1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
media / filters / audio_renderer_algorithm.cc [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "media/filters/audio_renderer_algorithm.h"
#include <algorithm>
#include <cmath>
#include "base/functional/bind.h"
#include "base/logging.h"
#include "base/memory/raw_ptr.h"
#include "cc/base/math_util.h"
#include "media/base/audio_bus.h"
#include "media/base/audio_timestamp_helper.h"
#include "media/base/limits.h"
#include "media/filters/wsola_internals.h"
namespace media {
// Waveform Similarity Overlap-and-add (WSOLA).
//
// One WSOLA iteration
//
// 1) Extract |target_block_| as input frames at indices
// [|target_block_index_|, |target_block_index_| + |ola_window_size_|).
// Note that |target_block_| is the "natural" continuation of the output.
//
// 2) Extract |search_block_| as input frames at indices
// [|search_block_index_|,
// |search_block_index_| + |num_candidate_blocks_| + |ola_window_size_|).
//
// 3) Find a block within the |search_block_| that is most similar
// to |target_block_|. Let |optimal_index| be the index of such block and
// write it to |optimal_block_|.
//
// 4) Update:
// |optimal_block_| = |transition_window_| * |target_block_| +
// (1 - |transition_window_|) * |optimal_block_|.
//
// 5) Overlap-and-add |optimal_block_| to the |wsola_output_|.
//
// 6) Update:
// |target_block_| = |optimal_index| + |ola_window_size_| / 2.
// |output_index_| = |output_index_| + |ola_window_size_| / 2,
// |search_block_center_index| = |output_index_| * |playback_rate|, and
// |search_block_index_| = |search_block_center_index| -
// |search_block_center_offset_|.
// Overlap-and-add window size in milliseconds.
constexpr base::TimeDelta kOlaWindowSize = base::Milliseconds(20);
// Size of search interval in milliseconds. The search interval is
// [-delta delta] around |output_index_| * |playback_rate|. So the search
// interval is 2 * delta.
constexpr base::TimeDelta kWsolaSearchInterval = base::Milliseconds(30);
// The maximum size for the |audio_buffer_|. Arbitrarily determined.
constexpr base::TimeDelta kMaxCapacity = base::Seconds(3);
// The minimum size for the |audio_buffer_|. Arbitrarily determined.
constexpr base::TimeDelta kStartingCapacity = base::Milliseconds(200);
// The minimum size for the |audio_buffer_| for encrypted streams.
// Set this to be larger than |kStartingCapacity| because the performance of
// encrypted playback is always worse than clear playback, due to decryption and
// potentially IPC overhead. For the context, see https://crbug.com/403462,
// https://crbug.com/718161 and https://crbug.com/879970.
constexpr base::TimeDelta kStartingCapacityForEncrypted =
base::Milliseconds(500);
AudioRendererAlgorithm::AudioRendererAlgorithm(MediaLog* media_log)
: AudioRendererAlgorithm(
media_log,
{kMaxCapacity, kStartingCapacity, kStartingCapacityForEncrypted}) {}
AudioRendererAlgorithm::AudioRendererAlgorithm(
MediaLog* media_log,
AudioRendererAlgorithmParameters params)
: media_log_(media_log),
audio_renderer_algorithm_params_(std::move(params)),
channels_(0),
samples_per_second_(0),
is_bitstream_format_(false),
capacity_(0),
output_time_(0.0),
search_block_center_offset_(0),
search_block_index_(0),
num_candidate_blocks_(0),
target_block_index_(0),
ola_window_size_(0),
ola_hop_size_(0),
num_complete_frames_(0),
initial_capacity_(0),
max_capacity_(0) {}
AudioRendererAlgorithm::~AudioRendererAlgorithm() = default;
void AudioRendererAlgorithm::Initialize(const AudioParameters& params,
bool is_encrypted) {
CHECK(params.IsValid());
channels_ = params.channels();
samples_per_second_ = params.sample_rate();
is_bitstream_format_ = params.IsBitstreamFormat();
min_playback_threshold_ = params.frames_per_buffer() * 2;
initial_capacity_ = capacity_ = playback_threshold_ = std::max(
min_playback_threshold_,
AudioTimestampHelper::TimeToFrames(
is_encrypted
? audio_renderer_algorithm_params_.starting_capacity_for_encrypted
: audio_renderer_algorithm_params_.starting_capacity,
samples_per_second_));
max_capacity_ = std::max(
initial_capacity_,
AudioTimestampHelper::TimeToFrames(
audio_renderer_algorithm_params_.max_capacity, samples_per_second_));
num_candidate_blocks_ = AudioTimestampHelper::TimeToFrames(
kWsolaSearchInterval, samples_per_second_);
ola_window_size_ =
AudioTimestampHelper::TimeToFrames(kOlaWindowSize, samples_per_second_);
// Make sure window size is an even number.
