1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
media / filters / audio_renderer_algorithm_unittest.cc [blame]
// Copyright 2012 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
//
// The format of these tests are to enqueue a known amount of data and then
// request the exact amount we expect in order to dequeue the known amount of
// data. This ensures that for any rate we are consuming input data at the
// correct rate. We always pass in a very large destination buffer with the
// expectation that FillBuffer() will fill as much as it can but no more.
#ifdef UNSAFE_BUFFERS_BUILD
// TODO(crbug.com/40285824): Remove this and convert code to safer constructs.
#pragma allow_unsafe_buffers
#endif
#include "media/filters/audio_renderer_algorithm.h"
#include <stddef.h>
#include <stdint.h>
#include <algorithm> // For std::min().
#include <cmath>
#include <memory>
#include <vector>
#include "base/functional/bind.h"
#include "base/functional/callback.h"
#include "media/base/audio_buffer.h"
#include "media/base/audio_bus.h"
#include "media/base/audio_timestamp_helper.h"
#include "media/base/channel_layout.h"
#include "media/base/media_util.h"
#include "media/base/test_helpers.h"
#include "media/base/timestamp_constants.h"
#include "media/filters/wsola_internals.h"
#include "testing/gtest/include/gtest/gtest.h"
namespace media {
const int kFrameSize = 250;
const int kSamplesPerSecond = 3000;
const int kOutputDurationInSec = 10;
static void FillWithSquarePulseTrain(
int half_pulse_width, int offset, int num_samples, float* data) {
ASSERT_GE(offset, 0);
ASSERT_LE(offset, num_samples);
// Fill backward from |offset| - 1 toward zero, starting with -1, alternating
// between -1 and 1 every |pulse_width| samples.
float pulse = -1.0f;
for (int n = offset - 1, k = 0; n >= 0; --n, ++k) {
if (k >= half_pulse_width) {
pulse = -pulse;
k = 0;
}
data[n] = pulse;
}
// Fill forward from |offset| towards the end, starting with 1, alternating
// between 1 and -1 every |pulse_width| samples.
pulse = 1.0f;
for (int n = offset, k = 0; n < num_samples; ++n, ++k) {
if (k >= half_pulse_width) {
pulse = -pulse;
k = 0;
}
data[n] = pulse;
}
}
static void FillWithSquarePulseTrain(
int half_pulse_width, int offset, int channel, AudioBus* audio_bus) {
FillWithSquarePulseTrain(half_pulse_width, offset, audio_bus->frames(),
audio_bus->channel(channel));
}
class AudioRendererAlgorithmTest : public testing::Test {
public:
AudioRendererAlgorithmTest()
: algorithm_(&media_log_),
frames_enqueued_(0),
channels_(0),
channel_layout_(CHANNEL_LAYOUT_NONE),
sample_format_(kUnknownSampleFormat),
samples_per_second_(0),
bytes_per_sample_(0) {}
~AudioRendererAlgorithmTest() override = default;
void Initialize() {
Initialize(CHANNEL_LAYOUT_STEREO, kSampleFormatS16, kSamplesPerSecond,
kSamplesPerSecond / 10);
}
void Initialize(ChannelLayout channel_layout,
SampleFormat sample_format,
int samples_per_second,
int frames_per_buffer) {
Initialize(
channel_layout, sample_format, samples_per_second, frames_per_buffer,
std::vector<bool>(ChannelLayoutToChannelCount(channel_layout), true));
}
void Initialize(ChannelLayout channel_layout,
SampleFormat sample_format,
int samples_per_second,
int frames_per_buffer,
std::vector<bool> channel_mask) {
channels_ = ChannelLayoutToChannelCount(channel_layout);
samples_per_second_ = samples_per_second;
channel_layout_ = channel_layout;
sample_format_ = sample_format;
bytes_per_sample_ = SampleFormatToBytesPerChannel(sample_format);
media::AudioParameters::Format format =
media::AudioParameters::AUDIO_PCM_LINEAR;
if (sample_format == kSampleFormatAc3)
format = media::AudioParameters::AUDIO_BITSTREAM_AC3;
else if (sample_format == kSampleFormatEac3)
format = media::AudioParameters::AUDIO_BITSTREAM_EAC3;
else if (sample_format == kSampleFormatDts)
format = media::AudioParameters::AUDIO_BITSTREAM_DTS;
AudioParameters params(format,
ChannelLayoutConfig(channel_layout, channels_),
samples_per_second, frames_per_buffer);
is_bitstream_format_ = params.IsBitstreamFormat();
bool is_encrypted = false;
algorithm_.Initialize(params, is_encrypted);
algorithm_.SetChannelMask(std::move(channel_mask));
FillAlgorithmQueueUntilFull();
}
base::TimeDelta BufferedTime() {
return AudioTimestampHelper::FramesToTime(algorithm_.BufferedFrames(),
samples_per_second_);
}
scoped_refptr<AudioBuffer> MakeBuffer(int frame_size) {
// The value of the data is meaningless; we just want non-zero data to
// differentiate it from muted data.
