1
    2
    3
    4
    5
    6
    7
    8
    9
   10
   11
   12
   13
   14
   15
   16
   17
   18
   19
   20
   21
   22
   23
   24
   25
   26
   27
   28
   29
   30
   31
   32
   33
   34
   35
   36
   37
   38
   39
   40
   41
   42
   43
   44
   45
   46
   47
   48
   49
   50
   51
   52
   53
   54
   55
   56
   57
   58
   59
   60
   61
   62
   63
   64
   65
   66
   67
   68
   69
   70
   71
   72
   73
   74
   75
   76
   77
   78
   79
   80
   81
   82
   83
   84
   85
   86
   87
   88
   89
   90
   91
   92
   93
   94
   95
   96
   97
   98
   99
  100
  101
  102
  103
  104
  105
  106
  107
  108
  109
  110
  111
  112
  113
  114
  115
  116
  117
  118
  119
  120
  121
  122
  123
  124
  125
  126
  127
  128
  129
  130
  131
  132
  133
  134
  135
  136
  137
  138
  139
  140
  141
  142
  143
  144
  145
  146
  147
  148
  149
  150
  151
  152
  153
  154
  155
  156
  157
  158
  159
  160
  161
  162
  163
  164
  165
  166
  167
  168
  169
  170
  171
  172
  173
  174
  175
  176
  177
  178
  179
  180
  181
  182
  183
  184
  185
  186
  187
  188
  189
  190
  191
  192
  193
  194
  195
  196
  197
  198
  199
  200
  201
  202
  203
  204
  205
  206
  207
  208
  209
  210
  211
  212
  213
  214
  215
  216
  217
  218
  219
  220
  221
  222
  223
  224
  225
  226
  227
  228
  229
  230
  231
  232
  233
  234
  235
  236
  237
  238
  239
  240
  241
  242
  243
  244
  245
  246
  247
  248
  249
  250
  251
  252
  253
  254
  255
  256
  257
  258
  259
  260
  261
  262
  263
  264
  265
  266
  267
  268
  269
  270
  271
  272
  273
  274
  275
  276
  277
  278
  279
  280
  281
  282
  283
  284
  285
  286
  287
  288
  289
  290
  291
  292
  293
  294
  295
  296
  297
  298
  299
  300
  301
  302
  303
  304
  305
  306
  307
  308
  309
  310
  311
  312
  313
  314
  315
  316
  317
  318
  319
  320
  321
  322
  323
  324
  325
  326
  327
  328
  329
  330
  331
  332
  333
  334
  335
  336
  337
  338
  339
  340
  341
  342
  343
  344
  345
  346
  347
  348
  349
  350
  351
  352
  353
  354
  355
  356
  357
  358
  359
  360
  361
  362
  363
  364
  365
  366
  367
  368
  369
  370
  371
  372
  373
  374
  375
  376
  377
  378
  379
  380
  381
  382
  383
  384
  385
  386
  387
  388
  389
  390
  391
  392
  393
  394
  395
  396
  397
  398
  399
  400
  401
  402
  403
  404
  405
  406
  407
  408
  409
  410
  411
  412
  413
  414
  415
  416
  417
  418
  419
  420
  421
  422
  423
  424
  425
  426
  427
  428
  429
  430
  431
  432
  433
  434
  435
  436
  437
  438
  439
  440
  441
  442
  443
  444
  445
  446
  447
  448
  449
  450
  451
  452
  453
  454
  455
  456
  457
  458
  459
  460
  461
  462
  463
  464
  465
  466
  467
  468
  469
  470
  471
  472
  473
  474
  475
  476
  477
  478
  479
  480
  481
  482
  483
  484
  485
  486
  487
  488
  489
  490
  491
  492
  493
  494
  495
  496
  497
  498
  499
  500
  501
  502
  503
  504
  505
  506
  507
  508
  509
  510
  511
  512
  513
  514
  515
  516
  517
  518
  519
  520
  521
  522
  523
  524
  525
  526
  527
  528
  529
  530
  531
  532
  533
  534
  535
  536
  537
  538
  539
  540
  541
  542
  543
  544
  545
  546
  547
  548
  549
  550
  551
  552
  553
  554
  555
  556
  557
  558
  559
  560
  561
  562
  563
  564
  565
  566
  567
  568
  569
  570
  571
  572
  573
  574
  575
  576
  577
  578
  579
  580
  581
  582
  583
  584
  585
  586
  587
  588
  589
  590
  591
  592
  593
  594
  595
  596
  597
  598
  599
  600
  601
  602
  603
  604
  605
  606
  607
  608
  609
  610
  611
  612
  613
  614
  615
  616
  617
  618
  619
  620
  621
  622
  623
  624
  625
  626
  627
  628
  629
  630
  631
  632
  633
  634
  635
  636
  637
  638
  639
  640
  641
  642
  643
  644
  645
  646
  647
  648
  649
  650
  651
  652
  653
  654
  655
  656
  657
  658
  659
  660
  661
  662
  663
  664
  665
  666
  667
  668
  669
  670
  671
  672
  673
  674
  675
  676
  677
  678
  679
  680
  681
  682
  683
  684
  685
  686
  687
  688
  689
  690
  691
  692
  693
  694

