1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
media / base / sinc_resampler_unittest.cc [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include <memory>
#include <numbers>
#include "base/containers/heap_array.h"
#include "base/functional/bind.h"
#include "base/functional/callback_helpers.h"
#include "base/strings/string_number_conversions.h"
#include "base/time/time.h"
#include "build/build_config.h"
#include "media/base/sinc_resampler.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
using testing::_;
namespace media {
static const double kSampleRateRatio = 192000.0 / 44100.0;
// Helper class to ensure ChunkedResample() functions properly.
class MockSource {
public:
MOCK_METHOD2(ProvideInput, void(int frames, float* destination));
};
ACTION(ClearBuffer) {
memset(arg1, 0, arg0 * sizeof(float));
}
ACTION(FillBuffer) {
// Value chosen arbitrarily such that SincResampler resamples it to something
// easily representable on all platforms; e.g., using kSampleRateRatio this
// becomes 1.81219.
memset(arg1, 64, arg0 * sizeof(float));
}
// Test requesting multiples of ChunkSize() frames results in the proper number
// of callbacks.
TEST(SincResamplerTest, ChunkedResample) {
MockSource mock_source;
// Choose a high ratio of input to output samples which will result in quick
// exhaustion of SincResampler's internal buffers.
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
base::BindRepeating(&MockSource::ProvideInput,
base::Unretained(&mock_source)));
static const int kChunks = 2;
int max_chunk_size = resampler.ChunkSize() * kChunks;
auto resampled_destination = base::HeapArray<float>::Uninit(max_chunk_size);
// Verify requesting ChunkSize() frames causes a single callback.
EXPECT_CALL(mock_source, ProvideInput(_, _)).Times(1).WillOnce(ClearBuffer());
resampler.Resample(resampler.ChunkSize(), resampled_destination.data());
// Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks.
testing::Mock::VerifyAndClear(&mock_source);
EXPECT_CALL(mock_source, ProvideInput(_, _))
.Times(kChunks)
.WillRepeatedly(ClearBuffer());
resampler.Resample(max_chunk_size, resampled_destination.data());
}
// Verify priming the resampler avoids changes to ChunkSize() between calls.
TEST(SincResamplerTest, PrimedResample) {
MockSource mock_source;
// Choose a high ratio of input to output samples which will result in quick
// exhaustion of SincResampler's internal buffers.
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
base::BindRepeating(&MockSource::ProvideInput,
base::Unretained(&mock_source)));
// Verify the priming adjusts the chunk size within reasonable limits.
const int first_chunk_size = resampler.ChunkSize();
resampler.PrimeWithSilence();
const int max_chunk_size = resampler.ChunkSize();
EXPECT_NE(first_chunk_size, max_chunk_size);
EXPECT_LE(
max_chunk_size,
static_cast<int>(first_chunk_size + std::ceil(resampler.KernelSize() /
(2 * kSampleRateRatio))));
// Verify Flush() resets to an unprimed state.
resampler.Flush();
EXPECT_EQ(first_chunk_size, resampler.ChunkSize());
resampler.PrimeWithSilence();
EXPECT_EQ(max_chunk_size, resampler.ChunkSize());
const int kChunks = 2;
const int kMaxFrames = max_chunk_size * kChunks;
auto resampled_destination = base::HeapArray<float>::Uninit(kMaxFrames);
// Verify requesting ChunkSize() frames causes a single callback.
EXPECT_CALL(mock_source, ProvideInput(_, _)).Times(1).WillOnce(ClearBuffer());
resampler.Resample(max_chunk_size, resampled_destination.data());
EXPECT_EQ(max_chunk_size, resampler.ChunkSize());
// Verify requesting kChunks * ChunkSize() frames causes kChunks callbacks.
testing::Mock::VerifyAndClear(&mock_source);
EXPECT_CALL(mock_source, ProvideInput(_, _))
.Times(kChunks)
.WillRepeatedly(ClearBuffer());
resampler.Resample(kMaxFrames, resampled_destination.data());
EXPECT_EQ(max_chunk_size, resampler.ChunkSize());
}
// Test flush resets the internal state properly.
TEST(SincResamplerTest, Flush) {
MockSource mock_source;
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
base::BindRepeating(&MockSource::ProvideInput,
base::Unretained(&mock_source)));
auto resampled_destination =
base::HeapArray<float>::Uninit(resampler.ChunkSize());
// Fill the resampler with junk data.
