1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
media / capabilities / video_decode_stats_db_impl_unittest.cc [blame]
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <map>
#include <memory>
#include "base/check.h"
#include "base/files/file_path.h"
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "base/functional/callback_helpers.h"
#include "base/memory/ptr_util.h"
#include "base/memory/raw_ptr.h"
#include "base/run_loop.h"
#include "base/strings/string_number_conversions.h"
#include "base/test/scoped_feature_list.h"
#include "base/test/simple_test_clock.h"
#include "base/test/task_environment.h"
#include "base/time/time.h"
#include "components/leveldb_proto/testing/fake_db.h"
#include "media/base/media_switches.h"
#include "media/base/test_data_util.h"
#include "media/base/video_codecs.h"
#include "media/capabilities/video_decode_stats.pb.h"
#include "media/capabilities/video_decode_stats_db_impl.h"
#include "testing/gmock/include/gmock/gmock.h"
#include "testing/gtest/include/gtest/gtest.h"
#include "ui/gfx/geometry/size.h"
using leveldb_proto::test::FakeDB;
using testing::_;
using testing::Eq;
using testing::Pointee;
namespace media {
class VideoDecodeStatsDBImplTest : public ::testing::Test {
public:
using VideoDescKey = VideoDecodeStatsDB::VideoDescKey;
using DecodeStatsEntry = VideoDecodeStatsDB::DecodeStatsEntry;
VideoDecodeStatsDBImplTest()
: kStatsKeyVp9(VideoDescKey::MakeBucketedKey(VP9PROFILE_PROFILE3,
gfx::Size(1024, 768),
60,
"com.widevine.alpha",
true)),
kStatsKeyAvc(VideoDescKey::MakeBucketedKey(H264PROFILE_MIN,
gfx::Size(1024, 768),
60,
"",
false)) {
bool parsed_time = base::Time::FromString(
VideoDecodeStatsDBImpl::kDefaultWriteTime, &kDefaultWriteTime);
DCHECK(parsed_time);
// Fake DB simply wraps a std::map with the LevelDB interface. We own the
// map and will delete it in TearDown().
fake_db_map_ = std::make_unique<FakeDB<DecodeStatsProto>::EntryMap>();
// |stats_db_| will own this pointer, but we hold a reference to control
// its behavior.
auto db = std::make_unique<FakeDB<DecodeStatsProto>>(fake_db_map_.get());
fake_db_ = db.get();
// Wrap the fake proto DB with our interface.
stats_db_ = base::WrapUnique(new VideoDecodeStatsDBImpl(std::move(db)));
}
VideoDecodeStatsDBImplTest(const VideoDecodeStatsDBImplTest&) = delete;
VideoDecodeStatsDBImplTest& operator=(const VideoDecodeStatsDBImplTest&) =
delete;
~VideoDecodeStatsDBImplTest() override {
// Tests should always complete any pending operations
VerifyNoPendingOps();
}
void VerifyOnePendingOp(std::string_view op_name) {
EXPECT_EQ(stats_db_->pending_operations_.get_pending_ops_for_test().size(),
1u);
PendingOperations::PendingOperation* pending_op =
stats_db_->pending_operations_.get_pending_ops_for_test()
.begin()
->second.get();
EXPECT_TRUE(pending_op->uma_str_.ends_with(op_name));
}
void VerifyNoPendingOps() {
EXPECT_TRUE(
stats_db_->pending_operations_.get_pending_ops_for_test().empty());
}
int GetMaxFramesPerBuffer() {
return VideoDecodeStatsDBImpl::GetMaxFramesPerBuffer();
}
int GetMaxDaysToKeepStats() {
return VideoDecodeStatsDBImpl::GetMaxDaysToKeepStats();
}
bool GetEnableUnweightedEntries() {
return VideoDecodeStatsDBImpl::GetEnableUnweightedEntries();
}
static base::FieldTrialParams GetFieldTrialParams() {
return VideoDecodeStatsDBImpl::GetFieldTrialParams();
}
void SetDBClock(base::Clock* clock) {
stats_db_->set_wall_clock_for_test(clock);
}
void InitializeDB() {
stats_db_->Initialize(base::BindOnce(