ola_window_size_ += ola_window_size_ & 1;
ola_hop_size_ = ola_window_size_ / 2;
// |num_candidate_blocks_| / 2 is the offset of the center of the search
// block to the center of the first (left most) candidate block. The offset
// of the center of a candidate block to its left most point is
// |ola_window_size_| / 2 - 1. Note that |ola_window_size_| is even and in
// our convention the center belongs to the left half, so we need to subtract
// one frame to get the correct offset.
//
// Search Block
// <------------------------------------------->
//
// |ola_window_size_| / 2 - 1
// <----
//
// |num_candidate_blocks_| / 2
// <----------------
// center
// X----X----------------X---------------X-----X
// <----------> <---------->
// Candidate ... Candidate
// 1, ... |num_candidate_blocks_|
search_block_center_offset_ =
num_candidate_blocks_ / 2 + (ola_window_size_ / 2 - 1);
// If no mask is provided, assume all channels are valid.
if (channel_mask_.empty())
SetChannelMask(std::vector<bool>(channels_, true));
}
void AudioRendererAlgorithm::SetChannelMask(std::vector<bool> channel_mask) {
DCHECK_EQ(channel_mask.size(), static_cast<size_t>(channels_));
channel_mask_ = std::move(channel_mask);
if (ola_window_)
CreateSearchWrappers();
}
void AudioRendererAlgorithm::OnResamplerRead(int frame_delay,
AudioBus* audio_bus) {
const int requested_frames = audio_bus->frames();
int read_frames = audio_buffer_.ReadFrames(requested_frames, 0, audio_bus);
if (read_frames < requested_frames) {
// We should only be filling up |resampler_| with silence if we are playing
// out all remaining frames.
DCHECK(reached_end_of_stream_);
audio_bus->ZeroFramesPartial(read_frames, requested_frames - read_frames);
}
resampler_only_has_silence_ = !read_frames;
}
void AudioRendererAlgorithm::MarkEndOfStream() {
reached_end_of_stream_ = true;
}
int AudioRendererAlgorithm::ResampleAndFill(AudioBus* dest,
int dest_offset,
int requested_frames,
double playback_rate) {
if (!resampler_) {
resampler_ = std::make_unique<MultiChannelResampler>(
channels_, playback_rate, SincResampler::kDefaultRequestSize,
base::BindRepeating(&AudioRendererAlgorithm::OnResamplerRead,
base::Unretained(this)));
resampler_->PrimeWithSilence();
}
if (reached_end_of_stream_ && resampler_only_has_silence_ &&
!audio_buffer_.frames()) {
// Previous calls to ResampleAndFill() and OnResamplerRead() have used all
// of the available buffers from |audio_buffer_|. We have also played out
// all remaining frames, and |resampler_| only contains silence.
return 0;
}
// |resampler_| can request more than |requested_frames|, due to the
// requests size not being aligned. To prevent having to fill it with silence,
// we find the max number of reads it could request, and make sure we have
// enough data to satisfy all of those reads.
if (!reached_end_of_stream_ &&
audio_buffer_.frames() <
resampler_->GetMaxInputFramesRequested(requested_frames)) {
// Exit early, forgoing at most a total of |audio_buffer_.frames()| +
// |resampler_->BufferedFrames()|.
// If we have reached the end of stream, |resampler_| will output silence
// after running out of frames, which is ok.
return 0;
}
resampler_->SetRatio(playback_rate);
// Directly use |dest| for the most common case of having 0 offset.
if (!dest_offset) {
resampler_->Resample(requested_frames, dest);
return requested_frames;
}
// This is only really used once, at the beginning of a stream, which means
// we can use a temporary variable, rather than saving it as a member.