EXPECT_CALL(mock_source, ProvideInput(_, _)).Times(1).WillOnce(FillBuffer());
resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.data());
ASSERT_NE(resampled_destination[0], 0);
// Flush and request more data, which should all be zeros now.
resampler.Flush();
testing::Mock::VerifyAndClear(&mock_source);
EXPECT_CALL(mock_source, ProvideInput(_, _)).Times(1).WillOnce(ClearBuffer());
resampler.Resample(resampler.ChunkSize() / 2, resampled_destination.data());
for (int i = 0; i < resampler.ChunkSize() / 2; ++i) {
ASSERT_FLOAT_EQ(resampled_destination[i], 0);
}
}
// This test is designed to be executed manually.
TEST(SincResamplerTest, DISABLED_SetRatioBench) {
MockSource mock_source;
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
base::BindRepeating(&MockSource::ProvideInput,
base::Unretained(&mock_source)));
base::TimeTicks start = base::TimeTicks::Now();
for (int i = 1; i < 10000; ++i) {
resampler.SetRatio(1.0 / i);
}
double total_time_c_ms = (base::TimeTicks::Now() - start).InMillisecondsF();
printf("SetRatio() took %.2fms.\n", total_time_c_ms);
}
// Ensure various optimized Convolve() methods return the same value. Only run
// this test if other optimized methods exist, otherwise the default Convolve()
// will be tested by the parameterized SincResampler tests below.
static const double kKernelInterpolationFactor = 0.5;
TEST(SincResamplerTest, Convolve) {
// Initialize a dummy resampler.
MockSource mock_source;
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
base::BindRepeating(&MockSource::ProvideInput,
base::Unretained(&mock_source)));
// The optimized Convolve methods are slightly more precise than Convolve_C(),
// so comparison must be done using an epsilon.
static const double kEpsilon = 0.00000005;
// Use a kernel from SincResampler as input and kernel data, this has the
// benefit of already being properly sized and aligned for Convolve_SSE().
double result = resampler.Convolve_C(
resampler.KernelSize(), resampler.kernel_storage_.get(),
resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
kKernelInterpolationFactor);
double result2 = resampler.convolve_proc_(
resampler.KernelSize(), resampler.kernel_storage_.get(),
resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
kKernelInterpolationFactor);
EXPECT_NEAR(result2, result, kEpsilon);
// Test Convolve() w/ unaligned input pointer.
result = resampler.Convolve_C(
resampler.KernelSize(), resampler.kernel_storage_.get() + 1,
resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
kKernelInterpolationFactor);
result2 = resampler.convolve_proc_(
resampler.KernelSize(), resampler.kernel_storage_.get() + 1,
resampler.kernel_storage_.get(), resampler.kernel_storage_.get(),
kKernelInterpolationFactor);
EXPECT_NEAR(result2, result, kEpsilon);
}
// Fake audio source for testing the resampler. Generates a sinusoidal linear
// chirp (http://en.wikipedia.org/wiki/Chirp) which can be tuned to stress the
// resampler for the specific sample rate conversion being used.
class SinusoidalLinearChirpSource {
public:
SinusoidalLinearChirpSource(int sample_rate,
int samples,
double max_frequency)
: sample_rate_(sample_rate),
total_samples_(samples),
max_frequency_(max_frequency),
current_index_(0) {
// Chirp rate.
double duration = static_cast<double>(total_samples_) / sample_rate_;
k_ = (max_frequency_ - kMinFrequency) / duration;
}
SinusoidalLinearChirpSource(const SinusoidalLinearChirpSource&) = delete;
SinusoidalLinearChirpSource& operator=(const SinusoidalLinearChirpSource&) =
delete;
virtual ~SinusoidalLinearChirpSource() = default;
void ProvideInput(int frames, float* destination) {
for (int i = 0; i < frames; ++i, ++current_index_) {
// Filter out frequencies higher than Nyquist.
if (Frequency(current_index_) > 0.5 * sample_rate_) {
destination[i] = 0;
} else {
// Calculate time in seconds.
double t = static_cast<double>(current_index_) / sample_rate_;
// Sinusoidal linear chirp.