media / filters / audio_renderer_algorithm.cc [blame]

// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif

#include "media/filters/audio_renderer_algorithm.h"

#include <algorithm>
#include <cmath>

#include "base/functional/bind.h"
#include "base/logging.h"
#include "base/memory/raw_ptr.h"
#include "cc/base/math_util.h"
#include "media/base/audio_bus.h"
#include "media/base/audio_timestamp_helper.h"
#include "media/base/limits.h"
#include "media/filters/wsola_internals.h"

namespace media {

// Waveform Similarity Overlap-and-add (WSOLA).
//
// One WSOLA iteration
//
// 1) Extract |target_block_| as input frames at indices
//    [|target_block_index_|, |target_block_index_| + |ola_window_size_|).
//    Note that |target_block_| is the "natural" continuation of the output.
//
// 2) Extract |search_block_| as input frames at indices
//    [|search_block_index_|,
//     |search_block_index_| + |num_candidate_blocks_| + |ola_window_size_|).
//
// 3) Find a block within the |search_block_| that is most similar
//    to |target_block_|. Let |optimal_index| be the index of such block and
//    write it to |optimal_block_|.
//
// 4) Update:
//    |optimal_block_| = |transition_window_| * |target_block_| +
//    (1 - |transition_window_|) * |optimal_block_|.
//
// 5) Overlap-and-add |optimal_block_| to the |wsola_output_|.
//
// 6) Update:
//    |target_block_| = |optimal_index| + |ola_window_size_| / 2.
//    |output_index_| = |output_index_| + |ola_window_size_| / 2,
//    |search_block_center_index| = |output_index_| * |playback_rate|, and
//    |search_block_index_| = |search_block_center_index| -
//        |search_block_center_offset_|.

// Overlap-and-add window size in milliseconds.
constexpr base::TimeDelta kOlaWindowSize = base::Milliseconds(20);

// Size of search interval in milliseconds. The search interval is
// [-delta delta] around |output_index_| * |playback_rate|. So the search
// interval is 2 * delta.
constexpr base::TimeDelta kWsolaSearchInterval = base::Milliseconds(30);

// The maximum size for the |audio_buffer_|. Arbitrarily determined.
constexpr base::TimeDelta kMaxCapacity = base::Seconds(3);

// The minimum size for the |audio_buffer_|. Arbitrarily determined.
constexpr base::TimeDelta kStartingCapacity = base::Milliseconds(200);

// The minimum size for the |audio_buffer_| for encrypted streams.
// Set this to be larger than |kStartingCapacity| because the performance of
// encrypted playback is always worse than clear playback, due to decryption and
// potentially IPC overhead. For the context, see https://crbug.com/403462,
// https://crbug.com/718161 and https://crbug.com/879970.
constexpr base::TimeDelta kStartingCapacityForEncrypted =
    base::Milliseconds(500);

