1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293

media / capture / content / animated_content_sampler.cc [blame]

// Copyright 2015 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "media/capture/content/animated_content_sampler.h"

#include <stddef.h>
#include <stdint.h>

#include <algorithm>

#include "base/containers/adapters.h"

namespace media {

namespace {

// These specify the minimum/maximum amount of recent event history to examine
// to detect animated content.  If the values are too low, there is a greater
// risk of false-positive detections and low accuracy.  If they are too high,
// the the implementation will be slow to lock-in/out, and also will not react
// well to mildly-variable frame rate content (e.g., 25 +/- 1 FPS).
//
// These values were established by experimenting with a wide variety of
// scenarios, including 24/25/30 FPS videos, 60 FPS WebGL demos, and the
// transitions between static and animated content.
constexpr auto kMinObservationWindow = base::Seconds(1);
constexpr auto kMaxObservationWindow = base::Seconds(2);

// The maximum amount of time that can elapse before declaring two subsequent
// events as "not animating."  This is the same value found in
// cc::FrameRateCounter.
constexpr auto kNonAnimatingThreshold = base::Seconds(1) / 4;

// The slowest that content can be animating in order for AnimatedContentSampler
// to lock-in.  This is the threshold at which the "smoothness" problem is no
// longer relevant.
constexpr auto kMaxLockInPeriod = base::Seconds(1) / 12;

// The amount of time over which to fully correct the drift of the rewritten
// frame timestamps from the presentation event timestamps.  The lower the
// value, the higher the variance in frame timestamps.
constexpr auto kDriftCorrection = base::Seconds(2);

}  // anonymous namespace

AnimatedContentSampler::AnimatedContentSampler(
    base::TimeDelta min_capture_period)
    : min_capture_period_(min_capture_period), sampling_state_(NOT_SAMPLING) {
  DCHECK_GT(min_capture_period_, base::TimeDelta());
}

AnimatedContentSampler::~AnimatedContentSampler() = default;

void AnimatedContentSampler::SetMinCapturePeriod(base::TimeDelta period) {
  DCHECK_GT(period, base::TimeDelta());
  min_capture_period_ = period;
}

void AnimatedContentSampler::SetTargetSamplingPeriod(base::TimeDelta period) {
  target_sampling_period_ = period;
}

void AnimatedContentSampler::ConsiderPresentationEvent(
    const gfx::Rect& damage_rect,
    base::TimeTicks event_time) {
  // Analyze the current event and recent history to determine whether animating
  // content is detected.
  AddObservation(damage_rect, event_time);
  if (!AnalyzeObservations(event_time, &detected_region_, &detected_period_) ||
      detected_period_ <= base::TimeDelta() ||
      detected_period_ > kMaxLockInPeriod) {
    // Animated content not detected.
    detected_region_ = gfx::Rect();
    detected_period_ = base::TimeDelta();
    sampling_state_ = NOT_SAMPLING;
    return;
  }

  // At this point, animation is being detected.  Update the sampling period
  // since the client may call the accessor method even if the heuristics below
  // decide not to sample the current event.
  sampling_period_ = ComputeSamplingPeriod(
      detected_period_, target_sampling_period_, min_capture_period_);

  // If this is the first event causing animating content to be detected,
  // transition to the START_SAMPLING state.
  if (sampling_state_ == NOT_SAMPLING)
    sampling_state_ = START_SAMPLING;

  // If the current event does not represent a frame that is part of the
  // animation, do not sample.
  if (damage_rect != detected_region_) {
    if (sampling_state_ == SHOULD_SAMPLE)
      sampling_state_ = SHOULD_NOT_SAMPLE;
    return;
  }

  // When starting sampling, determine where to sync-up for sampling and frame
  // timestamp rewriting.  Otherwise, just add one animation period's worth of
  // tokens to the token bucket.
  if (sampling_state_ == START_SAMPLING) {
    if (event_time - frame_timestamp_ > sampling_period_) {
      // The frame timestamp sequence should start with the current event
      // time.
      frame_timestamp_ = event_time - sampling_period_;
      token_bucket_ = sampling_period_;
    } else {
      // The frame timestamp sequence will continue from the last recorded
      // frame timestamp.
      token_bucket_ = event_time - frame_timestamp_;
    }

    // Provide a little extra in the initial token bucket so that minor error in
    // the detected period won't prevent a reasonably-timed event from being
    // sampled.
    token_bucket_ += detected_period_ / 2;
  } else {
    token_bucket_ += detected_period_;
  }

  // If the token bucket is full enough, take tokens from it and propose
  // sampling.  Otherwise, do not sample.
  DCHECK_LE(detected_period_, sampling_period_);
  if (token_bucket_ >= sampling_period_) {
    token_bucket_ -= sampling_period_;
    frame_timestamp_ = ComputeNextFrameTimestamp(event_time);
    sampling_state_ = SHOULD_SAMPLE;
  } else {
    sampling_state_ = SHOULD_NOT_SAMPLE;
  }
}

bool AnimatedContentSampler::HasProposal() const {
  return sampling_state_ != NOT_SAMPLING;
}

bool AnimatedContentSampler::ShouldSample() const {
  return sampling_state_ == SHOULD_SAMPLE;
}

void AnimatedContentSampler::RecordSample(base::TimeTicks frame_timestamp) {
  if (sampling_state_ == NOT_SAMPLING)
    frame_timestamp_ = frame_timestamp;
  else if (sampling_state_ == SHOULD_SAMPLE)
    sampling_state_ = SHOULD_NOT_SAMPLE;
}

void AnimatedContentSampler::AddObservation(const gfx::Rect& damage_rect,
                                            base::TimeTicks event_time) {
  if (damage_rect.IsEmpty())
    return;  // Useless observation.