destination[i] =
sin(2 * std::numbers::pi * (kMinFrequency * t + (k_ / 2) * t * t));
}
}
}
double Frequency(int position) {
return kMinFrequency +
position * (max_frequency_ - kMinFrequency) / total_samples_;
}
private:
static constexpr int kMinFrequency = 5;
double sample_rate_;
int total_samples_;
double max_frequency_;
double k_;
int current_index_;
};
typedef std::tuple<int, int, double, double, double> SincResamplerTestData;
class SincResamplerTest : public testing::TestWithParam<SincResamplerTestData> {
public:
SincResamplerTest()
: input_rate_(std::get<0>(GetParam())),
output_rate_(std::get<1>(GetParam())),
rms_error_(std::get<2>(GetParam())),
low_freq_error_(std::get<3>(GetParam())),
high_freq_error_(std::get<4>(GetParam())) {}
virtual ~SincResamplerTest() = default;
protected:
int input_rate_;
int output_rate_;
double rms_error_;
double low_freq_error_;
double high_freq_error_;
};
// Tests resampling using a given input and output sample rate.
TEST_P(SincResamplerTest, Resample) {
// Make comparisons using one second of data.
static const double kTestDurationSecs = 1;
int input_samples = kTestDurationSecs * input_rate_;
int output_samples = kTestDurationSecs * output_rate_;
// Nyquist frequency for the input sampling rate.
double input_nyquist_freq = 0.5 * input_rate_;
// Source for data to be resampled.
SinusoidalLinearChirpSource resampler_source(input_rate_, input_samples,
input_nyquist_freq);
const double io_ratio = input_rate_ / static_cast<double>(output_rate_);
SincResampler resampler(
io_ratio, SincResampler::kDefaultRequestSize,
base::BindRepeating(&SinusoidalLinearChirpSource::ProvideInput,
base::Unretained(&resampler_source)));
const int kernel_storage_size = resampler.kernel_storage_size_for_testing();
const int kernel_storage_size_in_bytes = kernel_storage_size * sizeof(float);
// Force an update to the sample rate ratio to ensure dynamic sample rate
// changes are working correctly.
auto kernel = base::HeapArray<float>::Uninit(kernel_storage_size);
memcpy(kernel.data(), resampler.get_kernel_for_testing(),
kernel_storage_size_in_bytes);
resampler.SetRatio(std::numbers::pi);
ASSERT_NE(0, memcmp(kernel.data(), resampler.get_kernel_for_testing(),
kernel_storage_size_in_bytes));
resampler.SetRatio(io_ratio);
ASSERT_EQ(0, memcmp(kernel.data(), resampler.get_kernel_for_testing(),
kernel_storage_size_in_bytes));
// TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
// allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
auto resampled_destination = base::HeapArray<float>::Uninit(output_samples);
auto pure_destination = base::HeapArray<float>::Uninit(output_samples);
// Generate resampled signal.
resampler.Resample(output_samples, resampled_destination.data());
// Generate pure signal.
SinusoidalLinearChirpSource pure_source(output_rate_, output_samples,
input_nyquist_freq);
pure_source.ProvideInput(output_samples, pure_destination.data());
// Range of the Nyquist frequency (0.5 * min(input rate, output_rate)) which
// we refer to as low and high.
static const double kLowFrequencyNyquistRange = 0.7;
static const double kHighFrequencyNyquistRange = 0.9;
// Calculate Root-Mean-Square-Error and maximum error for the resampling.
double sum_of_squares = 0;
double low_freq_max_error = 0;
double high_freq_max_error = 0;
int minimum_rate = std::min(input_rate_, output_rate_);
double low_frequency_range = kLowFrequencyNyquistRange * 0.5 * minimum_rate;
double high_frequency_range = kHighFrequencyNyquistRange * 0.5 * minimum_rate;
for (int i = 0; i < output_samples; ++i) {
double error = fabs(resampled_destination[i] - pure_destination[i]);
if (pure_source.Frequency(i) < low_frequency_range) {
if (error > low_freq_max_error) {
low_freq_max_error = error;
}
} else if (pure_source.Frequency(i) < high_frequency_range) {
if (error > high_freq_max_error) {
high_freq_max_error = error;
}
}
// TODO(dalecurtis): Sanity check frequencies > kHighFrequencyNyquistRange.
sum_of_squares += error * error;
}
double rms_error = sqrt(sum_of_squares / output_samples);
// Convert each error to dbFS.
#define DBFS(x) 20 * log10(x)
rms_error = DBFS(rms_error);
low_freq_max_error = DBFS(low_freq_max_error);
high_freq_max_error = DBFS(high_freq_max_error);
EXPECT_LE(rms_error, rms_error_);
EXPECT_LE(low_freq_max_error, low_freq_error_);
EXPECT_LE(high_freq_max_error, high_freq_error_);
}
// Tests resampling using a given input and output sample rate, and a small
// kernel size.
