1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
media / cdm / cenc_decryptor_unittest.cc [blame]
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/cdm/cenc_decryptor.h"
#include <stdint.h>
#include <algorithm>
#include <string>
#include <vector>
#include "base/containers/span.h"
#include "base/time/time.h"
#include "crypto/aes_ctr.h"
#include "media/base/decoder_buffer.h"
#include "media/base/decrypt_config.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace media {
namespace {
// Keys and IVs have to be 128 bits.
const std::array<uint8_t, 16> kKey({0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,
0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11,
0x12, 0x13});
const std::array<uint8_t, 16> kIv({0x20, 0x21, 0x22, 0x23, 0x24, 0x25, 0x26,
0x27, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00});
const auto kOneBlock =
std::to_array<uint8_t>({'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j',
'k', 'l', 'm', 'n', 'o', 'p'});
const auto kPartialBlock =
std::to_array<uint8_t>({'a', 'b', 'c', 'd', 'e', 'f'});
// Combine multiple std::vector<uint8_t> into one.
std::vector<uint8_t> Combine(
const std::vector<base::span<const uint8_t>>& inputs) {
std::vector<uint8_t> result;
for (const auto& input : inputs)
result.insert(result.end(), input.begin(), input.end());
return result;
}
// Returns a std::vector<uint8_t> containing |count| copies of |input|.
std::vector<uint8_t> Repeat(base::span<const uint8_t> input, size_t count) {
std::vector<uint8_t> result;
for (size_t i = 0; i < count; ++i)
result.insert(result.end(), input.begin(), input.end());
return result;
}
scoped_refptr<DecoderBuffer> CreateEncryptedBuffer(
base::span<const uint8_t> data,
base::span<const uint8_t> iv,
const std::vector<SubsampleEntry>& subsample_entries) {
EXPECT_FALSE(data.empty());
EXPECT_FALSE(iv.empty());
scoped_refptr<DecoderBuffer> encrypted_buffer = DecoderBuffer::CopyFrom(data);
// Key_ID is never used.
encrypted_buffer->set_decrypt_config(DecryptConfig::CreateCencConfig(
"key_id", std::string(base::as_string_view(iv)), subsample_entries));
return encrypted_buffer;
}
} // namespace
using CencDecryptorTest = ::testing::Test;
TEST(CencDecryptorTest, OneBlock) {
auto encrypted_block = crypto::aes_ctr::Encrypt(kKey, kIv, kOneBlock);
// Only 1 subsample, all encrypted data.
std::vector<SubsampleEntry> subsamples = {
{0, static_cast<uint32_t>(encrypted_block.size())}};
auto encrypted_buffer =
CreateEncryptedBuffer(encrypted_block, kIv, subsamples);
auto decrypted_buffer = DecryptCencBuffer(*encrypted_buffer, kKey);
ASSERT_TRUE(decrypted_buffer);
EXPECT_EQ(kOneBlock, decrypted_buffer->AsSpan());
}
TEST(CencDecryptorTest, ExtraData) {
auto encrypted_block = crypto::aes_ctr::Encrypt(kKey, kIv, kOneBlock);
// Only 1 subsample, all encrypted data.
std::vector<SubsampleEntry> subsamples = {
{0, static_cast<uint32_t>(encrypted_block.size())}};
auto encrypted_buffer =
CreateEncryptedBuffer(encrypted_block, kIv, subsamples);
encrypted_buffer->set_timestamp(base::Days(2));
encrypted_buffer->set_duration(base::Minutes(5));
encrypted_buffer->set_is_key_frame(true);
encrypted_buffer->WritableSideData().alpha_data =
base::HeapArray<uint8_t>::CopiedFrom(encrypted_block);
auto decrypted_buffer = DecryptCencBuffer(*encrypted_buffer, kKey);
ASSERT_TRUE(decrypted_buffer);
EXPECT_EQ(encrypted_buffer->timestamp(), decrypted_buffer->timestamp());
EXPECT_EQ(encrypted_buffer->duration(), decrypted_buffer->duration());
EXPECT_EQ(encrypted_buffer->end_of_stream(),
decrypted_buffer->end_of_stream());
EXPECT_EQ(encrypted_buffer->is_key_frame(), decrypted_buffer->is_key_frame());
EXPECT_TRUE(decrypted_buffer->side_data());
EXPECT_TRUE(
encrypted_buffer->side_data()->Matches(*decrypted_buffer->side_data()));
}
TEST(CencDecryptorTest, NoSubsamples) {
auto encrypted_block = crypto::aes_ctr::Encrypt(kKey, kIv, kOneBlock);
// No subsamples specified.
std::vector<SubsampleEntry> subsamples = {};
auto encrypted_buffer =
CreateEncryptedBuffer(encrypted_block, kIv, subsamples);
auto decrypted_buffer = DecryptCencBuffer(*encrypted_buffer, kKey);
ASSERT_TRUE(decrypted_buffer);
EXPECT_EQ(kOneBlock, decrypted_buffer->AsSpan());
}
TEST(CencDecryptorTest, BadSubsamples) {
auto encrypted_block = crypto::aes_ctr::Encrypt(kKey, kIv, kOneBlock);
// Subsample size > data size.