&VideoDecodeStatsDBImplTest::OnInitialize, base::Unretained(this)));
EXPECT_CALL(*this, OnInitialize(true));
fake_db_->InitStatusCallback(leveldb_proto::Enums::InitStatus::kOK);
testing::Mock::VerifyAndClearExpectations(this);
}
void AppendStats(const VideoDescKey& key, const DecodeStatsEntry& entry) {
EXPECT_CALL(*this, MockAppendDecodeStatsCb(true));
stats_db_->AppendDecodeStats(
key, entry,
base::BindOnce(&VideoDecodeStatsDBImplTest::MockAppendDecodeStatsCb,
base::Unretained(this)));
VerifyOnePendingOp("Read");
fake_db_->GetCallback(true);
VerifyOnePendingOp("Write");
fake_db_->UpdateCallback(true);
testing::Mock::VerifyAndClearExpectations(this);
}
void VerifyReadStats(const VideoDescKey& key,
const DecodeStatsEntry& expected) {
EXPECT_CALL(*this, MockGetDecodeStatsCb(true, Pointee(Eq(expected))));
stats_db_->GetDecodeStats(
key, base::BindOnce(&VideoDecodeStatsDBImplTest::GetDecodeStatsCb,
base::Unretained(this)));
VerifyOnePendingOp("Read");
fake_db_->GetCallback(true);
testing::Mock::VerifyAndClearExpectations(this);
}
void VerifyEmptyStats(const VideoDescKey& key) {
EXPECT_CALL(*this, MockGetDecodeStatsCb(true, nullptr));
stats_db_->GetDecodeStats(
key, base::BindOnce(&VideoDecodeStatsDBImplTest::GetDecodeStatsCb,
base::Unretained(this)));
VerifyOnePendingOp("Read");
fake_db_->GetCallback(true);
testing::Mock::VerifyAndClearExpectations(this);
}
// Unwraps move-only parameters to pass to the mock function.
void GetDecodeStatsCb(bool success, std::unique_ptr<DecodeStatsEntry> entry) {
MockGetDecodeStatsCb(success, entry.get());
}
void AppendToProtoDB(const VideoDescKey& key,
const DecodeStatsProto* const proto) {
base::RunLoop run_loop;
base::OnceCallback<void(bool)> update_done_cb = base::BindOnce(
[](base::RunLoop* run_loop, bool success) {
ASSERT_TRUE(success);
run_loop->Quit();
},
Unretained(&run_loop));
using DBType = leveldb_proto::ProtoDatabase<DecodeStatsProto>;
std::unique_ptr<DBType::KeyEntryVector> entries =
std::make_unique<DBType::KeyEntryVector>();
entries->emplace_back(key.Serialize(), *proto);
fake_db_->UpdateEntries(std::move(entries),
std::make_unique<leveldb_proto::KeyVector>(),
std::move(update_done_cb));
fake_db_->UpdateCallback(true);
run_loop.Run();
}
MOCK_METHOD1(OnInitialize, void(bool success));
MOCK_METHOD2(MockGetDecodeStatsCb,
void(bool success, DecodeStatsEntry* entry));
MOCK_METHOD1(MockAppendDecodeStatsCb, void(bool success));
MOCK_METHOD0(MockClearStatsCb, void());
protected:
base::test::TaskEnvironment task_environment_{
base::test::TaskEnvironment::TimeSource::MOCK_TIME};
const VideoDescKey kStatsKeyVp9;
const VideoDescKey kStatsKeyAvc;
// Const in practice, but not marked const for compatibility with
// base::Time::FromString.
base::Time kDefaultWriteTime;
// See documentation in constructor.
std::unique_ptr<FakeDB<DecodeStatsProto>::EntryMap> fake_db_map_;
std::unique_ptr<VideoDecodeStatsDBImpl> stats_db_;
raw_ptr<FakeDB<DecodeStatsProto>> fake_db_;
};
TEST_F(VideoDecodeStatsDBImplTest, InitializeFailed) {
stats_db_->Initialize(base::BindOnce(
&VideoDecodeStatsDBImplTest::OnInitialize, base::Unretained(this)));
EXPECT_CALL(*this, OnInitialize(false));
fake_db_.ExtractAsDangling()->InitStatusCallback(
leveldb_proto::Enums::InitStatus::kError);
}
TEST_F(VideoDecodeStatsDBImplTest, InitializeTimedOut) {
// Queue up an Initialize.
stats_db_->Initialize(base::BindOnce(
&VideoDecodeStatsDBImplTest::OnInitialize, base::Unretained(this)));
VerifyOnePendingOp("Initialize");
// Move time forward enough to trigger timeout.