scoped_refptr<AudioBuffer> buffer;
switch (sample_format_) {
case kSampleFormatAc3:
case kSampleFormatEac3:
buffer = MakeBitstreamAudioBuffer(
sample_format_, channel_layout_,
ChannelLayoutToChannelCount(channel_layout_), samples_per_second_,
1, 1, frame_size, kFrameSize, kNoTimestamp);
break;
case kSampleFormatU8:
buffer = MakeAudioBuffer<uint8_t>(
sample_format_, channel_layout_,
ChannelLayoutToChannelCount(channel_layout_), samples_per_second_,
1, 1, frame_size, kNoTimestamp);
break;
case kSampleFormatS16:
buffer = MakeAudioBuffer<int16_t>(
sample_format_, channel_layout_,
ChannelLayoutToChannelCount(channel_layout_), samples_per_second_,
1, 1, frame_size, kNoTimestamp);
break;
case kSampleFormatS32:
buffer = MakeAudioBuffer<int32_t>(
sample_format_, channel_layout_,
ChannelLayoutToChannelCount(channel_layout_), samples_per_second_,
1, 1, frame_size, kNoTimestamp);
break;
case kSampleFormatDts:
case kSampleFormatDtse:
case kSampleFormatDtsxP2:
buffer = MakeBitstreamAudioBuffer(
sample_format_, channel_layout_,
ChannelLayoutToChannelCount(channel_layout_), samples_per_second_,
1, 1, frame_size, kFrameSize, kNoTimestamp);
break;
default:
NOTREACHED() << "Unrecognized format " << sample_format_;
}
return buffer;
}
void FillAlgorithmQueueUntilAdequate() {
// Note: "adequate" may be <= "full" depending on current latency hint.
EXPECT_FALSE(algorithm_.IsQueueFull());
EXPECT_FALSE(algorithm_.IsQueueAdequateForPlayback());
while (!algorithm_.IsQueueAdequateForPlayback()) {
// "Adequate" tests may be sensitive to over-filling. Only add one buffer
// at a time to trigger "adequate" threshold precisely.