std::vector<SubsampleEntry> subsamples = {
{0, static_cast<uint32_t>(encrypted_block.size() + 1)}};
auto encrypted_buffer =
CreateEncryptedBuffer(encrypted_block, kIv, subsamples);
auto decrypted_buffer = DecryptCencBuffer(*encrypted_buffer, kKey);
EXPECT_FALSE(decrypted_buffer);
}
TEST(CencDecryptorTest, InvalidIv) {
auto encrypted_block = crypto::aes_ctr::Encrypt(kKey, kIv, kOneBlock);
std::vector<SubsampleEntry> subsamples = {
{0, static_cast<uint32_t>(encrypted_block.size())}};
// Use an invalid IV for decryption. Call should succeed, but return
// something other than the original data.
const std::array<uint8_t, 16> kBadIv{'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a',
'a', 'a', 'a', 'a', 'a', 'a', 'a', 'a'};
auto encrypted_buffer =
CreateEncryptedBuffer(encrypted_block, kBadIv, subsamples);
auto decrypted_buffer = DecryptCencBuffer(*encrypted_buffer, kKey);
ASSERT_TRUE(decrypted_buffer);
EXPECT_NE(kOneBlock, decrypted_buffer->AsSpan());
}
TEST(CencDecryptorTest, InvalidKey) {
const std::array<uint8_t, 16> kBadKey{'b', 'b', 'b', 'b', 'b', 'b', 'b', 'b',
'b', 'b', 'b', 'b', 'b', 'b', 'b', 'b'};
auto encrypted_block = crypto::aes_ctr::Encrypt(kKey, kIv, kOneBlock);
std::vector<SubsampleEntry> subsamples = {
{0, static_cast<uint32_t>(encrypted_block.size())}};
// Use a different key for decryption. Call should succeed, but return
// something other than the original data.
auto encrypted_buffer =
CreateEncryptedBuffer(encrypted_block, kIv, subsamples);
auto decrypted_buffer = DecryptCencBuffer(*encrypted_buffer, kBadKey);
ASSERT_TRUE(decrypted_buffer);
EXPECT_NE(kOneBlock, decrypted_buffer->AsSpan());
}
TEST(CencDecryptorTest, PartialBlock) {
auto encrypted_block = crypto::aes_ctr::Encrypt(kKey, kIv, kPartialBlock);
// Only 1 subsample, all encrypted data.
std::vector<SubsampleEntry> subsamples = {
{0, static_cast<uint32_t>(encrypted_block.size())}};
auto encrypted_buffer =
CreateEncryptedBuffer(encrypted_block, kIv, subsamples);
auto decrypted_buffer = DecryptCencBuffer(*encrypted_buffer, kKey);
ASSERT_TRUE(decrypted_buffer);
EXPECT_EQ(kPartialBlock, decrypted_buffer->AsSpan());
}
TEST(CencDecryptorTest, MultipleSubsamples) {
// Encrypt 3 copies of |one_block_| together.
const auto plaintext = Repeat(kOneBlock, 3);
auto encrypted_block = crypto::aes_ctr::Encrypt(kKey, kIv, plaintext);
// Treat as 3 subsamples.
std::vector<SubsampleEntry> subsamples = {
{0, static_cast<uint32_t>(kOneBlock.size())},
{0, static_cast<uint32_t>(kOneBlock.size())},
{0, static_cast<uint32_t>(kOneBlock.size())}};
auto encrypted_buffer =
CreateEncryptedBuffer(encrypted_block, kIv, subsamples);
auto decrypted_buffer = DecryptCencBuffer(*encrypted_buffer, kKey);
ASSERT_TRUE(decrypted_buffer);
EXPECT_EQ(plaintext, decrypted_buffer->AsSpan());
}
TEST(CencDecryptorTest, MultipleSubsamplesWithClearBytes) {
// Create a buffer that looks like:
// subsamples: | subsample#1 | subsample#2 | subsample#3 |
// | clear | encrypted | clear | encrypted | clear |
// source: | one | partial* | partial | one* | partial |
// where * means the source is encrypted
auto encrypted_block =
crypto::aes_ctr::Encrypt(kKey, kIv, Combine({kPartialBlock, kOneBlock}));
auto [encrypted_partial_block, encrypted_one_block] =
base::span(encrypted_block).split_at(kPartialBlock.size());
auto input_data = Combine({kOneBlock, encrypted_partial_block, kPartialBlock,
encrypted_one_block, kPartialBlock});
auto expected_result = Combine(
{kOneBlock, kPartialBlock, kPartialBlock, kOneBlock, kPartialBlock});
std::vector<SubsampleEntry> subsamples = {
{static_cast<uint32_t>(kOneBlock.size()),
static_cast<uint32_t>(kPartialBlock.size())},
{static_cast<uint32_t>(kPartialBlock.size()),
static_cast<uint32_t>(kOneBlock.size())},
{static_cast<uint32_t>(kPartialBlock.size()), 0}};
auto encrypted_buffer = CreateEncryptedBuffer(input_data, kIv, subsamples);
auto decrypted_buffer = DecryptCencBuffer(*encrypted_buffer, kKey);
ASSERT_TRUE(decrypted_buffer);
EXPECT_EQ(expected_result, decrypted_buffer->AsSpan());
}
} // namespace media