EXPECT_CALL(*this, OnInitialize(_)).Times(0);
task_environment_.FastForwardBy(base::Seconds(100));
task_environment_.RunUntilIdle();
// Verify we didn't get an init callback and task is no longer considered
// pending (because it timed out).
testing::Mock::VerifyAndClearExpectations(this);
VerifyNoPendingOps();
// Verify callback still works if init completes very late.
EXPECT_CALL(*this, OnInitialize(false));
fake_db_.ExtractAsDangling()->InitStatusCallback(
leveldb_proto::Enums::InitStatus::kError);
}
TEST_F(VideoDecodeStatsDBImplTest, ReadExpectingNothing) {
InitializeDB();
VerifyEmptyStats(kStatsKeyVp9);
}
TEST_F(VideoDecodeStatsDBImplTest, WriteReadAndClear) {
InitializeDB();
// Append and read back some VP9 stats.
DecodeStatsEntry entry(1000, 2, 10);
AppendStats(kStatsKeyVp9, entry);
VerifyReadStats(kStatsKeyVp9, entry);
// Reading with the wrong key (different codec) should still return nothing.
VerifyEmptyStats(kStatsKeyAvc);
// Appending same VP9 stats should read back as 2x the initial entry.
AppendStats(kStatsKeyVp9, entry);
DecodeStatsEntry aggregate_entry(2000, 4, 20);
VerifyReadStats(kStatsKeyVp9, aggregate_entry);
// Clear all stats from the DB.
EXPECT_CALL(*this, MockClearStatsCb);
stats_db_->ClearStats(base::BindOnce(
&VideoDecodeStatsDBImplTest::MockClearStatsCb, base::Unretained(this)));
VerifyOnePendingOp("Clear");
fake_db_->UpdateCallback(true);
// Database is now empty. Expect null entry.
VerifyEmptyStats(kStatsKeyVp9);
}
TEST_F(VideoDecodeStatsDBImplTest, ConfigureMaxFramesPerBuffer) {
// Setup field trial to use a tiny window of 1 decoded frame.
base::test::ScopedFeatureList scoped_feature_list;
std::unique_ptr<base::FieldTrialList> field_trial_list;
int previous_max_frames_per_buffer = GetMaxFramesPerBuffer();
int new_max_frames_per_buffer = 1;
ASSERT_LT(new_max_frames_per_buffer, previous_max_frames_per_buffer);
// Override field trial.
base::FieldTrialParams params;
params[VideoDecodeStatsDBImpl::kMaxFramesPerBufferParamName] =
base::NumberToString(new_max_frames_per_buffer);
scoped_feature_list.InitAndEnableFeatureWithParameters(
media::kMediaCapabilitiesWithParameters, params);
EXPECT_EQ(GetFieldTrialParams(), params);
EXPECT_EQ(new_max_frames_per_buffer, GetMaxFramesPerBuffer());
// Now verify the configured window is used by writing a frame and then
// writing another.
InitializeDB();
// Append single frame which was, sadly, dropped and not efficient.
DecodeStatsEntry entry(1, 1, 0);
AppendStats(kStatsKeyVp9, entry);
VerifyReadStats(kStatsKeyVp9, entry);
// Appending another frame which is *not* dropped and *is* efficient.
// Verify that only this last entry is still in the buffer (no aggregation).
DecodeStatsEntry second_entry(1, 0, 1);
AppendStats(kStatsKeyVp9, second_entry);
VerifyReadStats(kStatsKeyVp9, second_entry);
}
namespace {
class DBClockScope {
public:
DBClockScope(VideoDecodeStatsDBImplTest* test_class, base::Clock* clock)
: test_class_(test_class) {
test_class_->SetDBClock(clock);
}
~DBClockScope() { test_class_->SetDBClock(nullptr); }
private:
const raw_ptr<VideoDecodeStatsDBImplTest> test_class_;
};
} // namespace
TEST_F(VideoDecodeStatsDBImplTest, ConfigureExpireDays) {
base::test::ScopedFeatureList scoped_feature_list;
std::unique_ptr<base::FieldTrialList> field_trial_list;
int previous_max_days_to_keep_stats = GetMaxDaysToKeepStats();
int new_max_days_to_keep_stats = 4;
ASSERT_LT(new_max_days_to_keep_stats, previous_max_days_to_keep_stats);
// Override field trial.
base::FieldTrialParams params;
params[VideoDecodeStatsDBImpl::kMaxDaysToKeepStatsParamName] =
base::NumberToString(new_max_days_to_keep_stats);
scoped_feature_list.InitAndEnableFeatureWithParameters(
media::kMediaCapabilitiesWithParameters, params);
EXPECT_EQ(GetFieldTrialParams(), params);
EXPECT_EQ(new_max_days_to_keep_stats, GetMaxDaysToKeepStats());
InitializeDB();
// Inject a test clock and initialize with the current time.
base::SimpleTestClock clock;
DBClockScope clock_scope(this, &clock);
clock.SetNow(base::Time::Now());
// Append and verify read-back.