AudioRendererAlgorithm::AudioRendererAlgorithm(MediaLog* media_log)
    : AudioRendererAlgorithm(
          media_log,
          {kMaxCapacity, kStartingCapacity, kStartingCapacityForEncrypted}) {}

AudioRendererAlgorithm::AudioRendererAlgorithm(
    MediaLog* media_log,
    AudioRendererAlgorithmParameters params)
    : media_log_(media_log),
      audio_renderer_algorithm_params_(std::move(params)),
      channels_(0),
      samples_per_second_(0),
      is_bitstream_format_(false),
      capacity_(0),
      output_time_(0.0),
      search_block_center_offset_(0),
      search_block_index_(0),
      num_candidate_blocks_(0),
      target_block_index_(0),
      ola_window_size_(0),
      ola_hop_size_(0),
      num_complete_frames_(0),
      initial_capacity_(0),
      max_capacity_(0) {}

AudioRendererAlgorithm::~AudioRendererAlgorithm() = default;

void AudioRendererAlgorithm::Initialize(const AudioParameters& params,
                                        bool is_encrypted) {
  CHECK(params.IsValid());

  channels_ = params.channels();
  samples_per_second_ = params.sample_rate();
  is_bitstream_format_ = params.IsBitstreamFormat();
  min_playback_threshold_ = params.frames_per_buffer() * 2;
  initial_capacity_ = capacity_ = playback_threshold_ = std::max(
      min_playback_threshold_,
      AudioTimestampHelper::TimeToFrames(
          is_encrypted
              ? audio_renderer_algorithm_params_.starting_capacity_for_encrypted
              : audio_renderer_algorithm_params_.starting_capacity,
          samples_per_second_));
  max_capacity_ = std::max(
      initial_capacity_,
      AudioTimestampHelper::TimeToFrames(
          audio_renderer_algorithm_params_.max_capacity, samples_per_second_));
  num_candidate_blocks_ = AudioTimestampHelper::TimeToFrames(
      kWsolaSearchInterval, samples_per_second_);
  ola_window_size_ =
      AudioTimestampHelper::TimeToFrames(kOlaWindowSize, samples_per_second_);

  // Make sure window size is an even number.
  ola_window_size_ += ola_window_size_ & 1;
  ola_hop_size_ = ola_window_size_ / 2;

  // |num_candidate_blocks_| / 2 is the offset of the center of the search
  // block to the center of the first (left most) candidate block. The offset
  // of the center of a candidate block to its left most point is
  // |ola_window_size_| / 2 - 1. Note that |ola_window_size_| is even and in
  // our convention the center belongs to the left half, so we need to subtract
  // one frame to get the correct offset.
  //
  //                             Search Block
  //              <------------------------------------------->
  //
  //   |ola_window_size_| / 2 - 1
  //              <----
  //
  //             |num_candidate_blocks_| / 2
  //                   <----------------
  //                                 center
  //              X----X----------------X---------------X-----X
  //              <---------->                     <---------->
  //                Candidate      ...               Candidate
  //                   1,          ...         |num_candidate_blocks_|
  search_block_center_offset_ =
      num_candidate_blocks_ / 2 + (ola_window_size_ / 2 - 1);

  // If no mask is provided, assume all channels are valid.
  if (channel_mask_.empty())
    SetChannelMask(std::vector<bool>(channels_, true));
}

void AudioRendererAlgorithm::SetChannelMask(std::vector<bool> channel_mask) {
  DCHECK_EQ(channel_mask.size(), static_cast<size_t>(channels_));
  channel_mask_ = std::move(channel_mask);
  if (ola_window_)
    CreateSearchWrappers();
}

void AudioRendererAlgorithm::OnResamplerRead(int frame_delay,
                                             AudioBus* audio_bus) {
  const int requested_frames = audio_bus->frames();
  int read_frames = audio_buffer_.ReadFrames(requested_frames, 0, audio_bus);

  if (read_frames < requested_frames) {
    // We should only be filling up |resampler_| with silence if we are playing
    // out all remaining frames.
    DCHECK(reached_end_of_stream_);
    audio_bus->ZeroFramesPartial(read_frames, requested_frames - read_frames);
  }