TEST_P(SincResamplerTest, Resample_SmallKernel) {
// Make comparisons using one second of data.
static const double kTestDurationSecs = 1;
int input_samples = kTestDurationSecs * input_rate_;
int output_samples = kTestDurationSecs * output_rate_;
// Nyquist frequency for the input sampling rate.
double input_nyquist_freq = 0.5 * input_rate_;
// Source for data to be resampled.
SinusoidalLinearChirpSource resampler_source(input_rate_, input_samples,
input_nyquist_freq);
constexpr int kSmallKernelLimit = SincResampler::kMaxKernelSize * 3 / 2;
const double io_ratio = input_rate_ / static_cast<double>(output_rate_);
SincResampler resampler(
io_ratio, kSmallKernelLimit,
base::BindRepeating(&SinusoidalLinearChirpSource::ProvideInput,
base::Unretained(&resampler_source)));
EXPECT_EQ(resampler.KernelSize(), SincResampler::kMinKernelSize);
const int kernel_storage_size = resampler.kernel_storage_size_for_testing();
const int kernel_storage_size_in_bytes = kernel_storage_size * sizeof(float);
// Force an update to the sample rate ratio to ensure dynamic sample rate
// changes are working correctly.
auto kernel = base::HeapArray<float>::Uninit(kernel_storage_size);
memcpy(kernel.data(), resampler.get_kernel_for_testing(),
kernel_storage_size_in_bytes);
resampler.SetRatio(std::numbers::pi);
ASSERT_NE(0, memcmp(kernel.data(), resampler.get_kernel_for_testing(),
kernel_storage_size_in_bytes));
resampler.SetRatio(io_ratio);
ASSERT_EQ(0, memcmp(kernel.data(), resampler.get_kernel_for_testing(),
kernel_storage_size_in_bytes));
// TODO(dalecurtis): If we switch to AVX/SSE optimization, we'll need to
// allocate these on 32-byte boundaries and ensure they're sized % 32 bytes.
auto resampled_destination = base::HeapArray<float>::Uninit(output_samples);
// Generate resampled signal.
resampler.Resample(output_samples, resampled_destination.data());
// Do not check for the maximum error range for the small kernel size,
// as there is already quite a bit of test data. This test is only meant to
// exercise code paths, not ensure quality.
}
// Thresholds chosen arbitrarily based on what each resampling reported during
// testing. All thresholds are in dbFS, http://en.wikipedia.org/wiki/DBFS.
// Almost all conversions have an RMS error of around -15 dbFS and have a high
// frequency error around -12 dbFS.
static const double kRMSMaxError = -14.94;
static const double kHighFreqMaxError = -12.09;
INSTANTIATE_TEST_SUITE_P(
SincResamplerTest,
SincResamplerTest,
testing::Values(
// To 16kHz
std::make_tuple(8000, 16000, kRMSMaxError, -69.26, kHighFreqMaxError),
std::make_tuple(11025, 16000, kRMSMaxError, -63.97, kHighFreqMaxError),
// The low freq error of -85.28 dbFS does not work on
// android-12-x64-rel, android-nougat-x86-rel and fuchsia-arm64-rel.
std::make_tuple(16000, 16000, kRMSMaxError, -85.26, kHighFreqMaxError),
std::make_tuple(22050, 16000, -16.77, -67.98, -10.35),
std::make_tuple(32000, 16000, -19.17, -75.00, -8.82),
std::make_tuple(44100, 16000, -20.26, -62.40, -7.89),
std::make_tuple(48000, 16000, -21.05, -53.22, -7.93),
std::make_tuple(96000, 16000, -23.20, -19.97, -6.98),
std::make_tuple(192000, 16000, -24.28, -11.57, -6.60),
// To 32kHz
std::make_tuple(8000, 32000, kRMSMaxError, -69.26, kHighFreqMaxError),
std::make_tuple(11025, 32000, kRMSMaxError, -63.97, kHighFreqMaxError),
std::make_tuple(16000, 32000, kRMSMaxError, -75.28, kHighFreqMaxError),
std::make_tuple(22050, 32000, kRMSMaxError, -63.82, kHighFreqMaxError),
// The low freq error of -85.25 dbFS does not work on
// android-12-x64-rel, android-nougat-x86-rel and fuchsia-arm64-rel.