AppendStats(kStatsKeyVp9, DecodeStatsEntry(200, 20, 2));
VerifyReadStats(kStatsKeyVp9, DecodeStatsEntry(200, 20, 2));
// Some simple math to avoid troubles of integer division.
int half_days_to_keep_stats = new_max_days_to_keep_stats / 2;
int remaining_days_to_keep_stats =
new_max_days_to_keep_stats - half_days_to_keep_stats;
// Advance time half way through grace period. Verify stats not expired.
clock.Advance(base::Days(half_days_to_keep_stats));
VerifyReadStats(kStatsKeyVp9, DecodeStatsEntry(200, 20, 2));
// Advance time 1 day beyond grace period, verify stats are expired.
clock.Advance(base::Days((remaining_days_to_keep_stats) + 1));
VerifyEmptyStats(kStatsKeyVp9);
// Advance the clock 100 extra days. Verify stats still expired.
clock.Advance(base::Days(100));
VerifyEmptyStats(kStatsKeyVp9);
}
TEST_F(VideoDecodeStatsDBImplTest, FailedWrite) {
InitializeDB();
// Expect the callback to indicate success = false when the write fails.
EXPECT_CALL(*this, MockAppendDecodeStatsCb(false));
// Append stats, but fail the internal DB update.
stats_db_->AppendDecodeStats(
kStatsKeyVp9, DecodeStatsEntry(1000, 2, 10),
base::BindOnce(&VideoDecodeStatsDBImplTest::MockAppendDecodeStatsCb,
base::Unretained(this)));
fake_db_->GetCallback(true);
fake_db_->UpdateCallback(false);
}
TEST_F(VideoDecodeStatsDBImplTest, FillBufferInMixedIncrements) {
InitializeDB();
// Setup DB entry that half fills the buffer with 10% of frames dropped and
// 50% of frames power efficient.
const int kNumFramesEntryA = GetMaxFramesPerBuffer() / 2;
DecodeStatsEntry entryA(kNumFramesEntryA, std::round(0.1 * kNumFramesEntryA),
std::round(0.5 * kNumFramesEntryA));
const double kDropRateA =
static_cast<double>(entryA.frames_dropped) / entryA.frames_decoded;
const double kEfficientRateA =
static_cast<double>(entryA.frames_power_efficient) /
entryA.frames_decoded;
// Append entryA to half fill the buffer and verify read. Verify read.
AppendStats(kStatsKeyVp9, entryA);
VerifyReadStats(kStatsKeyVp9, entryA);
// Append same entryA again to completely fill the buffer. Verify read gives
// out aggregated stats (2x the initial entryA)
AppendStats(kStatsKeyVp9, entryA);
VerifyReadStats(
kStatsKeyVp9,
DecodeStatsEntry(GetMaxFramesPerBuffer(),
std::round(kDropRateA * GetMaxFramesPerBuffer()),
std::round(kEfficientRateA * GetMaxFramesPerBuffer())));
// This row in the DB is now "full" (appended frames >= kMaxFramesPerBuffer)!
//
// Future appends will not increase the total count of decoded frames. The
// ratios of dropped and power efficient frames will be a weighted average.
// The weight of new appends is determined by how much of the buffer they
// fill, i.e.
//
// new_append_weight = min(1, new_append_frame_count / kMaxFramesPerBuffer);
// old_data_weight = 1 - new_append_weight;
//
// The calculation for dropped ratios (same for power efficient) then becomes:
//
// aggregate_drop_ratio = old_drop_ratio * old_drop_weight +
// new_drop_ratio * new_data_weight;
//
// See implementation for more details.
// Append same entryA a 3rd time. Verify we still only get the aggregated
// stats from above (2x entryA) because the buffer is full and the ratio of
// dropped and efficient frames is the same.