  resampler_only_has_silence_ = !read_frames;
}

void AudioRendererAlgorithm::MarkEndOfStream() {
  reached_end_of_stream_ = true;
}

int AudioRendererAlgorithm::ResampleAndFill(AudioBus* dest,
                                            int dest_offset,
                                            int requested_frames,
                                            double playback_rate) {
  if (!resampler_) {
    resampler_ = std::make_unique<MultiChannelResampler>(
        channels_, playback_rate, SincResampler::kDefaultRequestSize,
        base::BindRepeating(&AudioRendererAlgorithm::OnResamplerRead,
                            base::Unretained(this)));
    resampler_->PrimeWithSilence();
  }

  if (reached_end_of_stream_ && resampler_only_has_silence_ &&
      !audio_buffer_.frames()) {
    // Previous calls to ResampleAndFill() and OnResamplerRead() have used all
    // of the available buffers from |audio_buffer_|. We have also played out
    // all remaining frames, and |resampler_| only contains silence.
    return 0;
  }

  // |resampler_| can request more than |requested_frames|, due to the
  // requests size not being aligned. To prevent having to fill it with silence,
  // we find the max number of reads it could request, and make sure we have
  // enough data to satisfy all of those reads.
  if (!reached_end_of_stream_ &&
      audio_buffer_.frames() <
          resampler_->GetMaxInputFramesRequested(requested_frames)) {
    // Exit early, forgoing at most a total of |audio_buffer_.frames()| +
    // |resampler_->BufferedFrames()|.
    // If we have reached the end of stream, |resampler_| will output silence
    // after running out of frames, which is ok.
    return 0;
  }
  resampler_->SetRatio(playback_rate);

  // Directly use |dest| for the most common case of having 0 offset.
  if (!dest_offset) {
    resampler_->Resample(requested_frames, dest);
    return requested_frames;
  }

  // This is only really used once, at the beginning of a stream, which means
  // we can use a temporary variable, rather than saving it as a member.
  // NOTE: We don't wrap |dest|'s channel data in an AudioBus wrapper, because
  // |dest_offset| isn't aligned always with AudioBus::kChannelAlignment.
  std::unique_ptr<AudioBus> resampler_output =
      AudioBus::Create(channels_, requested_frames);

  resampler_->Resample(requested_frames, resampler_output.get());
  resampler_output->CopyPartialFramesTo(0, requested_frames, dest_offset, dest);

  return requested_frames;
}

int AudioRendererAlgorithm::RunWsolaAndFill(AudioBus* dest,
                                            int dest_offset,
                                            int requested_frames,
                                            double playback_rate) {
  // Allocate structures on first non-1.0 playback rate; these can eat a fair
  // chunk of memory. ~56kB for stereo 48kHz, up to ~765kB for 7.1 192kHz.
  if (!ola_window_) {
    ola_window_.reset(new float[ola_window_size_]);
    internal::GetPeriodicHanningWindow(ola_window_size_, ola_window_.get());

    transition_window_.reset(new float[ola_window_size_ * 2]);
    internal::GetPeriodicHanningWindow(2 * ola_window_size_,
                                       transition_window_.get());

    // Initialize for overlap-and-add of the first block.
    wsola_output_ =
        AudioBus::Create(channels_, ola_window_size_ + ola_hop_size_);
    wsola_output_->Zero();

    // Auxiliary containers.
    optimal_block_ = AudioBus::Create(channels_, ola_window_size_);
    search_block_ = AudioBus::Create(
        channels_, num_candidate_blocks_ + (ola_window_size_ - 1));
    target_block_ = AudioBus::Create(channels_, ola_window_size_);

    // Create potentially smaller wrappers for playback rate adaptation.
    CreateSearchWrappers();
  }

  // Silent audio can contain non-zero samples small enough to result in
  // subnormals internalls. Disabling subnormals can be significantly faster in
  // these cases.
  cc::ScopedSubnormalFloatDisabler disable_subnormals;

