1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
media / capabilities / learning_helper.cc [blame]
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/capabilities/learning_helper.h"
#include "base/task/thread_pool.h"
#include "media/learning/common/feature_library.h"
#include "media/learning/common/learning_task.h"
namespace media {
using learning::FeatureLibrary;
using learning::FeatureProviderFactoryCB;
using learning::FeatureValue;
using learning::LabelledExample;
using learning::LearningSessionImpl;
using learning::LearningTask;
using learning::LearningTaskController;
using learning::ObservationCompletion;
using learning::SequenceBoundFeatureProvider;
using learning::TargetValue;
// Remember that these are used to construct UMA histogram names! Be sure to
// update histograms.xml if you change them!
// Dropped frame ratio, default features, unweighted regression tree.
const char* const kDroppedFrameRatioBaseUnweightedTreeTaskName =
"BaseUnweightedTree";
// Dropped frame ratio, default features, unweighted examples, lookup table.
const char* const kDroppedFrameRatioBaseUnweightedTableTaskName =
"BaseUnweightedTable";
// Same as BaseUnweightedTree, but with 200 training examples max.
const char* const kDroppedFrameRatioBaseUnweightedTree200TaskName =
"BaseUnweightedTree200";
// Dropped frame ratio, default+FeatureLibrary features, regression tree with
// unweighted examples and 200 training examples max.
const char* const kDroppedFrameRatioEnhancedUnweightedTree200TaskName =
"EnhancedUnweightedTree200";
// Threshold for the dropped frame to total frame ratio, at which we'll decide
// that the playback was not smooth.
constexpr double kSmoothnessThreshold = 0.1;
LearningHelper::LearningHelper(FeatureProviderFactoryCB feature_factory) {
// Create the LearningSession on a background task runner. In the future,
// it's likely that the session will live on the main thread, and handle
// delegation of LearningTaskControllers to other threads. However, for now,
// do it here.
learning_session_ = std::make_unique<LearningSessionImpl>(
base::ThreadPool::CreateSequencedTaskRunner(
{base::TaskPriority::BEST_EFFORT,
base::TaskShutdownBehavior::SKIP_ON_SHUTDOWN}));
// Register a few learning tasks.
//
// We only do this here since we own the session. Normally, whatever creates
// the session would register all the learning tasks.
LearningTask dropped_frame_task(
"no name", LearningTask::Model::kLookupTable,
{
{"codec_profile",
::media::learning::LearningTask::Ordering::kUnordered},
{"width", ::media::learning::LearningTask::Ordering::kNumeric},
{"height", ::media::learning::LearningTask::Ordering::kNumeric},
{"frame_rate", ::media::learning::LearningTask::Ordering::kNumeric},
},
LearningTask::ValueDescription(
{"dropped_ratio", LearningTask::Ordering::kNumeric}));
// Report results hackily both in aggregate and by training data weight.
dropped_frame_task.smoothness_threshold = kSmoothnessThreshold;
dropped_frame_task.uma_hacky_aggregate_confusion_matrix = true;
dropped_frame_task.uma_hacky_by_training_weight_confusion_matrix = true;
// Buckets will have 10 examples each, or 20 for the 200-set tasks.
const double data_set_size = 100;
const double big_data_set_size = 200;
// Unweighted table
dropped_frame_task.name = kDroppedFrameRatioBaseUnweightedTableTaskName;
dropped_frame_task.max_data_set_size = data_set_size;
learning_session_->RegisterTask(dropped_frame_task,
SequenceBoundFeatureProvider());
base_unweighted_table_controller_ =
learning_session_->GetController(dropped_frame_task.name);
// Unweighted base tree.
dropped_frame_task.name = kDroppedFrameRatioBaseUnweightedTreeTaskName;
dropped_frame_task.model = LearningTask::Model::kExtraTrees;
dropped_frame_task.max_data_set_size = data_set_size;
learning_session_->RegisterTask(dropped_frame_task,
SequenceBoundFeatureProvider());
base_unweighted_tree_controller_ =
learning_session_->GetController(dropped_frame_task.name);
// Unweighted tree with a larger training set.
dropped_frame_task.name = kDroppedFrameRatioBaseUnweightedTree200TaskName;
dropped_frame_task.max_data_set_size = big_data_set_size;
learning_session_->RegisterTask(dropped_frame_task,
SequenceBoundFeatureProvider());
base_unweighted_tree_200_controller_ =
learning_session_->GetController(dropped_frame_task.name);
// Add common features, if we have a factory.
if (feature_factory) {
dropped_frame_task.name =
kDroppedFrameRatioEnhancedUnweightedTree200TaskName;
dropped_frame_task.max_data_set_size = big_data_set_size;
dropped_frame_task.feature_descriptions.push_back(
{"origin", ::media::learning::LearningTask::Ordering::kUnordered});
dropped_frame_task.feature_descriptions.push_back(
FeatureLibrary::NetworkType());
dropped_frame_task.feature_descriptions.push_back(
FeatureLibrary::BatteryPower());
learning_session_->RegisterTask(dropped_frame_task,
feature_factory.Run(dropped_frame_task));
enhanced_unweighted_tree_200_controller_ =
learning_session_->GetController(dropped_frame_task.name);
}
}
LearningHelper::~LearningHelper() = default;
void LearningHelper::AppendStats(
const VideoDecodeStatsDB::VideoDescKey& video_key,
learning::FeatureValue origin,
const VideoDecodeStatsDB::DecodeStatsEntry& new_stats) {
// If no frames were recorded, then do nothing.
if (new_stats.frames_decoded == 0)
return;
// Sanity.
if (new_stats.frames_dropped > new_stats.frames_decoded)
return;
// Add a training example for |new_stats|.
LabelledExample example;
// Extract features from |video_key|.
example.features.push_back(FeatureValue(video_key.codec_profile));
example.features.push_back(FeatureValue(video_key.size.width()));
example.features.push_back(FeatureValue(video_key.size.height()));
example.features.push_back(FeatureValue(video_key.frame_rate));
// Record the ratio of dropped frames to non-dropped frames. Weight this
// example by the total number of frames, since we want to predict the
// aggregate dropped frames ratio. That lets us compare with the current
// implementation directly.
//
// It's also not clear that we want to do this; we might want to weight each
// playback equally and predict the dropped frame ratio. For example, if
// there is a dependence on video length, then it's unclear that weighting
// the examples is the right thing to do.
example.target_value = TargetValue(
static_cast<double>(new_stats.frames_dropped) / new_stats.frames_decoded);
example.weight = 1u;
// Add this example to all tasks.
AddExample(base_unweighted_table_controller_.get(), example);
AddExample(base_unweighted_tree_controller_.get(), example);
AddExample(base_unweighted_tree_200_controller_.get(), example);
if (enhanced_unweighted_tree_200_controller_) {
example.features.push_back(origin);
AddExample(enhanced_unweighted_tree_200_controller_.get(), example);
}
}
void LearningHelper::AddExample(LearningTaskController* controller,
const LabelledExample& example) {
base::UnguessableToken id = base::UnguessableToken::Create();
controller->BeginObservation(id, example.features);
controller->CompleteObservation(
id, ObservationCompletion(example.target_value, example.weight));
}
} // namespace media