// NOTE: We don't wrap |dest|'s channel data in an AudioBus wrapper, because
// |dest_offset| isn't aligned always with AudioBus::kChannelAlignment.
std::unique_ptr<AudioBus> resampler_output =
AudioBus::Create(channels_, requested_frames);
resampler_->Resample(requested_frames, resampler_output.get());
resampler_output->CopyPartialFramesTo(0, requested_frames, dest_offset, dest);
return requested_frames;
}
int AudioRendererAlgorithm::RunWsolaAndFill(AudioBus* dest,
int dest_offset,
int requested_frames,
double playback_rate) {
// Allocate structures on first non-1.0 playback rate; these can eat a fair
// chunk of memory. ~56kB for stereo 48kHz, up to ~765kB for 7.1 192kHz.
if (!ola_window_) {
ola_window_.reset(new float[ola_window_size_]);
internal::GetPeriodicHanningWindow(ola_window_size_, ola_window_.get());
transition_window_.reset(new float[ola_window_size_ * 2]);
internal::GetPeriodicHanningWindow(2 * ola_window_size_,
transition_window_.get());
// Initialize for overlap-and-add of the first block.
wsola_output_ =
AudioBus::Create(channels_, ola_window_size_ + ola_hop_size_);
wsola_output_->Zero();
// Auxiliary containers.
optimal_block_ = AudioBus::Create(channels_, ola_window_size_);
search_block_ = AudioBus::Create(
channels_, num_candidate_blocks_ + (ola_window_size_ - 1));
target_block_ = AudioBus::Create(channels_, ola_window_size_);
// Create potentially smaller wrappers for playback rate adaptation.
CreateSearchWrappers();
}
// Silent audio can contain non-zero samples small enough to result in
// subnormals internalls. Disabling subnormals can be significantly faster in
// these cases.
cc::ScopedSubnormalFloatDisabler disable_subnormals;
// WSOLA doesn't actually consume input frames until the WSOLA iteration
// completes; see RemoveOldInputFrames() in RunOneWsolaIteration().
const auto initial_input_frames = audio_buffer_.frames();
int rendered_frames = 0;
do {
rendered_frames +=
WriteCompletedFramesTo(requested_frames - rendered_frames,
dest_offset + rendered_frames, dest);
} while (rendered_frames < requested_frames &&
RunOneWsolaIteration(playback_rate));
// The effective rate is just how many input frames were used to produce the
// requested number of output frames. We don't want the cumulative value since
// that is just ~`playback_rate`, but instead the "impulse" of this call.
//
// Note: The effective rate may briefly be zero for playback rates below 1.0.
// Note 2: During end-of-stream, `rendered_frames` may be zero.
if (rendered_frames > 0) {
effective_playback_rate_ = (initial_input_frames - audio_buffer_.frames()) /
static_cast<double>(rendered_frames);
} else {
effective_playback_rate_ = playback_rate;
}
return rendered_frames;
}
int AudioRendererAlgorithm::FillBuffer(AudioBus* dest,
int dest_offset,
int requested_frames,
double playback_rate) {
if (playback_rate == 0) {
return 0;
}
DCHECK_GT(playback_rate, 0);
DCHECK_EQ(channels_, dest->channels());
// In case of compressed bitstream formats, no post processing is allowed.
if (is_bitstream_format_) {
return audio_buffer_.ReadFrames(requested_frames, dest_offset, dest);
}
const FillBufferMode fill_buffer_mode = ChooseBufferMode(playback_rate);
SetFillBufferMode(fill_buffer_mode);
switch (fill_buffer_mode) {
case FillBufferMode::kPassthrough: {
// Optimize the most common `playback_rate` ~= 1 case to use a single copy
// instead of copying frame by frame.
const int frames_to_copy =
std::min(audio_buffer_.frames(), requested_frames);
const int frames_read =
audio_buffer_.ReadFrames(frames_to_copy, dest_offset, dest);
DCHECK_EQ(frames_read, frames_to_copy);
effective_playback_rate_ = 1.0;
return frames_read;
}
case FillBufferMode::kResampler:
effective_playback_rate_ = playback_rate;
return ResampleAndFill(dest, dest_offset, requested_frames,
playback_rate);
case FillBufferMode::kWSOLA:
return RunWsolaAndFill(dest, dest_offset, requested_frames,
playback_rate);
}
}
AudioRendererAlgorithm::FillBufferMode AudioRendererAlgorithm::ChooseBufferMode(
double playback_rate) {
// Always resample when we don't care about pitch. This prevents audio pops
// when `playback_rate` goes back & forth between 1.0 and non 1.0 values.