  // WSOLA doesn't actually consume input frames until the WSOLA iteration
  // completes; see RemoveOldInputFrames() in RunOneWsolaIteration().
  const auto initial_input_frames = audio_buffer_.frames();

  int rendered_frames = 0;
  do {
    rendered_frames +=
        WriteCompletedFramesTo(requested_frames - rendered_frames,
                               dest_offset + rendered_frames, dest);
  } while (rendered_frames < requested_frames &&
           RunOneWsolaIteration(playback_rate));

  // The effective rate is just how many input frames were used to produce the
  // requested number of output frames. We don't want the cumulative value since
  // that is just ~`playback_rate`, but instead the "impulse" of this call.
  //
  // Note: The effective rate may briefly be zero for playback rates below 1.0.
  // Note 2: During end-of-stream, `rendered_frames` may be zero.
  if (rendered_frames > 0) {
    effective_playback_rate_ = (initial_input_frames - audio_buffer_.frames()) /
                               static_cast<double>(rendered_frames);
  } else {
    effective_playback_rate_ = playback_rate;
  }
  return rendered_frames;
}

int AudioRendererAlgorithm::FillBuffer(AudioBus* dest,
                                       int dest_offset,
                                       int requested_frames,
                                       double playback_rate) {
  if (playback_rate == 0) {
    return 0;
  }

  DCHECK_GT(playback_rate, 0);
  DCHECK_EQ(channels_, dest->channels());

  // In case of compressed bitstream formats, no post processing is allowed.
  if (is_bitstream_format_) {
    return audio_buffer_.ReadFrames(requested_frames, dest_offset, dest);
  }

  const FillBufferMode fill_buffer_mode = ChooseBufferMode(playback_rate);
  SetFillBufferMode(fill_buffer_mode);

  switch (fill_buffer_mode) {
    case FillBufferMode::kPassthrough: {
      // Optimize the most common `playback_rate` ~= 1 case to use a single copy
      // instead of copying frame by frame.
      const int frames_to_copy =
          std::min(audio_buffer_.frames(), requested_frames);
      const int frames_read =
          audio_buffer_.ReadFrames(frames_to_copy, dest_offset, dest);
      DCHECK_EQ(frames_read, frames_to_copy);
      effective_playback_rate_ = 1.0;
      return frames_read;
    }
    case FillBufferMode::kResampler:
      effective_playback_rate_ = playback_rate;
      return ResampleAndFill(dest, dest_offset, requested_frames,
                             playback_rate);

    case FillBufferMode::kWSOLA:
      return RunWsolaAndFill(dest, dest_offset, requested_frames,
                             playback_rate);
  }
}

AudioRendererAlgorithm::FillBufferMode AudioRendererAlgorithm::ChooseBufferMode(
    double playback_rate) {
  // Always resample when we don't care about pitch. This prevents audio pops
  // when `playback_rate` goes back & forth between 1.0 and non 1.0 values.
  // This can happen when making minute adjustment to the playback rate, to fix
  // timestamp drift between multiple clips.
  // Always resampling does come at a small performance/memory cost.
  if (!preserves_pitch_) {
    return FillBufferMode::kResampler;
  }

  int slower_step = ceil(ola_window_size_ * playback_rate);
  int faster_step = ceil(ola_window_size_ / playback_rate);

  const bool is_playback_rate_almost_one =
      ola_window_size_ <= faster_step && slower_step >= ola_window_size_;

  // Optimize the most common `playback_rate` ~= 1 case to use a single copy
  // instead of copying frame by frame.
  if (is_playback_rate_almost_one) {
    return FillBufferMode::kPassthrough;
  }

  return FillBufferMode::kWSOLA;
}

void AudioRendererAlgorithm::SetFillBufferMode(FillBufferMode mode) {
  if (last_mode_ == mode)
    return;

  // Clear any state from other fill modes so that we don't produce outdated
  // audio later.
  if (last_mode_ == FillBufferMode::kWSOLA) {
    output_time_ = 0.0;
    search_block_index_ = 0;
    target_block_index_ = 0;
    if (wsola_output_)
      wsola_output_->Zero();
    num_complete_frames_ = 0;
    effective_playback_rate_ = 0;
  }
  resampler_.reset();

  last_mode_ = mode;
}

void AudioRendererAlgorithm::FlushBuffers() {
  // Clear the queue of decoded packets (releasing the buffers).
  audio_buffer_.Clear();
  output_time_ = 0.0;
  search_block_index_ = 0;
  target_block_index_ = 0;
  if (wsola_output_)
    wsola_output_->Zero();
  num_complete_frames_ = 0;

  resampler_.reset();
  reached_end_of_stream_ = false;

