = Convolve_SSE;
  } else {
    convolve_proc_ = Convolve_C;
  }
#else
  // Unknown architecture.
  convolve_proc_ = Convolve_C;
#endif
}

static int CalculateChunkSize(int block_size_, double io_ratio) {
  return block_size_ / io_ratio;
}

// Static
int SincResampler::KernelSizeFromRequestFrames(int request_frames) {
  // We want the kernel size to *more* than 1.5 * `request_frames`.
  constexpr int kSmallKernelLimit = kMaxKernelSize * 3 / 2;
  return request_frames <= kSmallKernelLimit ? kMinKernelSize : kMaxKernelSize;
}

SincResampler::SincResampler(double io_sample_rate_ratio,
                             int request_frames,
                             const ReadCB read_cb)
    : kernel_size_(KernelSizeFromRequestFrames(request_frames)),
      kernel_storage_size_(kernel_size_ * (kKernelOffsetCount + 1)),
      io_sample_rate_ratio_(io_sample_rate_ratio),
      read_cb_(std::move(read_cb)),
      request_frames_(request_frames),
      input_buffer_size_(request_frames_ + kernel_size_),
      // Create input buffers with a 32-byte alignment for SIMD optimizations.
      kernel_storage_(static_cast<float*>(
          base::AlignedAlloc(sizeof(float) * kernel_storage_size_, 32))),
      kernel_pre_sinc_storage_(static_cast<float*>(
          base::AlignedAlloc(sizeof(float) * kernel_storage_size_, 32))),
      kernel_window_storage_(static_cast<float*>(
          base::AlignedAlloc(sizeof(float) * kernel_storage_size_, 32))),
      input_buffer_(static_cast<float*>(
          base::AlignedAlloc(sizeof(float) * input_buffer_size_, 32))),
      r1_(input_buffer_.get()),
      r2_(input_buffer_.get() + kernel_size_ / 2) {
  CHECK_GT(request_frames, kernel_size_ * 3 / 2)
      << "request_frames must be greater than 1.5 kernels to allow sufficient "
         "data for resampling";
  // This means that after the first call to Flush we will have
  // block_size_ > kernel_size_ and r2_ < r3_.

  InitializeCPUSpecificFeatures();
  DCHECK(convolve_proc_);
  CHECK_GT(request_frames_, 0);
  Flush();

  memset(kernel_storage_.get(), 0,
         sizeof(*kernel_storage_.get()) * kernel_storage_size_);
  memset(kernel_pre_sinc_storage_.get(), 0,
         sizeof(*kernel_pre_sinc_storage_.get()) * kernel_storage_size_);
  memset(kernel_window_storage_.get(), 0,
         sizeof(*kernel_window_storage_.get()) * kernel_storage_size_);

  InitializeKernel();
}

SincResampler::~SincResampler() = default;

void SincResampler::UpdateRegions(bool second_load) {
  // Setup various region pointers in the buffer (see diagram above).  If we're
  // on the second load we need to slide r0_ to the right by kernel_size_ / 2.
  r0_ = input_buffer_.get() + (second_load ? kernel_size_ : kernel_size_ / 2);
  r3_ = r0_ + request_frames_ - kernel_size_;
  r4_ = r0_ + request_frames_ - kernel_size_ / 2;
  block_size_ = r4_ - r2_;
  chunk_size_ = CalculateChunkSize(block_size_, io_sample_rate_ratio_);

  // r1_ at the beginning of the buffer.
  CHECK_EQ(r1_, input_buffer_.get());
  // r1_ left of r2_, r4_ left of r3_ and size correct.
  CHECK_EQ(r2_ - r1_, r4_ - r3_);
  // r2_ left of r3.
  CHECK_LT(r2_, r3_);
}

void SincResampler::InitializeKernel() {
  // Blackman window parameters.
  static const double kAlpha = 0.16;
  static const double kA0 = 0.5 * (1.0 - kAlpha);
  static const double kA1 = 0.5;
  static const double kA2 = 0.5 * kAlpha;