algorithm_.EnqueueBuffer(MakeBuffer(1));
}
}
void FillAlgorithmQueueUntilFull() {
while (!algorithm_.IsQueueFull()) {
algorithm_.EnqueueBuffer(MakeBuffer(kFrameSize));
frames_enqueued_ += kFrameSize;
}
}
bool VerifyAudioData(AudioBus* bus, int offset, int frames, float value) {
for (int ch = 0; ch < bus->channels(); ++ch) {
for (int i = offset; i < offset + frames; ++i) {
if (bus->channel(ch)[i] != value)
return false;
}
}
return true;
}
bool AudioDataIsMuted(AudioBus* audio_data, int frames_written, int offset) {
return VerifyAudioData(audio_data, offset, frames_written, 0);
}
int ComputeConsumedFrames(int initial_frames_enqueued,
int initial_frames_buffered) {
int frame_delta = frames_enqueued_ - initial_frames_enqueued;
int buffered_delta = algorithm_.BufferedFrames() - initial_frames_buffered;
int consumed = frame_delta - buffered_delta;
CHECK_GE(consumed, 0);
return consumed;
}
void TestPlaybackRate(double playback_rate) {
const int kDefaultBufferSize = algorithm_.samples_per_second() / 100;
const int kDefaultFramesRequested = kOutputDurationInSec *
algorithm_.samples_per_second();
TestPlaybackRate(playback_rate, kDefaultBufferSize, kDefaultFramesRequested,
0);
}
void TestPlaybackRate(double playback_rate,
int buffer_size_in_frames,
int total_frames_requested,
int dest_offset) {
int initial_frames_enqueued = frames_enqueued_;
std::unique_ptr<AudioBus> bus =
AudioBus::Create(channels_, buffer_size_in_frames);
bus->ZeroFrames(dest_offset);
if (playback_rate == 0.0) {
int frames_written = algorithm_.FillBuffer(
bus.get(), 0, buffer_size_in_frames, playback_rate);
EXPECT_EQ(0, frames_written);
return;
}
if (!is_bitstream_format_) {
// When we switch playback rates (specifically from non-1.0 to 1.0), the
// BufferedFrames() can change since some internal buffers are cleared.
// Fill 0 frames to make sure the BufferedFrames() is correct for the
// |playback_rate|.
algorithm_.FillBuffer(bus.get(), 0, 0, playback_rate);
}
int initial_frames_buffered = algorithm_.BufferedFrames();
int frames_remaining = total_frames_requested;
bool first_fill_buffer = true;
while (frames_remaining > 0) {
int frames_requested =
std::min(buffer_size_in_frames - dest_offset, frames_remaining);
int frames_written = algorithm_.FillBuffer(
bus.get(), dest_offset, frames_requested, playback_rate);
ASSERT_GT(frames_written, 0) << "Requested: " << frames_requested
<< ", playing at " << playback_rate;
// Do not check data if it is first pull out and only one frame written.
// The very first frame out of WSOLA is always zero because of
// overlap-and-add window, which is zero for the first sample. Therefore,
// if at very first buffer-fill only one frame is written, that is zero
// which might cause exception in CheckFakeData().
if (!first_fill_buffer || frames_written > 1)
ASSERT_FALSE(AudioDataIsMuted(bus.get(), frames_written, dest_offset));
first_fill_buffer = false;
frames_remaining -= frames_written;
FillAlgorithmQueueUntilFull();
}
EXPECT_EQ(algorithm_.BufferedFrames() * channels_ * sizeof(float),
static_cast<size_t>(algorithm_.GetMemoryUsage()));
int frames_consumed =
ComputeConsumedFrames(initial_frames_enqueued, initial_frames_buffered);
// If playing back at normal speed, we should always get back the same
// number of bytes requested.
if (playback_rate == 1.0) {
EXPECT_EQ(total_frames_requested, frames_consumed);
return;
}
// Otherwise, allow |kMaxAcceptableDelta| difference between the target and
// actual playback rate.
// When |kSamplesPerSecond| and |total_frames_requested| are reasonably
// large, one can expect less than a 1% difference in most cases. In our
// current implementation, sped up playback is less accurate than slowed
// down playback, and for playback_rate > 1, playback rate generally gets
// less and less accurate the farther it drifts from 1 (though this is
// nonlinear).
double actual_playback_rate =
1.0 * frames_consumed / total_frames_requested;
EXPECT_NEAR(playback_rate, actual_playback_rate, playback_rate / 100.0);
}
void TestResamplingWithUnderflow(double playback_rate, bool end_of_stream) {
// We are only testing the behavior of the resampling case.