  // Add the observation to the FIFO queue.
  if (!observations_.empty() && observations_.back().event_time > event_time)
    return;  // The implementation assumes chronological order.
  observations_.push_back(Observation(damage_rect, event_time));

  // Prune-out old observations.
  while ((event_time - observations_.front().event_time) >
         kMaxObservationWindow)
    observations_.pop_front();
}

gfx::Rect AnimatedContentSampler::ElectMajorityDamageRect() const {
  // This is an derivative of the Boyer-Moore Majority Vote Algorithm where each
  // pixel in a candidate gets one vote, as opposed to each candidate getting
  // one vote.
  const gfx::Rect* candidate = NULL;
  int64_t votes = 0;
  for (ObservationFifo::const_iterator i = observations_.begin();
       i != observations_.end(); ++i) {
    DCHECK_GT(i->damage_rect.size().GetArea(), 0);
    if (votes == 0) {
      candidate = &(i->damage_rect);
      votes = candidate->size().GetArea();
    } else if (i->damage_rect == *candidate) {
      votes += i->damage_rect.size().GetArea();
    } else {
      votes -= i->damage_rect.size().GetArea();
      if (votes < 0) {
        candidate = &(i->damage_rect);
        votes = -votes;
      }
    }
  }
  return (votes > 0) ? *candidate : gfx::Rect();
}

bool AnimatedContentSampler::AnalyzeObservations(
    base::TimeTicks event_time,
    gfx::Rect* rect,
    base::TimeDelta* period) const {
  const gfx::Rect elected_rect = ElectMajorityDamageRect();
  if (elected_rect.IsEmpty())
    return false;  // There is no regular animation present.

  // Scan |observations_|, gathering metrics about the ones having a damage Rect
  // equivalent to the |elected_rect|.  Along the way, break early whenever the
  // event times reveal a non-animating period.
  int64_t num_pixels_damaged_in_all = 0;
  int64_t num_pixels_damaged_in_chosen = 0;
  base::TimeDelta sum_frame_durations;
  size_t count_frame_durations = 0;
  base::TimeTicks first_event_time;
  base::TimeTicks last_event_time;
  for (const auto& observation : base::Reversed(observations_)) {
    const int area = observation.damage_rect.size().GetArea();
    num_pixels_damaged_in_all += area;
    if (observation.damage_rect != elected_rect)
      continue;
    num_pixels_damaged_in_chosen += area;
    if (last_event_time.is_null()) {
      last_event_time = observation.event_time;
      if ((event_time - last_event_time) >= kNonAnimatingThreshold) {
        return false;  // Content animation has recently ended.
      }
    } else {
      const base::TimeDelta frame_duration =
          first_event_time - observation.event_time;
      if (frame_duration >= kNonAnimatingThreshold) {
        break;  // Content not animating before this point.
      }
      sum_frame_durations += frame_duration;
      ++count_frame_durations;
    }
    first_event_time = observation.event_time;
  }

  if ((last_event_time - first_event_time) < kMinObservationWindow) {
    return false;  // Content has not animated for long enough for accuracy.
  }
  if (num_pixels_damaged_in_chosen <= (num_pixels_damaged_in_all * 2 / 3))
    return false;  // Animation is not damaging a supermajority of pixels.

  *rect = elected_rect;
  DCHECK_GT(count_frame_durations, 0u);
  *period = sum_frame_durations / count_frame_durations;
  return true;
}

base::TimeTicks AnimatedContentSampler::ComputeNextFrameTimestamp(
    base::TimeTicks event_time) const {
  // The ideal next frame timestamp one sampling period since the last one.
  const base::TimeTicks ideal_timestamp = frame_timestamp_ + sampling_period_;

  // Account for two main sources of drift: 1) The clock drift of the system
  // clock relative to the video hardware, which affects the event times; and
  // 2) The small error introduced by this frame timestamp rewriting, as it is
  // based on averaging over recent events.
  const base::TimeDelta drift = ideal_timestamp - event_time;
  const int64_t correct_over_num_frames =
      kDriftCorrection.IntDiv(sampling_period_);
  DCHECK_GT(correct_over_num_frames, 0);

  return ideal_timestamp - drift / correct_over_num_frames;
}

// static
base::TimeDelta AnimatedContentSampler::ComputeSamplingPeriod(
    base::TimeDelta animation_period,
    base::TimeDelta target_sampling_period,
    base::TimeDelta min_capture_period) {
  // If the animation rate is unknown, return the ideal sampling period.
  if (animation_period.is_zero()) {
    return std::max(target_sampling_period, min_capture_period);
  }

  // Determine whether subsampling is needed.  If so, compute the sampling
  // period corresponding to the sampling rate is the closest integer division
  // of the animation frame rate to the target sampling rate.
  //
  // For example, consider a target sampling rate of 30 FPS and an animation
  // rate of 42 FPS.  Possible sampling rates would be 42/1 = 42, 42/2 = 21,
  // 42/3 = 14, and so on.  Of these candidates, 21 FPS is closest to 30.
  base::TimeDelta sampling_period;
  if (animation_period < target_sampling_period) {
    const int64_t ratio = target_sampling_period.IntDiv(animation_period);
    const double target_fps = 1.0 / target_sampling_period.InSecondsF();
    const double animation_fps = 1.0 / animation_period.InSecondsF();
    if (std::abs(animation_fps / ratio - target_fps) <
        std::abs(animation_fps / (ratio + 1) - target_fps)) {
      sampling_period = ratio * animation_period;
    } else {
      sampling_period = (ratio + 1) * animation_period;
    }
  } else {
    sampling_period = animation_period;
  }
  return std::max(sampling_period, min_capture_period);
}

}  // namespace media