  // Reset |capacity_| and |playback_threshold_| so growth triggered by
  // underflows doesn't penalize seek time. When |latency_hint_| is set we don't
  // increase the queue for underflow, so avoid resetting it on flush.
  if (!latency_hint_) {
    capacity_ = playback_threshold_ = initial_capacity_;
  }
}

void AudioRendererAlgorithm::EnqueueBuffer(
    scoped_refptr<AudioBuffer> buffer_in) {
  DCHECK(!buffer_in->end_of_stream());
  audio_buffer_.Append(std::move(buffer_in));
}

void AudioRendererAlgorithm::SetLatencyHint(
    std::optional<base::TimeDelta> latency_hint) {
  DCHECK_GE(playback_threshold_, min_playback_threshold_);
  DCHECK_LE(playback_threshold_, capacity_);
  DCHECK_LE(capacity_, max_capacity_);

  latency_hint_ = latency_hint;

  if (!latency_hint) {
    // Restore default values.
    playback_threshold_ = capacity_ = initial_capacity_;

    MEDIA_LOG(DEBUG, media_log_)
        << "Audio latency hint cleared. Default buffer size ("
        << AudioTimestampHelper::FramesToTime(playback_threshold_,
                                              samples_per_second_)
        << ") restored";
    return;
  }

  int latency_hint_frames =
      AudioTimestampHelper::TimeToFrames(*latency_hint_, samples_per_second_);

  // Set |plabyack_threshold_| using hint, clamped between
  // [min_playback_threshold_, max_capacity_].
  std::string clamp_string;
  if (latency_hint_frames > max_capacity_) {
    playback_threshold_ = max_capacity_;
    clamp_string = " (clamped to max)";
  } else if (latency_hint_frames < min_playback_threshold_) {
    playback_threshold_ = min_playback_threshold_;
    clamp_string = " (clamped to min)";
  } else {
    playback_threshold_ = latency_hint_frames;
  }

  // Use |initial_capacity_| if possible. Increase if needed.
  capacity_ = std::max(playback_threshold_, initial_capacity_);

  MEDIA_LOG(DEBUG, media_log_)
      << "Audio latency hint set:" << *latency_hint << ". "
      << "Effective buffering latency:"
      << AudioTimestampHelper::FramesToTime(playback_threshold_,
                                            samples_per_second_)
      << clamp_string;

  DCHECK_GE(playback_threshold_, min_playback_threshold_);
  DCHECK_LE(playback_threshold_, capacity_);
  DCHECK_LE(capacity_, max_capacity_);
}

bool AudioRendererAlgorithm::IsQueueAdequateForPlayback() {
  return audio_buffer_.frames() >= playback_threshold_;
}

bool AudioRendererAlgorithm::IsQueueFull() {
  return audio_buffer_.frames() >= capacity_;
}

void AudioRendererAlgorithm::IncreasePlaybackThreshold() {
  DCHECK(!latency_hint_) << "Don't override the user specified latency";
  DCHECK_EQ(playback_threshold_, capacity_);
  DCHECK_LE(capacity_, max_capacity_);

  playback_threshold_ = capacity_ = std::min(2 * capacity_, max_capacity_);
}

int64_t AudioRendererAlgorithm::GetMemoryUsage() const {
  return BufferedFrames() * channels_ * sizeof(float);
}

int AudioRendererAlgorithm::BufferedFrames() const {
  return audio_buffer_.frames() +
         (resampler_ ? static_cast<int>(resampler_->BufferedFrames()) : 0);
}

double AudioRendererAlgorithm::DelayInFrames(double playback_rate) const {
  int slower_step = std::ceil(ola_window_size_ * playback_rate);
  int faster_step = std::ceil(ola_window_size_ / playback_rate);