AppendStats(kStatsKeyVp9, entryA);
VerifyReadStats(
kStatsKeyVp9,
DecodeStatsEntry(GetMaxFramesPerBuffer(),
std::round(kDropRateA * GetMaxFramesPerBuffer()),
std::round(kEfficientRateA * GetMaxFramesPerBuffer())));
// Append entryB that will fill just 10% of the buffer. The new entry has
// different rates of dropped and power efficient frames to help verify that
// it is given proper weight as it mixes with existing data in the buffer.
const int kNumFramesEntryB = std::round(.1 * GetMaxFramesPerBuffer());
DecodeStatsEntry entryB(kNumFramesEntryB, std::round(0.25 * kNumFramesEntryB),
std::round(1 * kNumFramesEntryB));
const double kDropRateB =
static_cast<double>(entryB.frames_dropped) / entryB.frames_decoded;
const double kEfficientRateB =
static_cast<double>(entryB.frames_power_efficient) /
entryB.frames_decoded;
AppendStats(kStatsKeyVp9, entryB);
// Verify that buffer is still full, but dropped and power efficient frame
// rates are now higher according to entryB's impact (10%) on the full buffer.
double mixed_drop_rate = .1 * kDropRateB + .9 * kDropRateA;
double mixed_effiency_rate = .1 * kEfficientRateB + .9 * kEfficientRateA;
VerifyReadStats(
kStatsKeyVp9,
DecodeStatsEntry(
GetMaxFramesPerBuffer(),
std::round(GetMaxFramesPerBuffer() * mixed_drop_rate),
std::round(GetMaxFramesPerBuffer() * mixed_effiency_rate)));
// After appending entryB again, verify aggregate ratios behave according to
// the formula above (appending repeated entryB brings ratios closer to those
// in entryB, further from entryA).
AppendStats(kStatsKeyVp9, entryB);
mixed_drop_rate = .1 * kDropRateB + .9 * mixed_drop_rate;
mixed_effiency_rate = .1 * kEfficientRateB + .9 * mixed_effiency_rate;
VerifyReadStats(
kStatsKeyVp9,
DecodeStatsEntry(
GetMaxFramesPerBuffer(),
std::round(GetMaxFramesPerBuffer() * mixed_drop_rate),
std::round(GetMaxFramesPerBuffer() * mixed_effiency_rate)));
// Appending entry*A* again, verify aggregate ratios behave according to
// the formula above (ratio's move back in direction of those in entryA).
// Since entryA fills half the buffer it gets a higher weight than entryB did
// above.
AppendStats(kStatsKeyVp9, entryA);
mixed_drop_rate = .5 * kDropRateA + .5 * mixed_drop_rate;
mixed_effiency_rate = .5 * kEfficientRateA + .5 * mixed_effiency_rate;
VerifyReadStats(
kStatsKeyVp9,
DecodeStatsEntry(
GetMaxFramesPerBuffer(),
std::round(GetMaxFramesPerBuffer() * mixed_drop_rate),
std::round(GetMaxFramesPerBuffer() * mixed_effiency_rate)));
// Now append entryC with a frame count of 2x the buffer max. Verify entryC
// gets 100% of the weight, erasing the mixed stats from earlier appends.
const int kNumFramesEntryC = 2 * GetMaxFramesPerBuffer();
DecodeStatsEntry entryC(kNumFramesEntryC, std::round(0.3 * kNumFramesEntryC),
std::round(0.25 * kNumFramesEntryC));
const double kDropRateC =
static_cast<double>(entryC.frames_dropped) / entryC.frames_decoded;
const double kEfficientRateC =
static_cast<double>(entryC.frames_power_efficient) /
entryC.frames_decoded;
AppendStats(kStatsKeyVp9, entryC);
VerifyReadStats(
kStatsKeyVp9,
DecodeStatsEntry(GetMaxFramesPerBuffer(),
std::round(GetMaxFramesPerBuffer() * kDropRateC),
std::round(GetMaxFramesPerBuffer() * kEfficientRateC)));
}
// Overfilling an empty buffer triggers the codepath to compute weighted dropped
// and power efficient ratios under a circumstance where the existing counts are
// all zero. This test ensures that we don't do any dividing by zero with that
// empty data.
TEST_F(VideoDecodeStatsDBImplTest, OverfillEmptyBuffer) {
InitializeDB();
// Setup DB entry that overflows the buffer max (by 1) with 10% of frames
// dropped and 50% of frames power efficient.
const int kNumFramesOverfill = GetMaxFramesPerBuffer() + 1;
DecodeStatsEntry entryA(kNumFramesOverfill,
std::round(0.1 * kNumFramesOverfill),
std::round(0.5 * kNumFramesOverfill));
// Append entry to completely fill the buffer and verify read.
