1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181

media / capabilities / learning_helper.cc [blame]

// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/capabilities/learning_helper.h"

#include "base/task/thread_pool.h"
#include "media/learning/common/feature_library.h"
#include "media/learning/common/learning_task.h"

namespace media {

using learning::FeatureLibrary;
using learning::FeatureProviderFactoryCB;
using learning::FeatureValue;
using learning::LabelledExample;
using learning::LearningSessionImpl;
using learning::LearningTask;
using learning::LearningTaskController;
using learning::ObservationCompletion;
using learning::SequenceBoundFeatureProvider;
using learning::TargetValue;

// Remember that these are used to construct UMA histogram names!  Be sure to
// update histograms.xml if you change them!

// Dropped frame ratio, default features, unweighted regression tree.
const char* const kDroppedFrameRatioBaseUnweightedTreeTaskName =
    "BaseUnweightedTree";

// Dropped frame ratio, default features, unweighted examples, lookup table.
const char* const kDroppedFrameRatioBaseUnweightedTableTaskName =
    "BaseUnweightedTable";

// Same as BaseUnweightedTree, but with 200 training examples max.
const char* const kDroppedFrameRatioBaseUnweightedTree200TaskName =
    "BaseUnweightedTree200";

// Dropped frame ratio, default+FeatureLibrary features, regression tree with
// unweighted examples and 200 training examples max.
const char* const kDroppedFrameRatioEnhancedUnweightedTree200TaskName =
    "EnhancedUnweightedTree200";

// Threshold for the dropped frame to total frame ratio, at which we'll decide
// that the playback was not smooth.
constexpr double kSmoothnessThreshold = 0.1;

LearningHelper::LearningHelper(FeatureProviderFactoryCB feature_factory) {
  // Create the LearningSession on a background task runner.  In the future,
  // it's likely that the session will live on the main thread, and handle
  // delegation of LearningTaskControllers to other threads.  However, for now,
  // do it here.
  learning_session_ = std::make_unique<LearningSessionImpl>(
      base::ThreadPool::CreateSequencedTaskRunner(
          {base::TaskPriority::BEST_EFFORT,
           base::TaskShutdownBehavior::SKIP_ON_SHUTDOWN}));

  // Register a few learning tasks.
  //
  // We only do this here since we own the session.  Normally, whatever creates
  // the session would register all the learning tasks.
  LearningTask dropped_frame_task(
      "no name", LearningTask::Model::kLookupTable,
      {
          {"codec_profile",
           ::media::learning::LearningTask::Ordering::kUnordered},
          {"width", ::media::learning::LearningTask::Ordering::kNumeric},
          {"height", ::media::learning::LearningTask::Ordering::kNumeric},
          {"frame_rate", ::media::learning::LearningTask::Ordering::kNumeric},
      },
      LearningTask::ValueDescription(
          {"dropped_ratio", LearningTask::Ordering::kNumeric}));

  // Report results hackily both in aggregate and by training data weight.
  dropped_frame_task.smoothness_threshold = kSmoothnessThreshold;
  dropped_frame_task.uma_hacky_aggregate_confusion_matrix = true;
  dropped_frame_task.uma_hacky_by_training_weight_confusion_matrix = true;

  // Buckets will have 10 examples each, or 20 for the 200-set tasks.
  const double data_set_size = 100;
  const double big_data_set_size = 200;

  // Unweighted table
  dropped_frame_task.name = kDroppedFrameRatioBaseUnweightedTableTaskName;
  dropped_frame_task.max_data_set_size = data_set_size;
  learning_session_->RegisterTask(dropped_frame_task,
                                  SequenceBoundFeatureProvider());
  base_unweighted_table_controller_ =
      learning_session_->GetController(dropped_frame_task.name);

  // Unweighted base tree.
  dropped_frame_task.name = kDroppedFrameRatioBaseUnweightedTreeTaskName;
  dropped_frame_task.model = LearningTask::Model::kExtraTrees;
  dropped_frame_task.max_data_set_size = data_set_size;
  learning_session_->RegisterTask(dropped_frame_task,
                                  SequenceBoundFeatureProvider());
  base_unweighted_tree_controller_ =
      learning_session_->GetController(dropped_frame_task.name);

  // Unweighted tree with a larger training set.
  dropped_frame_task.name = kDroppedFrameRatioBaseUnweightedTree200TaskName;
  dropped_frame_task.max_data_set_size = big_data_set_size;
  learning_session_->RegisterTask(dropped_frame_task,
                                  SequenceBoundFeatureProvider());
  base_unweighted_tree_200_controller_ =
      learning_session_->GetController(dropped_frame_task.name);

  // Add common features, if we have a factory.
  if (feature_factory) {
    dropped_frame_task.name =
        kDroppedFrameRatioEnhancedUnweightedTree200TaskName;
    dropped_frame_task.max_data_set_size = big_data_set_size;
    dropped_frame_task.feature_descriptions.push_back(
        {"origin", ::media::learning::LearningTask::Ordering::kUnordered});
    dropped_frame_task.feature_descriptions.push_back(
        FeatureLibrary::NetworkType());
    dropped_frame_task.feature_descriptions.push_back(
        FeatureLibrary::BatteryPower());
    learning_session_->RegisterTask(dropped_frame_task,
                                    feature_factory.Run(dropped_frame_task));
    enhanced_unweighted_tree_200_controller_ =
        learning_session_->GetController(dropped_frame_task.name);
  }
}

LearningHelper::~LearningHelper() = default;

void LearningHelper::AppendStats(
    const VideoDecodeStatsDB::VideoDescKey& video_key,
    learning::FeatureValue origin,
    const VideoDecodeStatsDB::DecodeStatsEntry& new_stats) {
  // If no frames were recorded, then do nothing.
  if (new_stats.frames_decoded == 0)
    return;

  // Sanity.
  if (new_stats.frames_dropped > new_stats.frames_decoded)
    return;

  // Add a training example for |new_stats|.
  LabelledExample example;

  // Extract features from |video_key|.
  example.features.push_back(FeatureValue(video_key.codec_profile));
  example.features.push_back(FeatureValue(video_key.size.width()));
  example.features.push_back(FeatureValue(video_key.size.height()));
  example.features.push_back(FeatureValue(video_key.frame_rate));

  // Record the ratio of dropped frames to non-dropped frames.  Weight this
  // example by the total number of frames, since we want to predict the
  // aggregate dropped frames ratio.  That lets us compare with the current
  // implementation directly.
  //
  // It's also not clear that we want to do this; we might want to weight each
  // playback equally and predict the dropped frame ratio.  For example, if
  // there is a dependence on video length, then it's unclear that weighting
  // the examples is the right thing to do.
  example.target_value = TargetValue(
      static_cast<double>(new_stats.frames_dropped) / new_stats.frames_decoded);
  example.weight = 1u;

  // Add this example to all tasks.
  AddExample(base_unweighted_table_controller_.get(), example);
  AddExample(base_unweighted_tree_controller_.get(), example);
  AddExample(base_unweighted_tree_200_controller_.get(), example);

  if (enhanced_unweighted_tree_200_controller_) {
    example.features.push_back(origin);
    AddExample(enhanced_unweighted_tree_200_controller_.get(), example);
  }
}

void LearningHelper::AddExample(LearningTaskController* controller,
                                const LabelledExample& example) {
  base::UnguessableToken id = base::UnguessableToken::Create();
  controller->BeginObservation(id, example.features);
  controller->CompleteObservation(
      id, ObservationCompletion(example.target_value, example.weight));
}

}  // namespace media