  // Generates a set of windowed sinc() kernels.
  // We generate a range of sub-sample offsets from 0.0 to 1.0.
  const double sinc_scale_factor =
      SincScaleFactor(io_sample_rate_ratio_, kernel_size_);
  for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
    const float subsample_offset =
        static_cast<float>(offset_idx) / kKernelOffsetCount;

    for (int i = 0; i < kernel_size_; ++i) {
      const int idx = i + offset_idx * kernel_size_;
      const float pre_sinc =
          std::numbers::pi_v<float> * (i - kernel_size_ / 2 - subsample_offset);
      kernel_pre_sinc_storage_[idx] = pre_sinc;

      // Compute Blackman window, matching the offset of the sinc().
      const float x = (i - subsample_offset) / kernel_size_;
      const float window =
          static_cast<float>(kA0 - kA1 * cos(2.0 * std::numbers::pi * x) +
                             kA2 * cos(4.0 * std::numbers::pi * x));
      kernel_window_storage_[idx] = window;

      // Compute the sinc with offset, then window the sinc() function and store
      // at the correct offset.
      kernel_storage_[idx] = static_cast<float>(
          window * (pre_sinc ? sin(sinc_scale_factor * pre_sinc) / pre_sinc
                             : sinc_scale_factor));
    }
  }
}

void SincResampler::SetRatio(double io_sample_rate_ratio) {
  if (fabs(io_sample_rate_ratio_ - io_sample_rate_ratio) <
      std::numeric_limits<double>::epsilon()) {
    return;
  }

  io_sample_rate_ratio_ = io_sample_rate_ratio;
  chunk_size_ = CalculateChunkSize(block_size_, io_sample_rate_ratio_);

  // Optimize reinitialization by reusing values which are independent of
  // |sinc_scale_factor|.  Provides a 3x speedup.
  const double sinc_scale_factor =
      SincScaleFactor(io_sample_rate_ratio_, kernel_size_);
  for (int offset_idx = 0; offset_idx <= kKernelOffsetCount; ++offset_idx) {
    for (int i = 0; i < kernel_size_; ++i) {
      const int idx = i + offset_idx * kernel_size_;
      const float window = kernel_window_storage_[idx];
      const float pre_sinc = kernel_pre_sinc_storage_[idx];

      kernel_storage_[idx] = static_cast<float>(
          window * (pre_sinc ? sin(sinc_scale_factor * pre_sinc) / pre_sinc
                             : sinc_scale_factor));
    }
  }
}

void SincResampler::Resample(int frames, float* destination) {
  TRACE_EVENT1(TRACE_DISABLED_BY_DEFAULT("audio"), "SincResampler::Resample",
               "io sample rate ratio", io_sample_rate_ratio_);
  int remaining_frames = frames;

  // Step (1) -- Prime the input buffer at the start of the input stream.
  if (!buffer_primed_ && remaining_frames) {
    read_cb_.Run(request_frames_, r0_.get());
    buffer_primed_ = true;
  }

  // Step (2) -- Resample!
  while (remaining_frames) {
    // Silent audio can contain non-zero samples small enough to result in
    // subnormals internally. Disabling subnormals can be significantly faster.
    {
      cc::ScopedSubnormalFloatDisabler disable_subnormals;

      while (virtual_source_idx_ < block_size_) {
        // |virtual_source_idx_| lies in between two kernel offsets so figure
        // out what they are.
        const int source_idx = static_cast<int>(virtual_source_idx_);
        const double virtual_offset_idx =
            (virtual_source_idx_ - source_idx) * kKernelOffsetCount;
        const int offset_idx = static_cast<int>(virtual_offset_idx);

        // We'll compute "convolutions" for the two kernels which straddle
        // |virtual_source_idx_|.
        const float* k1 = kernel_storage_.get() + offset_idx * kernel_size_;
        const float* k2 = k1 + kernel_size_;

        // Ensure |k1|, |k2| are 32-byte aligned for SIMD usage.  Should always
        // be true so long as `kernel_size_` is a multiple of 32.
        DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(k1) & 0x1F);
        DCHECK_EQ(0u, reinterpret_cast<uintptr_t>(k2) & 0x1F);

        // Initialize input pointer based on quantized |virtual_source_idx_|.
        const float* input_ptr = r1_ + source_idx;

