1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470

media / cast / encoding / vpx_encoder.cc [blame]

// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif

#include "media/cast/encoding/vpx_encoder.h"

#include "base/logging.h"
#include "base/strings/strcat.h"
#include "media/base/media_switches.h"
#include "media/base/video_codecs.h"
#include "media/base/video_encoder_metrics_provider.h"
#include "media/base/video_frame.h"
#include "media/cast/common/openscreen_conversion_helpers.h"
#include "media/cast/common/sender_encoded_frame.h"
#include "media/cast/constants.h"
#include "media/cast/encoding/encoding_util.h"
#include "third_party/libvpx/source/libvpx/vpx/vp8cx.h"
#include "third_party/openscreen/src/cast/streaming/public/encoded_frame.h"

namespace media {
namespace cast {

namespace {

// After a pause in the video stream, what is the maximum duration amount to
// pass to the encoder for the next frame (in terms of 1/max_fps sized periods)?
// This essentially controls the encoded size of the first frame that follows a
// pause in the video stream.
const int kRestartFramePeriods = 3;

// The following constants are used to automactically tune the encoder
// parameters: |cpu_used| and |min_quantizer|.

// The |half-life| of the encoding speed accumulator.
// The smaller, the shorter of the time averaging window.
const int kEncodingSpeedAccHalfLife = 120000;  // 0.12 second.

// The target encoder utilization signal. This is a trade-off between quality
// and less CPU usage. The range of this value is [0, 1]. Higher the value,
// better the quality and higher the CPU usage.
//
// For machines with more than two encoding threads.
const double kHiTargetEncoderUtilization = 0.7;
// For machines with two encoding threads.
const double kMidTargetEncoderUtilization = 0.6;
// For machines with single encoding thread.
const double kLoTargetEncoderUtilization = 0.5;

// This is the equivalent change on encoding speed for the change on each
// quantizer step.
const double kEquivalentEncodingSpeedStepPerQpStep = 1 / 20.0;

// Highest/lowest allowed encoding speed set to the encoder. The valid range
// is [4, 16]. Experiments show that with speed higher than 12, the saving of
// the encoding time is not worth the dropping of the quality. And with speed
// lower than 6, the increasing of quality is not worth the increasing of
// encoding time.
const int kHighestEncodingSpeed = 12;
const int kLowestEncodingSpeed = 6;

bool HasSufficientFeedback(
    const FeedbackSignalAccumulator<base::TimeDelta>& accumulator) {
  const base::TimeDelta amount_of_history =
      accumulator.update_time() - accumulator.reset_time();
  return amount_of_history.InMicroseconds() >= 250000;  // 0.25 second.
}

}  // namespace

VpxEncoder::VpxEncoder(
    const FrameSenderConfig& video_config,
    std::unique_ptr<VideoEncoderMetricsProvider> metrics_provider)
    : cast_config_(video_config),
      codec_params_(cast_config_.video_codec_params.value()),
      target_encoder_utilization_(
          codec_params_->number_of_encode_threads > 2
              ? kHiTargetEncoderUtilization
              : (codec_params_->number_of_encode_threads > 1
                     ? kMidTargetEncoderUtilization
                     : kLoTargetEncoderUtilization)),
      metrics_provider_(std::move(metrics_provider)),
      key_frame_requested_(true),
      bitrate_kbit_(cast_config_.start_bitrate / 1000),
      next_frame_id_(FrameId::first()),
      encoding_speed_acc_(base::Microseconds(kEncodingSpeedAccHalfLife)),
      encoding_speed_(kHighestEncodingSpeed) {
  config_.g_timebase.den = 0;  // Not initialized.
  DCHECK_LE(codec_params_->min_qp, codec_params_->max_cpu_saver_qp);
  DCHECK_LE(codec_params_->max_cpu_saver_qp, codec_params_->max_qp);

  DETACH_FROM_THREAD(thread_checker_);
}

VpxEncoder::~VpxEncoder() {
  DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
  if (is_initialized()) {
    vpx_codec_destroy(&encoder_);
  }
}

void VpxEncoder::Initialize() {
  DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
  DCHECK(!is_initialized());
  // The encoder will be created/configured when the first frame encode is
  // requested.
}