AppendStats(kStatsKeyVp9, entryA);
// Read-back stats should have same ratios, but scaled such that
// frames_decoded = GetMaxFramesPerBuffer().
DecodeStatsEntry readBackEntryA(GetMaxFramesPerBuffer(),
std::round(0.1 * GetMaxFramesPerBuffer()),
std::round(0.5 * GetMaxFramesPerBuffer()));
VerifyReadStats(kStatsKeyVp9, readBackEntryA);
// Append another entry that again overfills with different dropped and power
// efficient ratios. Verify that read-back only reflects latest entry.
DecodeStatsEntry entryB(kNumFramesOverfill,
std::round(0.2 * kNumFramesOverfill),
std::round(0.6 * kNumFramesOverfill));
AppendStats(kStatsKeyVp9, entryB);
// Read-back stats should have same ratios, but scaled such that
// frames_decoded = GetMaxFramesPerBuffer().
DecodeStatsEntry readBackEntryB(GetMaxFramesPerBuffer(),
std::round(0.2 * GetMaxFramesPerBuffer()),
std::round(0.6 * GetMaxFramesPerBuffer()));
VerifyReadStats(kStatsKeyVp9, readBackEntryB);
}
TEST_F(VideoDecodeStatsDBImplTest, NoWriteDateReadAndExpire) {
InitializeDB();
// Seed the fake proto DB with an old-style entry lacking a write date. This
// will cause the DB to use kDefaultWriteTime.
DecodeStatsProto proto_lacking_date;
proto_lacking_date.set_frames_decoded(100);
proto_lacking_date.set_frames_dropped(10);
proto_lacking_date.set_frames_power_efficient(1);
fake_db_map_->emplace(kStatsKeyVp9.Serialize(), proto_lacking_date);
// Set "now" to be *before* the default write date. This will be the common
// case when the proto update (adding last_write_date) first ships (i.e. we
// don't want to immediately expire all the existing data).
base::SimpleTestClock clock;
DBClockScope clock_scope(this, &clock);
clock.SetNow(kDefaultWriteTime - base::Days(10));
// Verify the stats are readable (not expired).
VerifyReadStats(kStatsKeyVp9, DecodeStatsEntry(100, 10, 1));
// Set "now" to be in the middle of the grace period. Verify stats are still
// readable (not expired).
clock.SetNow(kDefaultWriteTime + base::Days(GetMaxDaysToKeepStats() / 2));
VerifyReadStats(kStatsKeyVp9, DecodeStatsEntry(100, 10, 1));
// Set the clock 1 day beyond the expiry date. Verify stats are no longer
// readable due to expiration.
clock.SetNow(kDefaultWriteTime + base::Days(GetMaxDaysToKeepStats() + 1));
VerifyEmptyStats(kStatsKeyVp9);
// Write some stats to the entry. Verify we get back exactly what's written
// without summing with the expired stats.
AppendStats(kStatsKeyVp9, DecodeStatsEntry(50, 5, 0));
VerifyReadStats(kStatsKeyVp9, DecodeStatsEntry(50, 5, 0));
}
TEST_F(VideoDecodeStatsDBImplTest, NoWriteDateAppendReadAndExpire) {
InitializeDB();
// Seed the fake proto DB with an old-style entry lacking a write date. This
// will cause the DB to use kDefaultWriteTime.
DecodeStatsProto proto_lacking_date;
proto_lacking_date.set_frames_decoded(100);
proto_lacking_date.set_frames_dropped(10);
proto_lacking_date.set_frames_power_efficient(1);
fake_db_map_->emplace(kStatsKeyVp9.Serialize(), proto_lacking_date);
// Set "now" to be *before* the default write date. This will be the common
// case when the proto update (adding last_write_date) first ships (i.e. we
// don't want to immediately expire all the existing data).
base::SimpleTestClock clock;
DBClockScope clock_scope(this, &clock);
clock.SetNow(kDefaultWriteTime - base::Days(10));
// Verify the stats are readable (not expired).
VerifyReadStats(kStatsKeyVp9, DecodeStatsEntry(100, 10, 1));
// Append some stats and verify the aggregate math is correct. This will
// update the last_write_date to the current clock time.