// This can happen when making minute adjustment to the playback rate, to fix
// timestamp drift between multiple clips.
// Always resampling does come at a small performance/memory cost.
if (!preserves_pitch_) {
return FillBufferMode::kResampler;
}
int slower_step = ceil(ola_window_size_ * playback_rate);
int faster_step = ceil(ola_window_size_ / playback_rate);
const bool is_playback_rate_almost_one =
ola_window_size_ <= faster_step && slower_step >= ola_window_size_;
// Optimize the most common `playback_rate` ~= 1 case to use a single copy
// instead of copying frame by frame.
if (is_playback_rate_almost_one) {
return FillBufferMode::kPassthrough;
}
return FillBufferMode::kWSOLA;
}
void AudioRendererAlgorithm::SetFillBufferMode(FillBufferMode mode) {
if (last_mode_ == mode)
return;
// Clear any state from other fill modes so that we don't produce outdated
// audio later.
if (last_mode_ == FillBufferMode::kWSOLA) {
output_time_ = 0.0;
search_block_index_ = 0;
target_block_index_ = 0;
if (wsola_output_)
wsola_output_->Zero();
num_complete_frames_ = 0;
effective_playback_rate_ = 0;
}
resampler_.reset();
last_mode_ = mode;
}
void AudioRendererAlgorithm::FlushBuffers() {
// Clear the queue of decoded packets (releasing the buffers).
audio_buffer_.Clear();
output_time_ = 0.0;
search_block_index_ = 0;
target_block_index_ = 0;
if (wsola_output_)
wsola_output_->Zero();
num_complete_frames_ = 0;
resampler_.reset();
reached_end_of_stream_ = false;
// Reset |capacity_| and |playback_threshold_| so growth triggered by
// underflows doesn't penalize seek time. When |latency_hint_| is set we don't
// increase the queue for underflow, so avoid resetting it on flush.
if (!latency_hint_) {
capacity_ = playback_threshold_ = initial_capacity_;
}
}
void AudioRendererAlgorithm::EnqueueBuffer(
scoped_refptr<AudioBuffer> buffer_in) {
DCHECK(!buffer_in->end_of_stream());
audio_buffer_.Append(std::move(buffer_in));
}
void AudioRendererAlgorithm::SetLatencyHint(
std::optional<base::TimeDelta> latency_hint) {
DCHECK_GE(playback_threshold_, min_playback_threshold_);
DCHECK_LE(playback_threshold_, capacity_);
DCHECK_LE(capacity_, max_capacity_);
latency_hint_ = latency_hint;
if (!latency_hint) {
// Restore default values.
playback_threshold_ = capacity_ = initial_capacity_;
MEDIA_LOG(DEBUG, media_log_)
<< "Audio latency hint cleared. Default buffer size ("
<< AudioTimestampHelper::FramesToTime(playback_threshold_,
samples_per_second_)
<< ") restored";
return;
}
int latency_hint_frames =
AudioTimestampHelper::TimeToFrames(*latency_hint_, samples_per_second_);
// Set |plabyack_threshold_| using hint, clamped between
// [min_playback_threshold_, max_capacity_].
std::string clamp_string;
if (latency_hint_frames > max_capacity_) {
playback_threshold_ = max_capacity_;
clamp_string = " (clamped to max)";
} else if (latency_hint_frames < min_playback_threshold_) {
playback_threshold_ = min_playback_threshold_;
clamp_string = " (clamped to min)";
} else {
playback_threshold_ = latency_hint_frames;
}
// Use |initial_capacity_| if possible. Increase if needed.