void VpxEncoder::ConfigureForNewFrameSize(const gfx::Size& frame_size) {
  if (is_initialized()) {
    // NOTE: Do we need this workaround for VP9?
    // Workaround for VP8 bug: If the new size is strictly less-than-or-equal to
    // the old size, in terms of area, the existing encoder instance can
    // continue.  Otherwise, completely tear-down and re-create a new encoder to
    // avoid a shutdown crash.
    if (frame_size.GetArea() <= gfx::Size(config_.g_w, config_.g_h).GetArea()) {
      DVLOG(1) << "Continuing to use existing encoder at smaller frame size: "
               << gfx::Size(config_.g_w, config_.g_h).ToString() << " --> "
               << frame_size.ToString();
      config_.g_w = frame_size.width();
      config_.g_h = frame_size.height();
      config_.rc_min_quantizer = codec_params_->min_qp;
      if (vpx_codec_enc_config_set(&encoder_, &config_) == VPX_CODEC_OK) {
        return;
      }
      DVLOG(1) << "libvpx rejected the attempt to use a smaller frame size in "
                  "the current instance.";
    }

    DVLOG(1) << "Destroying/Re-Creating encoder for larger frame size: "
             << gfx::Size(config_.g_w, config_.g_h).ToString() << " --> "
             << frame_size.ToString();
    vpx_codec_destroy(&encoder_);
  } else {
    DVLOG(1) << "Creating encoder for the first frame; size: "
             << frame_size.ToString();
  }

  // Determine appropriate codec interface.
  vpx_codec_iface_t* ctx;
  if (codec_params_->codec == VideoCodec::kVP9) {
    ctx = vpx_codec_vp9_cx();
  } else {
    DCHECK(codec_params_->codec == VideoCodec::kVP8);
    ctx = vpx_codec_vp8_cx();
  }

  // Populate encoder configuration with default values.
  CHECK_EQ(vpx_codec_enc_config_default(ctx, &config_, 0), VPX_CODEC_OK);

  config_.g_threads = codec_params_->number_of_encode_threads;
  config_.g_w = frame_size.width();
  config_.g_h = frame_size.height();
  // Set the timebase to match that of base::TimeDelta.
  config_.g_timebase.num = 1;
  config_.g_timebase.den = base::Time::kMicrosecondsPerSecond;

  // |g_pass| and |g_lag_in_frames| must be "one pass" and zero, respectively,
  // in order for VPX to support changing frame sizes during encoding:
  config_.g_pass = VPX_RC_ONE_PASS;
  config_.g_lag_in_frames = 0;  // Immediate data output for each frame.

  // Rate control settings.
  config_.rc_dropframe_thresh = GetEncoderDropFrameThreshold();
  config_.rc_resize_allowed = 0;
  config_.rc_end_usage = VPX_CBR;
  config_.rc_target_bitrate = bitrate_kbit_;
  config_.rc_min_quantizer = codec_params_->min_qp;
  config_.rc_max_quantizer = codec_params_->max_qp;
  config_.rc_undershoot_pct = 100;
  config_.rc_overshoot_pct = 15;
  config_.rc_buf_initial_sz = 500;
  config_.rc_buf_optimal_sz = 600;
  config_.rc_buf_sz = 1000;

  config_.kf_mode = VPX_KF_DISABLED;

  vpx_codec_flags_t flags = 0;
  metrics_provider_->Initialize(codec_params_->codec == VideoCodec::kVP9
                                    ? media::VP9PROFILE_MIN
                                    : media::VP8PROFILE_ANY,
                                frame_size, /*is_hardware_encoder=*/false);
  if (vpx_codec_err_t ret = vpx_codec_enc_init(&encoder_, ctx, &config_, flags);
      ret != VPX_CODEC_OK) {
    metrics_provider_->SetError(
        {media::EncoderStatus::Codes::kEncoderInitializationError,
         base::StrCat(
             {"libvpx failed to initialize: ", vpx_codec_err_to_string(ret)})});
  }

  // Raise the threshold for considering macroblocks as static.  The default is
  // zero, so this setting makes the encoder less sensitive to motion.  This
  // lowers the probability of needing to utilize more CPU to search for motion
  // vectors. The value is the same as WebRTC.
  // https://source.chromium.org/chromium/chromium/src/+/main:third_party/webrtc/modules/video_coding/codecs/vp8/libvpx_vp8_encoder.cc
  CHECK_EQ(vpx_codec_control(&encoder_, VP8E_SET_STATIC_THRESHOLD, 100),
           VPX_CODEC_OK);

  if (codec_params_->codec == VideoCodec::kVP9) {
    CHECK_EQ(vpx_codec_control(&encoder_, VP9E_SET_TUNE_CONTENT,
                               VP9E_CONTENT_SCREEN),
             VPX_CODEC_OK);
  } else {
    // A frame may be dropped by the encoder if VP8E_SET_SCREEN_CONTENT_MODE is
    // configured to 2 ("On with more aggressive rate control"). A frame is
    // never dropped if it is configured to 1 ("On").
    const unsigned int screen_content_mode =
        base::FeatureList::IsEnabled(kCastVideoEncoderFrameDrop) ? 2 : 1;
    CHECK_EQ(vpx_codec_control(&encoder_, VP8E_SET_SCREEN_CONTENT_MODE,
                               screen_content_mode),
             VPX_CODEC_OK);
  }