std::make_tuple(32000, 32000, kRMSMaxError, -85.24, kHighFreqMaxError),
std::make_tuple(44100, 32000, -16.78, -67.79, -10.20),
// The low freq error of -79.11 dbFS does not work on
// android-12-x64-rel, android-nougat-x86-rel and fuchsia-arm64-rel.
std::make_tuple(48000, 32000, -17.44, -79.10, -9.73),
std::make_tuple(96000, 32000, -20.73, -52.60, -7.87),
std::make_tuple(192000, 32000, -23.67, -20.00, -6.91),
// To 44.1kHz
std::make_tuple(8000, 44100, kRMSMaxError, -63.85, kHighFreqMaxError),
std::make_tuple(11025, 44100, kRMSMaxError, -72.04, kHighFreqMaxError),
// The low freq error of -63.78 dbFS does not work on
// android-12-x64-rel, android-nougat-x86-rel and fuchsia-arm64-rel.
std::make_tuple(16000, 44100, kRMSMaxError, -63.77, kHighFreqMaxError),
std::make_tuple(22050, 44100, kRMSMaxError, -78.06, kHighFreqMaxError),
std::make_tuple(32000, 44100, kRMSMaxError, -64.06, kHighFreqMaxError),
// The low freq error of -85.24 dbFS does not work on
// android-12-x64-rel, android-nougat-x86-rel and fuchsia-arm64-rel.
std::make_tuple(44100, 44100, kRMSMaxError, -85.22, kHighFreqMaxError),
std::make_tuple(48000, 44100, -15.31, -65.58, -11.50),
std::make_tuple(96000, 44100, -19.14, -73.16, -8.50),
std::make_tuple(192000, 44100, -22.24, -28.92, -7.20),
// To 48kHz
std::make_tuple(8000, 48000, kRMSMaxError, -64.79, kHighFreqMaxError),
std::make_tuple(11025, 48000, kRMSMaxError, -63.84, kHighFreqMaxError),
std::make_tuple(16000, 48000, kRMSMaxError, -64.93, kHighFreqMaxError),
std::make_tuple(22050, 48000, kRMSMaxError, -63.72, kHighFreqMaxError),
std::make_tuple(32000, 48000, kRMSMaxError, -64.96, kHighFreqMaxError),
std::make_tuple(44100, 48000, kRMSMaxError, -64.13, kHighFreqMaxError),
// The low freq error of -85.25 dbFS does not work on
// android-12-x64-rel, android-nougat-x86-rel and fuchsia-arm64-rel.
std::make_tuple(48000, 48000, kRMSMaxError, -85.24, kHighFreqMaxError),
std::make_tuple(96000, 48000, -19.05, -75.32, -8.73),
std::make_tuple(192000, 48000, -22.10, -32.36, -7.28),
// To 96kHz
std::make_tuple(8000, 96000, kRMSMaxError, -64.64, kHighFreqMaxError),
std::make_tuple(11025, 96000, kRMSMaxError, -63.84, kHighFreqMaxError),
std::make_tuple(16000, 96000, kRMSMaxError, -64.75, kHighFreqMaxError),
std::make_tuple(22050, 96000, kRMSMaxError, -63.72, kHighFreqMaxError),
std::make_tuple(32000, 96000, kRMSMaxError, -64.92, kHighFreqMaxError),
std::make_tuple(44100, 96000, kRMSMaxError, -64.04, kHighFreqMaxError),
std::make_tuple(48000, 96000, kRMSMaxError, -84.82, kHighFreqMaxError),
std::make_tuple(96000, 96000, kRMSMaxError, -85.24, kHighFreqMaxError),
std::make_tuple(192000, 96000, -19.01, -75.30, -8.71),
// To 192kHz
std::make_tuple(8000, 192000, kRMSMaxError, -64.63, kHighFreqMaxError),
std::make_tuple(11025, 192000, kRMSMaxError, -63.84, kHighFreqMaxError),
std::make_tuple(16000, 192000, kRMSMaxError, -64.61, kHighFreqMaxError),
std::make_tuple(22050, 192000, kRMSMaxError, -63.72, kHighFreqMaxError),
std::make_tuple(32000, 192000, kRMSMaxError, -64.74, kHighFreqMaxError),
std::make_tuple(44100, 192000, kRMSMaxError, -63.85, kHighFreqMaxError),
std::make_tuple(48000, 192000, kRMSMaxError, -84.82, kHighFreqMaxError),
std::make_tuple(96000, 192000, kRMSMaxError, -85.24, kHighFreqMaxError),
std::make_tuple(192000,
192000,
kRMSMaxError,
-85.24,
kHighFreqMaxError)));
// Verify the resampler properly reports the max number of input frames it would
// request.