capacity_ = std::max(playback_threshold_, initial_capacity_);
MEDIA_LOG(DEBUG, media_log_)
<< "Audio latency hint set:" << *latency_hint << ". "
<< "Effective buffering latency:"
<< AudioTimestampHelper::FramesToTime(playback_threshold_,
samples_per_second_)
<< clamp_string;
DCHECK_GE(playback_threshold_, min_playback_threshold_);
DCHECK_LE(playback_threshold_, capacity_);
DCHECK_LE(capacity_, max_capacity_);
}
bool AudioRendererAlgorithm::IsQueueAdequateForPlayback() {
return audio_buffer_.frames() >= playback_threshold_;
}
bool AudioRendererAlgorithm::IsQueueFull() {
return audio_buffer_.frames() >= capacity_;
}
void AudioRendererAlgorithm::IncreasePlaybackThreshold() {
DCHECK(!latency_hint_) << "Don't override the user specified latency";
DCHECK_EQ(playback_threshold_, capacity_);
DCHECK_LE(capacity_, max_capacity_);
playback_threshold_ = capacity_ = std::min(2 * capacity_, max_capacity_);
}
int64_t AudioRendererAlgorithm::GetMemoryUsage() const {
return BufferedFrames() * channels_ * sizeof(float);
}
int AudioRendererAlgorithm::BufferedFrames() const {
return audio_buffer_.frames() +
(resampler_ ? static_cast<int>(resampler_->BufferedFrames()) : 0);
}
double AudioRendererAlgorithm::DelayInFrames(double playback_rate) const {
int slower_step = std::ceil(ola_window_size_ * playback_rate);
int faster_step = std::ceil(ola_window_size_ / playback_rate);
// When |playback_rate| ~= 1, we read directly from |audio_buffer_|.
if (ola_window_size_ <= faster_step && slower_step >= ola_window_size_)
return audio_buffer_.frames();
const float buffered_output_frames = BufferedFrames() / playback_rate;
const float unconverted_output_frames = buffered_output_frames - output_time_;
return unconverted_output_frames + num_complete_frames_;
}
std::optional<base::TimeDelta> AudioRendererAlgorithm::FrontTimestamp() const {
return audio_buffer_.FrontTimestamp();
}
bool AudioRendererAlgorithm::CanPerformWsola() const {
const int search_block_size = num_candidate_blocks_ + (ola_window_size_ - 1);
const int frames = audio_buffer_.frames();
return target_block_index_ + ola_window_size_ <= frames &&
search_block_index_ + search_block_size <= frames;
}
bool AudioRendererAlgorithm::RunOneWsolaIteration(double playback_rate) {
if (!CanPerformWsola())
return false;
GetOptimalBlock();
// Overlap-and-add.
for (int k = 0; k < channels_; ++k) {
if (!channel_mask_[k])
continue;
const float* const ch_opt_frame = optimal_block_->channel(k);
float* ch_output = wsola_output_->channel(k) + num_complete_frames_;
for (int n = 0; n < ola_hop_size_; ++n) {
ch_output[n] = ch_output[n] * ola_window_[ola_hop_size_ + n] +
ch_opt_frame[n] * ola_window_[n];
}
// Copy the second half to the output.
memcpy(&ch_output[ola_hop_size_], &ch_opt_frame[ola_hop_size_],
sizeof(*ch_opt_frame) * ola_hop_size_);
}
num_complete_frames_ += ola_hop_size_;
UpdateOutputTime(playback_rate, ola_hop_size_);
RemoveOldInputFrames(playback_rate);
return true;
}
void AudioRendererAlgorithm::UpdateOutputTime(double playback_rate,
double time_change) {
output_time_ += time_change;
// Center of the search region, in frames.
const int search_block_center_index = static_cast<int>(
output_time_ * playback_rate + 0.5);
search_block_index_ = search_block_center_index - search_block_center_offset_;
}
void AudioRendererAlgorithm::RemoveOldInputFrames(double playback_rate) {
const int earliest_used_index = std::min(target_block_index_,
search_block_index_);
if (earliest_used_index <= 0)
return; // Nothing to remove.
// Remove frames from input and adjust indices accordingly.
audio_buffer_.SeekFrames(earliest_used_index);
target_block_index_ -= earliest_used_index;
// Adjust output index.
double output_time_change = static_cast<double>(earliest_used_index) /
playback_rate;
CHECK_GE(output_time_, output_time_change);
UpdateOutputTime(playback_rate, -output_time_change);
}
int AudioRendererAlgorithm::WriteCompletedFramesTo(
int requested_frames, int dest_offset, AudioBus* dest) {
int rendered_frames = std::min(num_complete_frames_, requested_frames);
if (rendered_frames == 0)
return 0; // There is nothing to read from |wsola_output_|, return.
wsola_output_->CopyPartialFramesTo(0, rendered_frames, dest_offset, dest);
// Remove the frames which are read.