  // This cpu_used setting is a trade-off between cpu usage and encoded video
  // quality. The default is zero, with increasingly less CPU to be used as the
  // value is more negative or more positive. The encoder does some automatic
  // adjust on encoding speed for positive values, however at least at this
  // stage the experiments show that this automatic behaviour is not reliable on
  // windows machines. We choose to set negative values instead to directly set
  // the encoding speed to the encoder. Starting with the highest encoding speed
  // to avoid large cpu usage from the beginning.
  encoding_speed_ = kHighestEncodingSpeed;
  CHECK_EQ(vpx_codec_control(&encoder_, VP8E_SET_CPUUSED, -encoding_speed_),
           VPX_CODEC_OK);
}

void VpxEncoder::Encode(scoped_refptr<media::VideoFrame> video_frame,
                        base::TimeTicks reference_time,
                        SenderEncodedFrame* encoded_frame) {
  DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
  DCHECK(encoded_frame);

  // Note: This is used to compute the |encoder_utilization| and so it uses the
  // real-world clock instead of the CastEnvironment clock, the latter of which
  // might be simulated.
  const base::TimeTicks start_time = base::TimeTicks::Now();

  // Initialize on-demand.  Later, if the video frame size has changed, update
  // the encoder configuration.
  const gfx::Size frame_size = video_frame->visible_rect().size();
  if (!is_initialized() || gfx::Size(config_.g_w, config_.g_h) != frame_size) {
    ConfigureForNewFrameSize(frame_size);
  }

  // Wrapper for vpx_codec_encode() to access the YUV data in the |video_frame|.
  // Only the VISIBLE rectangle within |video_frame| is exposed to the codec.
  vpx_img_fmt_t vpx_format = video_frame->format() == PIXEL_FORMAT_NV12
                                 ? VPX_IMG_FMT_NV12
                                 : VPX_IMG_FMT_I420;
  vpx_image_t vpx_image;
  vpx_image_t* const result = vpx_img_wrap(
      &vpx_image, vpx_format, frame_size.width(), frame_size.height(), 1,
      const_cast<uint8_t*>(video_frame->visible_data(VideoFrame::Plane::kY)));
  DCHECK_EQ(result, &vpx_image);
  switch (vpx_format) {
    case VPX_IMG_FMT_I420:
      vpx_image.planes[VPX_PLANE_Y] = const_cast<uint8_t*>(
          video_frame->visible_data(VideoFrame::Plane::kY));
      vpx_image.planes[VPX_PLANE_U] = const_cast<uint8_t*>(
          video_frame->visible_data(VideoFrame::Plane::kU));
      vpx_image.planes[VPX_PLANE_V] = const_cast<uint8_t*>(
          video_frame->visible_data(VideoFrame::Plane::kV));
      vpx_image.stride[VPX_PLANE_Y] =
          video_frame->stride(VideoFrame::Plane::kY);
      vpx_image.stride[VPX_PLANE_U] =
          video_frame->stride(VideoFrame::Plane::kU);
      vpx_image.stride[VPX_PLANE_V] =
          video_frame->stride(VideoFrame::Plane::kV);
      break;
    case VPX_IMG_FMT_NV12:
      vpx_image.planes[VPX_PLANE_Y] = const_cast<uint8_t*>(
          video_frame->visible_data(VideoFrame::Plane::kY));
      // In libvpx, the UV plane of NV12 frames is represented by two planes
      // with the same stride, shifted by one byte.
      vpx_image.planes[VPX_PLANE_U] = const_cast<uint8_t*>(
          video_frame->visible_data(VideoFrame::Plane::kUV));
      vpx_image.planes[VPX_PLANE_V] = vpx_image.planes[VPX_PLANE_U] + 1;
      vpx_image.stride[VPX_PLANE_Y] =
          video_frame->stride(VideoFrame::Plane::kY);
      vpx_image.stride[VPX_PLANE_U] =
          video_frame->stride(VideoFrame::Plane::kUV);
      vpx_image.stride[VPX_PLANE_V] =
          video_frame->stride(VideoFrame::Plane::kUV);
      break;
    default:
      NOTREACHED();
  }