algorithm_.SetPreservesPitch(false);
if (end_of_stream) {
algorithm_.MarkEndOfStream();
} else {
algorithm_.FlushBuffers();
}
const int buffer_size_in_frames = algorithm_.samples_per_second() / 10;
const int initial_frames_enqueued = frames_enqueued_;
std::unique_ptr<AudioBus> bus =
AudioBus::Create(channels_, buffer_size_in_frames);
FillAlgorithmQueueUntilFull();
int frames_written;
int total_frames_written = 0;
do {
frames_written = algorithm_.FillBuffer(
bus.get(), 0, buffer_size_in_frames, playback_rate);
total_frames_written += frames_written;
} while (frames_written && algorithm_.BufferedFrames() > 0);
int input_frames_enqueued = frames_enqueued_ - initial_frames_enqueued;
int ouput_frames_available =
static_cast<int>(input_frames_enqueued / playback_rate + 0.5);
if (end_of_stream) {
// If we marked the EOS, all data should we played out, possibly with some
// extra silence.
EXPECT_GE(total_frames_written, ouput_frames_available);
} else {
// If we don't mark the EOS, we expect to have lost some frames because
// we don't partially handle requests.
EXPECT_LE(total_frames_written, ouput_frames_available);
}
}
void WsolaTest(double playback_rate) {
const int kSampleRateHz = 48000;
constexpr ChannelLayout kChannelLayout = CHANNEL_LAYOUT_STEREO;
const int kNumFrames = kSampleRateHz / 100; // 10 milliseconds.
channels_ = ChannelLayoutToChannelCount(kChannelLayout);
AudioParameters params(AudioParameters::AUDIO_PCM_LINEAR,
ChannelLayoutConfig::FromLayout<kChannelLayout>(),
kSampleRateHz, kNumFrames);
bool is_encrypted = false;
algorithm_.Initialize(params, is_encrypted);
// A pulse is 6 milliseconds (even number of samples).
const int kPulseWidthSamples = 6 * kSampleRateHz / 1000;
const int kHalfPulseWidthSamples = kPulseWidthSamples / 2;
// For the ease of implementation get 1 frame every call to FillBuffer().
std::unique_ptr<AudioBus> output = AudioBus::Create(channels_, 1);
// Input buffer to inject pulses.
scoped_refptr<AudioBuffer> input =
AudioBuffer::CreateBuffer(kSampleFormatPlanarF32,
kChannelLayout,
channels_,
kSampleRateHz,
kPulseWidthSamples);
const std::vector<uint8_t*>& channel_data = input->channel_data();
// Fill |input| channels.
FillWithSquarePulseTrain(kHalfPulseWidthSamples, 0, kPulseWidthSamples,
reinterpret_cast<float*>(channel_data[0]));
FillWithSquarePulseTrain(kHalfPulseWidthSamples, kHalfPulseWidthSamples,
kPulseWidthSamples,
reinterpret_cast<float*>(channel_data[1]));
// A buffer for the output until a complete pulse is created. Then
// reference pulse is compared with this buffer.
std::unique_ptr<AudioBus> pulse_buffer =
AudioBus::Create(channels_, kPulseWidthSamples);
const float kTolerance = 0.000001f;
// Equivalent of 4 seconds.
const int kNumRequestedPulses = kSampleRateHz * 4 / kPulseWidthSamples;
for (int n = 0; n < kNumRequestedPulses; ++n) {
int num_buffered_frames = 0;
while (num_buffered_frames < kPulseWidthSamples) {
int num_samples =
algorithm_.FillBuffer(output.get(), 0, 1, playback_rate);
ASSERT_LE(num_samples, 1);
if (num_samples > 0) {
output->CopyPartialFramesTo(0, num_samples, num_buffered_frames,
pulse_buffer.get());
num_buffered_frames++;
} else {
algorithm_.EnqueueBuffer(input);
}
}
// Pulses in the first half of WSOLA AOL frame are not constructed
// perfectly. Do not check them.
if (n > 3) {
for (int m = 0; m < channels_; ++m) {
const float* pulse_ch = pulse_buffer->channel(m);
// Because of overlap-and-add we might have round off error.
for (int k = 0; k < kPulseWidthSamples; ++k) {
ASSERT_NEAR(reinterpret_cast<float*>(channel_data[m])[k],
pulse_ch[k], kTolerance) << " loop " << n
<< " channel/sample " << m << "/" << k;
}
}
}
// Zero out the buffer to be sure the next comparison is relevant.