int frames_to_move = wsola_output_->frames() - rendered_frames;
for (int k = 0; k < channels_; ++k) {
if (!channel_mask_[k])
continue;
float* ch = wsola_output_->channel(k);
memmove(ch, &ch[rendered_frames], sizeof(*ch) * frames_to_move);
}
num_complete_frames_ -= rendered_frames;
return rendered_frames;
}
bool AudioRendererAlgorithm::TargetIsWithinSearchRegion() const {
const int search_block_size = num_candidate_blocks_ + (ola_window_size_ - 1);
return target_block_index_ >= search_block_index_ &&
target_block_index_ + ola_window_size_ <=
search_block_index_ + search_block_size;
}
void AudioRendererAlgorithm::GetOptimalBlock() {
int optimal_index = 0;
// An interval around last optimal block which is excluded from the search.
// This is to reduce the buzzy sound. The number 160 is rather arbitrary and
// derived heuristically.
const int kExcludeIntervalLengthFrames = 160;
if (TargetIsWithinSearchRegion()) {
optimal_index = target_block_index_;
PeekAudioWithZeroPrepend(optimal_index, optimal_block_.get());
} else {
PeekAudioWithZeroPrepend(target_block_index_, target_block_.get());
PeekAudioWithZeroPrepend(search_block_index_, search_block_.get());
int last_optimal =
target_block_index_ - ola_hop_size_ - search_block_index_;
internal::Interval exclude_interval =
std::make_pair(last_optimal - kExcludeIntervalLengthFrames / 2,
last_optimal + kExcludeIntervalLengthFrames / 2);
// |optimal_index| is in frames and it is relative to the beginning of the
// |search_block_|.
optimal_index =
internal::OptimalIndex(search_block_wrapper_.get(),
target_block_wrapper_.get(), exclude_interval);
// Translate |index| w.r.t. the beginning of |audio_buffer_| and extract the
// optimal block.
optimal_index += search_block_index_;
PeekAudioWithZeroPrepend(optimal_index, optimal_block_.get());
// Make a transition from target block to the optimal block if different.
// Target block has the best continuation to the current output.
// Optimal block is the most similar block to the target, however, it might
// introduce some discontinuity when over-lap-added. Therefore, we combine
// them for a smoother transition. The length of transition window is twice
// as that of the optimal-block which makes it like a weighting function
// where target-block has higher weight close to zero (weight of 1 at index
// 0) and lower weight close the end.
for (int k = 0; k < channels_; ++k) {
if (!channel_mask_[k])
continue;
float* ch_opt = optimal_block_->channel(k);
const float* const ch_target = target_block_->channel(k);
for (int n = 0; n < ola_window_size_; ++n) {
ch_opt[n] = ch_opt[n] * transition_window_[n] +
ch_target[n] * transition_window_[ola_window_size_ + n];
}
}
}
// Next target is one hop ahead of the current optimal.
target_block_index_ = optimal_index + ola_hop_size_;
}
void AudioRendererAlgorithm::PeekAudioWithZeroPrepend(
int read_offset_frames, AudioBus* dest) {
CHECK_LE(read_offset_frames + dest->frames(), audio_buffer_.frames());
int write_offset = 0;
int num_frames_to_read = dest->frames();
if (read_offset_frames < 0) {
int num_zero_frames_appended = std::min(-read_offset_frames,
num_frames_to_read);
read_offset_frames = 0;
num_frames_to_read -= num_zero_frames_appended;
write_offset = num_zero_frames_appended;
dest->ZeroFrames(num_zero_frames_appended);
}
audio_buffer_.PeekFrames(num_frames_to_read, read_offset_frames,
write_offset, dest);
}
void AudioRendererAlgorithm::CreateSearchWrappers() {
// WSOLA is quite expensive to run, so if a channel mask exists, use it to
// reduce the size of our search space.
std::vector<float*> active_target_channels;
std::vector<float*> active_search_channels;
for (int ch = 0; ch < channels_; ++ch) {
if (channel_mask_[ch]) {
active_target_channels.push_back(target_block_->channel(ch));
active_search_channels.push_back(search_block_->channel(ch));
}
}
target_block_wrapper_ =
AudioBus::WrapVector(target_block_->frames(), active_target_channels);
search_block_wrapper_ =
AudioBus::WrapVector(search_block_->frames(), active_search_channels);
}
void AudioRendererAlgorithm::SetPreservesPitch(bool preserves_pitch) {
preserves_pitch_ = preserves_pitch;
}
} // namespace media