  // The frame duration given to the VPX codecs affects a number of important
  // behaviors, including: per-frame bandwidth, CPU time spent encoding,
  // temporal quality trade-offs, and key/golden/alt-ref frame generation
  // intervals.  Bound the prediction to account for the fact that the frame
  // rate can be highly variable, including long pauses in the video stream.
  const base::TimeDelta minimum_frame_duration =
      base::Seconds(1.0 / cast_config_.max_frame_rate);
  const base::TimeDelta maximum_frame_duration = base::Seconds(
      static_cast<double>(kRestartFramePeriods) / cast_config_.max_frame_rate);
  base::TimeDelta predicted_frame_duration =
      video_frame->metadata().frame_duration.value_or(base::TimeDelta());
  if (predicted_frame_duration <= base::TimeDelta()) {
    // The source of the video frame did not provide the frame duration.  Use
    // the actual amount of time between the current and previous frame as a
    // prediction for the next frame's duration.
    predicted_frame_duration = video_frame->timestamp() - last_frame_timestamp_;
  }
  predicted_frame_duration =
      std::max(minimum_frame_duration,
               std::min(maximum_frame_duration, predicted_frame_duration));
  last_frame_timestamp_ = video_frame->timestamp();

  // Encode the frame.  The presentation time stamp argument here is fixed to
  // zero to force the encoder to base its single-frame bandwidth calculations
  // entirely on |predicted_frame_duration| and the target bitrate setting being
  // micro-managed via calls to UpdateRates().
  if (vpx_codec_err_t ret = vpx_codec_encode(
          &encoder_, &vpx_image, 0, predicted_frame_duration.InMicroseconds(),
          key_frame_requested_ ? VPX_EFLAG_FORCE_KF : 0, VPX_DL_REALTIME);
      ret != VPX_CODEC_OK) {
    metrics_provider_->SetError(
        {media::EncoderStatus::Codes::kEncoderFailedEncode,
         base::StrCat(
             {"libvpx failed to encode: ", vpx_codec_err_to_string(ret), " - ",
              vpx_codec_error_detail(&encoder_)})});
    LOG(FATAL) << "BUG: Invalid arguments passed to vpx_codec_encode().";
  }

  // Pull data from the encoder, populating a new EncodedFrame.
  encoded_frame->frame_id = next_frame_id_;
  const vpx_codec_cx_pkt_t* pkt = nullptr;
  vpx_codec_iter_t iter = nullptr;
  while ((pkt = vpx_codec_get_cx_data(&encoder_, &iter)) != nullptr) {
    if (pkt->kind != VPX_CODEC_CX_FRAME_PKT) {
      continue;
    }

    encoded_frame->is_key_frame = pkt->data.frame.flags & VPX_FRAME_IS_KEY;
    if (encoded_frame->is_key_frame) {
      encoded_frame->referenced_frame_id = encoded_frame->frame_id;
    } else {
      // Frame dependencies could theoretically be relaxed by looking for the
      // VPX_FRAME_IS_DROPPABLE flag, but in recent testing (Oct 2014), this
      // flag never seems to be set.
      encoded_frame->referenced_frame_id = encoded_frame->frame_id - 1;
    }
    encoded_frame->rtp_timestamp =
        ToRtpTimeTicks(video_frame->timestamp(), kVideoFrequency);
    encoded_frame->reference_time = reference_time;
    encoded_frame->data = base::HeapArray<uint8_t>::CopiedFrom(base::span(
        static_cast<const uint8_t*>(pkt->data.frame.buf), pkt->data.frame.sz));
    break;  // Done, since all data is provided in one CX_FRAME_PKT packet.
  }
  if (encoded_frame->data.empty()) {
    // Drop frame.
    return;
  }
  // Increment frame id only if the frame is encoded.
  next_frame_id_++;
  metrics_provider_->IncrementEncodedFrameCount();

  // Compute encoder utilization as the real-world time elapsed divided by the
  // frame duration.
  const base::TimeDelta processing_time = base::TimeTicks::Now() - start_time;
  encoded_frame->encoder_utilization =
      processing_time / predicted_frame_duration;