TEST(SincResamplerTest, GetMaxInputFramesRequestedTest) {
SincResampler resampler(kSampleRateRatio, SincResampler::kDefaultRequestSize,
SincResampler::ReadCB());
EXPECT_EQ(SincResampler::kDefaultRequestSize,
resampler.GetMaxInputFramesRequested(resampler.ChunkSize()));
// Request sizes smaller than ChunkSize should still trigger 1 read.
EXPECT_EQ(SincResampler::kDefaultRequestSize,
resampler.GetMaxInputFramesRequested(resampler.ChunkSize() - 10));
// Request sizes bigger than ChunkSize can trigger multiple reads.
EXPECT_EQ(2 * SincResampler::kDefaultRequestSize,
resampler.GetMaxInputFramesRequested(resampler.ChunkSize() + 10));
// The number of input frames requested should grow proportionally to the
// output frames requested.
EXPECT_EQ(
5 * SincResampler::kDefaultRequestSize,
resampler.GetMaxInputFramesRequested(4 * resampler.ChunkSize() + 10));
const int kCustomRequestSize = SincResampler::kDefaultRequestSize + 128;
SincResampler custom_size_resampler(kSampleRateRatio, kCustomRequestSize,
SincResampler::ReadCB());
// The input frames requested should be a multiple of the request size.
EXPECT_EQ(2 * kCustomRequestSize,
custom_size_resampler.GetMaxInputFramesRequested(
custom_size_resampler.ChunkSize() + 10));
// Verify we get results with both downsampling and upsampling ratios.
SincResampler inverse_ratio_resampler(1.0 / kSampleRateRatio,
SincResampler::kDefaultRequestSize,
SincResampler::ReadCB());
EXPECT_EQ(2 * SincResampler::kDefaultRequestSize,
inverse_ratio_resampler.GetMaxInputFramesRequested(
inverse_ratio_resampler.ChunkSize() + 10));
}
class SincResamplerKernelSizeTest : public testing::Test {
public:
SincResamplerKernelSizeTest() = default;
~SincResamplerKernelSizeTest() override = default;
};
TEST_F(SincResamplerKernelSizeTest, KernelSizes) {
constexpr float kTestIoRatio = 2.0;
// Default case.
{
EXPECT_EQ(SincResampler::KernelSizeFromRequestFrames(
SincResampler::kDefaultRequestSize),
SincResampler::kMaxKernelSize);
SincResampler default_request_resampler(
kTestIoRatio, SincResampler::kDefaultRequestSize, base::DoNothing());
EXPECT_EQ(default_request_resampler.KernelSize(),
SincResampler::kMaxKernelSize);
}
constexpr int kSmallKernelLimit = SincResampler::kMaxKernelSize * 3 / 2;
// Smallest request size allowed for SincResampler::kMaxKernelSize.
{
EXPECT_EQ(SincResampler::KernelSizeFromRequestFrames(kSmallKernelLimit + 1),
SincResampler::kMaxKernelSize);
SincResampler limit_request_resampler(kTestIoRatio, kSmallKernelLimit + 1,
base::DoNothing());
EXPECT_EQ(limit_request_resampler.KernelSize(),
SincResampler::kMaxKernelSize);
}
// Smaller request, forcing a smaller kernel.
{
EXPECT_EQ(SincResampler::KernelSizeFromRequestFrames(kSmallKernelLimit),
SincResampler::kMinKernelSize);
SincResampler small_request_resampler(kTestIoRatio, kSmallKernelLimit,
base::DoNothing());
EXPECT_EQ(small_request_resampler.KernelSize(),
SincResampler::kMinKernelSize);
}
// Smallest valid request size.
{
constexpr int kSmallestRequestFrames =
SincResampler::kMinKernelSize * 3 / 2 + 1;
EXPECT_EQ(
SincResampler::KernelSizeFromRequestFrames(kSmallestRequestFrames),
SincResampler::kMinKernelSize);
SincResampler smallest_request_resampler(
kTestIoRatio, kSmallestRequestFrames, base::DoNothing());
EXPECT_EQ(smallest_request_resampler.KernelSize(),
SincResampler::kMinKernelSize);
}
}
} // namespace media