        // Figure out how much to weight each kernel's "convolution".
        const double kernel_interpolation_factor =
            virtual_offset_idx - offset_idx;
        *destination++ = convolve_proc_(kernel_size_, input_ptr, k1, k2,
                                        kernel_interpolation_factor);

        // Advance the virtual index.
        virtual_source_idx_ += io_sample_rate_ratio_;
        if (!--remaining_frames) {
          return;
        }
      }
    }

    // Wrap back around to the start.
    DCHECK_GE(virtual_source_idx_, block_size_);
    virtual_source_idx_ -= block_size_;

    // Step (3) -- Copy r3_, r4_ to r1_, r2_.
    // This wraps the last input frames back to the start of the buffer.
    memcpy(r1_, r3_, sizeof(*input_buffer_.get()) * kernel_size_);

    // Step (4) -- Reinitialize regions if necessary.
    if (r0_ == r2_) {
      UpdateRegions(true);
    }

    // Step (5) -- Refresh the buffer with more input.
    read_cb_.Run(request_frames_, r0_.get());
  }
}

void SincResampler::PrimeWithSilence() {
  // By enforcing the buffer hasn't been primed, we ensure the input buffer has
  // already been zeroed during construction or by a previous Flush() call.
  DCHECK(!buffer_primed_);
  DCHECK_EQ(input_buffer_[0], 0.0f);
  UpdateRegions(true);
}

void SincResampler::Flush() {
  virtual_source_idx_ = 0;
  buffer_primed_ = false;
  memset(input_buffer_.get(), 0,
         sizeof(*input_buffer_.get()) * input_buffer_size_);
  UpdateRegions(false);
}

int SincResampler::GetMaxInputFramesRequested(
    int output_frames_requested) const {
  const int num_chunks = static_cast<int>(
      std::ceil(static_cast<float>(output_frames_requested) / chunk_size_));

  return num_chunks * request_frames_;
}

double SincResampler::BufferedFrames() const {
  return buffer_primed_ ? request_frames_ - virtual_source_idx_ : 0;
}

int SincResampler::KernelSize() const {
  return kernel_size_;
}

float SincResampler::Convolve_C(const int kernel_size,
                                const float* input_ptr,
                                const float* k1,
                                const float* k2,
                                double kernel_interpolation_factor) {
  float sum1 = 0;
  float sum2 = 0;

  // Generate a single output sample.  Unrolling this loop hurt performance in
  // local testing.
  int n = kernel_size;
  while (n--) {
    sum1 += *input_ptr * *k1++;
    sum2 += *input_ptr++ * *k2++;
  }

  // Linearly interpolate the two "convolutions".
  return static_cast<float>((1.0 - kernel_interpolation_factor) * sum1 +
                            kernel_interpolation_factor * sum2);
}

#if defined(ARCH_CPU_X86_FAMILY)
float SincResampler::Convolve_SSE(const int kernel_size,
                                  const float* input_ptr,
                                  const float* k1,
                                  const float* k2,
                                  double kernel_interpolation_factor) {
  __m128 m_input;
  __m128 m_sums1 = _mm_setzero_ps();
  __m128 m_sums2 = _mm_setzero_ps();

  // Based on |input_ptr| alignment, we need to use loadu or load.  Unrolling
  // these loops hurt performance in local testing.
  if (reinterpret_cast<uintptr_t>(input_ptr) & 0x0F) {
    for (int i = 0; i < kernel_size; i += 4) {
      m_input = _mm_loadu_ps(input_ptr + i);
      m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i)));
      m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i)));
    }
  } else {
    for (int i = 0; i < kernel_size; i += 4) {
      m_input = _mm_load_ps(input_ptr + i);
      m_sums1 = _mm_add_ps(m_sums1, _mm_mul_ps(m_input, _mm_load_ps(k1 + i)));
      m_sums2 = _mm_add_ps(m_sums2, _mm_mul_ps(m_input, _mm_load_ps(k2 + i)));
    }
  }

  // Linearly interpolate the two "convolutions".
  m_sums1 = _mm_mul_ps(
      m_sums1,
      _mm_set_ps1(static_cast<float>(1.0 - kernel_interpolation_factor)));
  m_sums2 = _mm_mul_ps(
      m_sums2, _mm_set_ps1(static_cast<float>(kernel_interpolation_factor)));
  m_sums1 = _mm_add_ps(m_sums1, m_sums2);