AppendStats(kStatsKeyVp9, DecodeStatsEntry(200, 20, 2));
VerifyReadStats(kStatsKeyVp9, DecodeStatsEntry(300, 30, 3));
// Set "now" to be in the middle of the grace period. Verify stats are still
// readable (not expired).
clock.SetNow(kDefaultWriteTime + base::Days(GetMaxDaysToKeepStats() / 2));
VerifyReadStats(kStatsKeyVp9, DecodeStatsEntry(300, 30, 3));
// Set the clock 1 day beyond the expiry date. Verify stats are no longer
// readable due to expiration.
clock.SetNow(kDefaultWriteTime + base::Days(GetMaxDaysToKeepStats() + 1));
VerifyEmptyStats(kStatsKeyVp9);
}
TEST_F(VideoDecodeStatsDBImplTest, AppendAndExpire) {
InitializeDB();
// Inject a test clock and initialize with the current time.
base::SimpleTestClock clock;
DBClockScope clock_scope(this, &clock);
clock.SetNow(base::Time::Now());
// Append and verify read-back.
AppendStats(kStatsKeyVp9, DecodeStatsEntry(200, 20, 2));
VerifyReadStats(kStatsKeyVp9, DecodeStatsEntry(200, 20, 2));
// Advance time half way through grace period. Verify stats not expired.
clock.Advance(base::Days(GetMaxDaysToKeepStats() / 2));
VerifyReadStats(kStatsKeyVp9, DecodeStatsEntry(200, 20, 2));
// Advance time 1 day beyond grace period, verify stats are expired.
clock.Advance(base::Days((GetMaxDaysToKeepStats() / 2) + 1));
VerifyEmptyStats(kStatsKeyVp9);
// Advance the clock 100 days. Verify stats still expired.
clock.Advance(base::Days(100));
VerifyEmptyStats(kStatsKeyVp9);
}
TEST_F(VideoDecodeStatsDBImplTest, EnableUnweightedEntries) {
base::test::ScopedFeatureList scoped_feature_list;
std::unique_ptr<base::FieldTrialList> field_trial_list;
// Default is false.
EXPECT_FALSE(GetEnableUnweightedEntries());
// Override field trial.
base::FieldTrialParams params;
params[VideoDecodeStatsDBImpl::kEnableUnweightedEntriesParamName] = "true";
scoped_feature_list.InitAndEnableFeatureWithParameters(
media::kMediaCapabilitiesWithParameters, params);
EXPECT_EQ(GetFieldTrialParams(), params);
// Confirm field trial overridden.
EXPECT_TRUE(GetMaxDaysToKeepStats());
InitializeDB();
// Append 200 frames with 10% dropped, 1% efficient.
AppendStats(kStatsKeyVp9, DecodeStatsEntry(200, 0.10 * 200, 0.01 * 200));
// Use real doubles to keep track of these things to make sure the precision
// math for repeating decimals works out with what's done internally.
int num_appends = 1;
double unweighted_smoothness_avg = 0.10;
double unweighted_efficiency_avg = 0.01;
// NOTE, the members of DecodeStatsEntry have a different meaning when using
// unweighted DB entries. The denominator is 100,000 * the number of appends
// and the numerator is whatever value achieves the correct unweighted ratio
// for those appends. See detailed comment in
// VideoDecodeStatsDBImpl::OnGotDecodeStats();
const int kNumAppendScale = 100000;
int expected_denominator = kNumAppendScale * num_appends;
VerifyReadStats(
kStatsKeyVp9,
DecodeStatsEntry(expected_denominator,
unweighted_smoothness_avg * expected_denominator,
unweighted_efficiency_avg * expected_denominator));
// Append 20K frames with 5% dropped and 10% efficient.
AppendStats(kStatsKeyVp9,
DecodeStatsEntry(20000, 0.05 * 20000, 0.10 * 20000));
num_appends++;
unweighted_smoothness_avg = (0.10 + 0.05) / num_appends;
unweighted_efficiency_avg = (0.01 + 0.10) / num_appends;
// While new record had 100x more frames than the previous append, the ratios
// should be an unweighted average of the two records (7.5% dropped and
// 5.5% efficient).
expected_denominator = kNumAppendScale * num_appends;
VerifyReadStats(
kStatsKeyVp9,
DecodeStatsEntry(expected_denominator,
unweighted_smoothness_avg * expected_denominator,
unweighted_efficiency_avg * expected_denominator));
// Append 1M frames with 3.4567% dropped and 3.4567% efficient.