  // When |playback_rate| ~= 1, we read directly from |audio_buffer_|.
  if (ola_window_size_ <= faster_step && slower_step >= ola_window_size_)
    return audio_buffer_.frames();

  const float buffered_output_frames = BufferedFrames() / playback_rate;
  const float unconverted_output_frames = buffered_output_frames - output_time_;
  return unconverted_output_frames + num_complete_frames_;
}

std::optional<base::TimeDelta> AudioRendererAlgorithm::FrontTimestamp() const {
  return audio_buffer_.FrontTimestamp();
}

bool AudioRendererAlgorithm::CanPerformWsola() const {
  const int search_block_size = num_candidate_blocks_ + (ola_window_size_ - 1);
  const int frames = audio_buffer_.frames();
  return target_block_index_ + ola_window_size_ <= frames &&
      search_block_index_ + search_block_size <= frames;
}

bool AudioRendererAlgorithm::RunOneWsolaIteration(double playback_rate) {
  if (!CanPerformWsola())
    return false;

  GetOptimalBlock();

  // Overlap-and-add.
  for (int k = 0; k < channels_; ++k) {
    if (!channel_mask_[k])
      continue;

    const float* const ch_opt_frame = optimal_block_->channel(k);
    float* ch_output = wsola_output_->channel(k) + num_complete_frames_;
    for (int n = 0; n < ola_hop_size_; ++n) {
      ch_output[n] = ch_output[n] * ola_window_[ola_hop_size_ + n] +
                     ch_opt_frame[n] * ola_window_[n];
    }

    // Copy the second half to the output.
    memcpy(&ch_output[ola_hop_size_], &ch_opt_frame[ola_hop_size_],
           sizeof(*ch_opt_frame) * ola_hop_size_);
  }

  num_complete_frames_ += ola_hop_size_;
  UpdateOutputTime(playback_rate, ola_hop_size_);
  RemoveOldInputFrames(playback_rate);
  return true;
}

void AudioRendererAlgorithm::UpdateOutputTime(double playback_rate,
                                              double time_change) {
  output_time_ += time_change;
  // Center of the search region, in frames.
  const int search_block_center_index = static_cast<int>(
      output_time_ * playback_rate + 0.5);
  search_block_index_ = search_block_center_index - search_block_center_offset_;
}

void AudioRendererAlgorithm::RemoveOldInputFrames(double playback_rate) {
  const int earliest_used_index = std::min(target_block_index_,
                                           search_block_index_);
  if (earliest_used_index <= 0)
    return;  // Nothing to remove.

  // Remove frames from input and adjust indices accordingly.
  audio_buffer_.SeekFrames(earliest_used_index);
  target_block_index_ -= earliest_used_index;

  // Adjust output index.
  double output_time_change = static_cast<double>(earliest_used_index) /
      playback_rate;
  CHECK_GE(output_time_, output_time_change);
  UpdateOutputTime(playback_rate, -output_time_change);
}

int AudioRendererAlgorithm::WriteCompletedFramesTo(
    int requested_frames, int dest_offset, AudioBus* dest) {
  int rendered_frames = std::min(num_complete_frames_, requested_frames);

  if (rendered_frames == 0)
    return 0;  // There is nothing to read from |wsola_output_|, return.

  wsola_output_->CopyPartialFramesTo(0, rendered_frames, dest_offset, dest);

  // Remove the frames which are read.
  int frames_to_move = wsola_output_->frames() - rendered_frames;
  for (int k = 0; k < channels_; ++k) {
    if (!channel_mask_[k])
      continue;
    float* ch = wsola_output_->channel(k);
    memmove(ch, &ch[rendered_frames], sizeof(*ch) * frames_to_move);
  }
  num_complete_frames_ -= rendered_frames;
  return rendered_frames;
}

bool AudioRendererAlgorithm::TargetIsWithinSearchRegion() const {
  const int search_block_size = num_candidate_blocks_ + (ola_window_size_ - 1);

  return target_block_index_ >= search_block_index_ &&
      target_block_index_ + ola_window_size_ <=
      search_block_index_ + search_block_size;
}

void AudioRendererAlgorithm::GetOptimalBlock() {
  int optimal_index = 0;