  // Compute lossy utilization.  The VPX encoder took an estimated guess at what
  // quantizer value would produce an encoded frame size as close to the target
  // as possible.  Now that the frame has been encoded and the number of bytes
  // is known, the perfect quantizer value (i.e., the one that should have been
  // used) can be determined.  This perfect quantizer is then normalized and
  // used as the lossy utilization.
  const double actual_bitrate =
      encoded_frame->data.size() * 8.0 / predicted_frame_duration.InSecondsF();
  const double target_bitrate = 1000.0 * config_.rc_target_bitrate;
  DCHECK_GT(target_bitrate, 0.0);
  const double bitrate_utilization = actual_bitrate / target_bitrate;
  int quantizer = -1;
  CHECK_EQ(vpx_codec_control(&encoder_, VP8E_GET_LAST_QUANTIZER_64, &quantizer),
           VPX_CODEC_OK);
  const double perfect_quantizer = bitrate_utilization * std::max(0, quantizer);
  // Side note: If it was possible for the encoder to encode within the target
  // number of bytes, the |perfect_quantizer| will be in the range [0.0,63.0].
  // If it was never possible, the value will be greater than 63.0.
  encoded_frame->lossiness = perfect_quantizer / 63.0;

  DVLOG(2) << "VPX encoded frame_id " << encoded_frame->frame_id
           << ", sized: " << encoded_frame->data.size()
           << ", encoder_utilization: " << encoded_frame->encoder_utilization
           << ", lossiness: " << encoded_frame->lossiness
           << " (quantizer chosen by the encoder was " << quantizer << ')';

  if (encoded_frame->is_key_frame) {
    key_frame_requested_ = false;
    encoding_speed_acc_.Reset(kHighestEncodingSpeed, video_frame->timestamp());
  } else {
    // Equivalent encoding speed considering both cpu_used setting and
    // quantizer.
    double actual_encoding_speed =
        encoding_speed_ + kEquivalentEncodingSpeedStepPerQpStep *
                              std::max(0, quantizer - codec_params_->min_qp);
    double adjusted_encoding_speed = actual_encoding_speed *
                                     encoded_frame->encoder_utilization /
                                     target_encoder_utilization_;
    encoding_speed_acc_.Update(adjusted_encoding_speed,
                               video_frame->timestamp());
  }

  if (HasSufficientFeedback(encoding_speed_acc_)) {
    // Predict |encoding_speed_| and |min_quantizer| for next frame.
    // When CPU is constrained, increase encoding speed and increase
    // |min_quantizer| if needed.
    double next_encoding_speed = encoding_speed_acc_.current();
    int next_min_qp;
    if (next_encoding_speed > kHighestEncodingSpeed) {
      double remainder = next_encoding_speed - kHighestEncodingSpeed;
      next_encoding_speed = kHighestEncodingSpeed;
      next_min_qp =
          static_cast<int>(remainder / kEquivalentEncodingSpeedStepPerQpStep +
                           codec_params_->min_qp + 0.5);
      next_min_qp = std::min(next_min_qp, codec_params_->max_cpu_saver_qp);
    } else {
      next_encoding_speed =
          std::max<double>(kLowestEncodingSpeed, next_encoding_speed) + 0.5;
      next_min_qp = codec_params_->min_qp;
    }
    if (encoding_speed_ != static_cast<int>(next_encoding_speed)) {
      encoding_speed_ = static_cast<int>(next_encoding_speed);
      CHECK_EQ(vpx_codec_control(&encoder_, VP8E_SET_CPUUSED, -encoding_speed_),
               VPX_CODEC_OK);
    }
    if (config_.rc_min_quantizer != static_cast<unsigned int>(next_min_qp)) {
      config_.rc_min_quantizer = static_cast<unsigned int>(next_min_qp);
      CHECK_EQ(vpx_codec_enc_config_set(&encoder_, &config_), VPX_CODEC_OK);
    }
  }
}

void VpxEncoder::UpdateRates(uint32_t new_bitrate) {
  DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);

  if (!is_initialized()) {
    return;
  }

  uint32_t new_bitrate_kbit = new_bitrate / 1000;
  if (config_.rc_target_bitrate == new_bitrate_kbit) {
    return;
  }

  config_.rc_target_bitrate = bitrate_kbit_ = new_bitrate_kbit;

  // Update encoder context.
  if (vpx_codec_enc_config_set(&encoder_, &config_)) {
    NOTREACHED() << "Invalid return value";
  }

  VLOG(1) << "VPX new rc_target_bitrate: " << new_bitrate_kbit << " kbps";
}

void VpxEncoder::GenerateKeyFrame() {
  DCHECK_CALLED_ON_VALID_THREAD(thread_checker_);
  key_frame_requested_ = true;
}

}  // namespace cast
}  // namespace media