AppendStats(kStatsKeyVp9, DecodeStatsEntry(1000000, 0.012345 * 1000000,
0.034567 * 1000000));
num_appends++;
unweighted_smoothness_avg = (0.10 + 0.05 + 0.012345) / num_appends;
unweighted_efficiency_avg = (0.01 + 0.10 + 0.034567) / num_appends;
// Here, the ratios should still be averaged in the unweighted fashion, but
// truncated after the 3rd decimal place of the percentage (e.g. 1.234%
// or the 5th decimal place when represented as a fraction of 1 (0.01234)).
expected_denominator = kNumAppendScale * num_appends;
VerifyReadStats(
kStatsKeyVp9,
DecodeStatsEntry(expected_denominator,
unweighted_smoothness_avg * expected_denominator,
unweighted_efficiency_avg * expected_denominator));
}
TEST_F(VideoDecodeStatsDBImplTest, DiscardCorruptedDBData) {
InitializeDB();
// Inject a test clock and initialize with the current time.
base::SimpleTestClock clock;
DBClockScope clock_scope(this, &clock);
clock.SetNow(base::Time::Now());
// Construct several distinct key values for storing/retrieving the corrupted
// data. The details of the keys are not important.
const auto keyA = VideoDescKey::MakeBucketedKey(
VP9PROFILE_PROFILE0, gfx::Size(1024, 768), 60, "", false);
const auto keyB = VideoDescKey::MakeBucketedKey(
VP9PROFILE_PROFILE1, gfx::Size(1024, 768), 60, "", false);
const auto keyC = VideoDescKey::MakeBucketedKey(
VP9PROFILE_PROFILE2, gfx::Size(1024, 768), 60, "", false);
const auto keyD = VideoDescKey::MakeBucketedKey(
VP9PROFILE_PROFILE3, gfx::Size(1024, 768), 60, "", false);
const auto keyE = VideoDescKey::MakeBucketedKey(
H264PROFILE_BASELINE, gfx::Size(1024, 768), 60, "", false);
const auto keyF = VideoDescKey::MakeBucketedKey(
H264PROFILE_MAIN, gfx::Size(1024, 768), 60, "", false);
const auto keyG = VideoDescKey::MakeBucketedKey(
H264PROFILE_EXTENDED, gfx::Size(1024, 768), 60, "", false);
// Start with a proto that represents a valid uncorrupted and unexpired entry.
DecodeStatsProto protoA;
protoA.set_frames_decoded(100);
protoA.set_frames_dropped(15);
protoA.set_frames_power_efficient(50);
protoA.set_last_write_date(clock.Now().InMillisecondsFSinceUnixEpoch());
protoA.set_unweighted_average_frames_dropped(15.0 / 100);
protoA.set_unweighted_average_frames_efficient(50.0 / 100);
protoA.set_num_unweighted_playbacks(1);
// Append it and read it back without issue.
AppendToProtoDB(keyA, &protoA);
VerifyReadStats(keyA, DecodeStatsEntry(100, 15, 50));
// Make the valid proto invalid with more dropped frames than decoded. Verify
// you can't read it back (filtered for corruption).
DecodeStatsProto protoB(protoA);
protoB.set_frames_dropped(150);
AppendToProtoDB(keyB, &protoB);
VerifyEmptyStats(keyB);
// Make an invalid proto with more power efficient frames than decoded. Verify
// you can't read it back (filtered for corruption).
DecodeStatsProto protoC(protoA);
protoC.set_frames_power_efficient(150);
AppendToProtoDB(keyC, &protoC);
VerifyEmptyStats(keyC);
// Make an invalid proto with an unweighted average dropped ratio > 1.
DecodeStatsProto protoD(protoA);
protoD.set_unweighted_average_frames_dropped(2.0);
AppendToProtoDB(keyD, &protoD);
VerifyEmptyStats(keyD);
// Make an invalid proto with an unweighted average efficient ratio > 1.
DecodeStatsProto protoE(protoA);
protoE.set_unweighted_average_frames_efficient(2.0);
AppendToProtoDB(keyE, &protoE);
VerifyEmptyStats(keyE);
// Make an invalid proto with a negative last write date.
DecodeStatsProto protoF(protoA);
protoF.set_last_write_date(-1.0);
AppendToProtoDB(keyF, &protoF);
VerifyEmptyStats(keyF);
// Make an invalid proto with a last write date in the future.
DecodeStatsProto protoG(protoA);
protoG.set_last_write_date(
(clock.Now() + base::Days(1)).InMillisecondsFSinceUnixEpoch());
AppendToProtoDB(keyG, &protoG);
VerifyEmptyStats(keyG);
}
} // namespace media