  // An interval around last optimal block which is excluded from the search.
  // This is to reduce the buzzy sound. The number 160 is rather arbitrary and
  // derived heuristically.
  const int kExcludeIntervalLengthFrames = 160;
  if (TargetIsWithinSearchRegion()) {
    optimal_index = target_block_index_;
    PeekAudioWithZeroPrepend(optimal_index, optimal_block_.get());
  } else {
    PeekAudioWithZeroPrepend(target_block_index_, target_block_.get());
    PeekAudioWithZeroPrepend(search_block_index_, search_block_.get());
    int last_optimal =
        target_block_index_ - ola_hop_size_ - search_block_index_;
    internal::Interval exclude_interval =
        std::make_pair(last_optimal - kExcludeIntervalLengthFrames / 2,
                       last_optimal + kExcludeIntervalLengthFrames / 2);

    // |optimal_index| is in frames and it is relative to the beginning of the
    // |search_block_|.
    optimal_index =
        internal::OptimalIndex(search_block_wrapper_.get(),
                               target_block_wrapper_.get(), exclude_interval);

    // Translate |index| w.r.t. the beginning of |audio_buffer_| and extract the
    // optimal block.
    optimal_index += search_block_index_;
    PeekAudioWithZeroPrepend(optimal_index, optimal_block_.get());

    // Make a transition from target block to the optimal block if different.
    // Target block has the best continuation to the current output.
    // Optimal block is the most similar block to the target, however, it might
    // introduce some discontinuity when over-lap-added. Therefore, we combine
    // them for a smoother transition. The length of transition window is twice
    // as that of the optimal-block which makes it like a weighting function
    // where target-block has higher weight close to zero (weight of 1 at index
    // 0) and lower weight close the end.
    for (int k = 0; k < channels_; ++k) {
      if (!channel_mask_[k])
        continue;
      float* ch_opt = optimal_block_->channel(k);
      const float* const ch_target = target_block_->channel(k);
      for (int n = 0; n < ola_window_size_; ++n) {
        ch_opt[n] = ch_opt[n] * transition_window_[n] +
                    ch_target[n] * transition_window_[ola_window_size_ + n];
      }
    }
  }

  // Next target is one hop ahead of the current optimal.
  target_block_index_ = optimal_index + ola_hop_size_;
}

void AudioRendererAlgorithm::PeekAudioWithZeroPrepend(
    int read_offset_frames, AudioBus* dest) {
  CHECK_LE(read_offset_frames + dest->frames(), audio_buffer_.frames());

  int write_offset = 0;
  int num_frames_to_read = dest->frames();
  if (read_offset_frames < 0) {
    int num_zero_frames_appended = std::min(-read_offset_frames,
                                            num_frames_to_read);
    read_offset_frames = 0;
    num_frames_to_read -= num_zero_frames_appended;
    write_offset = num_zero_frames_appended;
    dest->ZeroFrames(num_zero_frames_appended);
  }
  audio_buffer_.PeekFrames(num_frames_to_read, read_offset_frames,
                           write_offset, dest);
}

void AudioRendererAlgorithm::CreateSearchWrappers() {
  // WSOLA is quite expensive to run, so if a channel mask exists, use it to
  // reduce the size of our search space.
  std::vector<float*> active_target_channels;
  std::vector<float*> active_search_channels;
  for (int ch = 0; ch < channels_; ++ch) {
    if (channel_mask_[ch]) {
      active_target_channels.push_back(target_block_->channel(ch));
      active_search_channels.push_back(search_block_->channel(ch));
    }
  }

  target_block_wrapper_ =
      AudioBus::WrapVector(target_block_->frames(), active_target_channels);
  search_block_wrapper_ =
      AudioBus::WrapVector(search_block_->frames(), active_search_channels);
}

void AudioRendererAlgorithm::SetPreservesPitch(bool preserves_pitch) {
  preserves_pitch_ = preserves_pitch;
}

}  // namespace media