  // Sum components together.
  float result;
  m_sums2 = _mm_add_ps(_mm_movehl_ps(m_sums1, m_sums1), m_sums1);
  _mm_store_ss(&result,
               _mm_add_ss(m_sums2, _mm_shuffle_ps(m_sums2, m_sums2, 1)));

  return result;
}

__attribute__((target("avx2,fma"))) float SincResampler::Convolve_AVX2(
    const int kernel_size,
    const float* input_ptr,
    const float* k1,
    const float* k2,
    double kernel_interpolation_factor) {
  __m256 m_input;
  __m256 m_sums1 = _mm256_setzero_ps();
  __m256 m_sums2 = _mm256_setzero_ps();

  // Based on |input_ptr| alignment, we need to use loadu or load.  Unrolling
  // these loops has not been tested or benchmarked.
  bool aligned_input = (reinterpret_cast<uintptr_t>(input_ptr) & 0x1F) == 0;
  if (!aligned_input) {
    for (size_t i = 0; i < static_cast<size_t>(kernel_size); i += 8) {
      m_input = _mm256_loadu_ps(input_ptr + i);
      m_sums1 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k1 + i), m_sums1);
      m_sums2 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k2 + i), m_sums2);
    }
  } else {
    for (size_t i = 0; i < static_cast<size_t>(kernel_size); i += 8) {
      m_input = _mm256_load_ps(input_ptr + i);
      m_sums1 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k1 + i), m_sums1);
      m_sums2 = _mm256_fmadd_ps(m_input, _mm256_load_ps(k2 + i), m_sums2);
    }
  }

  // Linearly interpolate the two "convolutions".
  __m128 m128_sums1 = _mm_add_ps(_mm256_extractf128_ps(m_sums1, 0),
                                 _mm256_extractf128_ps(m_sums1, 1));
  __m128 m128_sums2 = _mm_add_ps(_mm256_extractf128_ps(m_sums2, 0),
                                 _mm256_extractf128_ps(m_sums2, 1));
  m128_sums1 = _mm_mul_ps(
      m128_sums1,
      _mm_set_ps1(static_cast<float>(1.0 - kernel_interpolation_factor)));
  m128_sums2 = _mm_mul_ps(
      m128_sums2, _mm_set_ps1(static_cast<float>(kernel_interpolation_factor)));
  m128_sums1 = _mm_add_ps(m128_sums1, m128_sums2);

  // Sum components together.
  float result;
  m128_sums2 = _mm_add_ps(_mm_movehl_ps(m128_sums1, m128_sums1), m128_sums1);
  _mm_store_ss(&result, _mm_add_ss(m128_sums2,
                                   _mm_shuffle_ps(m128_sums2, m128_sums2, 1)));

  return result;
}
#elif defined(ARCH_CPU_ARM_FAMILY) && defined(USE_NEON)
float SincResampler::Convolve_NEON(const int kernel_size,
                                   const float* input_ptr,
                                   const float* k1,
                                   const float* k2,
                                   double kernel_interpolation_factor) {
  float32x4_t m_input;
  float32x4_t m_sums1 = vmovq_n_f32(0);
  float32x4_t m_sums2 = vmovq_n_f32(0);

  const float* upper = input_ptr + kernel_size;
  for (; input_ptr < upper;) {
    m_input = vld1q_f32(input_ptr);
    input_ptr += 4;
    m_sums1 = vmlaq_f32(m_sums1, m_input, vld1q_f32(k1));
    k1 += 4;
    m_sums2 = vmlaq_f32(m_sums2, m_input, vld1q_f32(k2));
    k2 += 4;
  }

  // Linearly interpolate the two "convolutions".
  m_sums1 = vmlaq_f32(
      vmulq_f32(m_sums1, vmovq_n_f32(1.0 - kernel_interpolation_factor)),
      m_sums2, vmovq_n_f32(kernel_interpolation_factor));

  // Sum components together.
  float32x2_t m_half = vadd_f32(vget_high_f32(m_sums1), vget_low_f32(m_sums1));
  return vget_lane_f32(vpadd_f32(m_half, m_half), 0);
}
#endif

}  // namespace media