pulse_buffer->Zero();
}
}
protected:
AudioRendererAlgorithm algorithm_;
NullMediaLog media_log_;
int frames_enqueued_;
int channels_;
ChannelLayout channel_layout_;
SampleFormat sample_format_;
int samples_per_second_;
int bytes_per_sample_;
bool is_bitstream_format_;
};
TEST_F(AudioRendererAlgorithmTest, InitializeWithLargeParameters) {
const int kBufferSize = 0.5 * kSamplesPerSecond;
Initialize(CHANNEL_LAYOUT_MONO, kSampleFormatU8, kSamplesPerSecond,
kBufferSize);
EXPECT_LT(kBufferSize, algorithm_.QueueCapacity());
algorithm_.FlushBuffers();
EXPECT_LT(kBufferSize, algorithm_.QueueCapacity());
}
TEST_F(AudioRendererAlgorithmTest, FillBuffer_Bitstream) {
Initialize(CHANNEL_LAYOUT_STEREO, kSampleFormatEac3, kSamplesPerSecond,
kSamplesPerSecond / 100);
TestPlaybackRate(1.0, kFrameSize, 16 * kFrameSize, /* dest_offset */ 0);
}
TEST_F(AudioRendererAlgorithmTest, FillBuffer_NormalRate) {
Initialize();
TestPlaybackRate(1.0);
}
TEST_F(AudioRendererAlgorithmTest, FillBuffer_NearlyNormalFasterRate) {
Initialize();
TestPlaybackRate(1.0001);
}
TEST_F(AudioRendererAlgorithmTest, FillBuffer_NearlyNormalSlowerRate) {
Initialize();
TestPlaybackRate(0.9999);
}
// This test verifies that the resampling based time stretch algorithms works.
// The range of playback rates in which we use resampling is [0.95, 1.06].
TEST_F(AudioRendererAlgorithmTest, FillBuffer_ResamplingRates) {
Initialize();
// WSOLA.
TestPlaybackRate(0.50);
TestPlaybackRate(0.95);
TestPlaybackRate(1.00);
TestPlaybackRate(1.05);
TestPlaybackRate(2.00);
// Resampling.
algorithm_.SetPreservesPitch(false);
TestPlaybackRate(0.50);
TestPlaybackRate(0.95);
TestPlaybackRate(1.00);
TestPlaybackRate(1.05);
TestPlaybackRate(2.00);
}
// This test verifies that we use the right underlying algorithms based on
// the preserves pitch flag and the playback rate.
TEST_F(AudioRendererAlgorithmTest, FillBuffer_FillModes) {
Initialize();
// WSOLA.
algorithm_.SetPreservesPitch(true);
// Passthrough data when we are close to a playback rate of 1.0.
TestPlaybackRate(1.00);
EXPECT_EQ(algorithm_.last_mode_for_testing(),
AudioRendererAlgorithm::FillBufferMode::kPassthrough);
// Use WSOLA when we are not close to 1.0.
TestPlaybackRate(1.05);
EXPECT_EQ(algorithm_.last_mode_for_testing(),
AudioRendererAlgorithm::FillBufferMode::kWSOLA);
// Return to passthrough.
TestPlaybackRate(1.00);
EXPECT_EQ(algorithm_.last_mode_for_testing(),
AudioRendererAlgorithm::FillBufferMode::kPassthrough);
// Always use resampling when preservesPitch is false.
algorithm_.SetPreservesPitch(false);
TestPlaybackRate(1.00);
EXPECT_EQ(algorithm_.last_mode_for_testing(),
AudioRendererAlgorithm::FillBufferMode::kResampler);
TestPlaybackRate(1.05);
EXPECT_EQ(algorithm_.last_mode_for_testing(),
AudioRendererAlgorithm::FillBufferMode::kResampler);
TestPlaybackRate(1.00);
EXPECT_EQ(algorithm_.last_mode_for_testing(),
AudioRendererAlgorithm::FillBufferMode::kResampler);
}
TEST_F(AudioRendererAlgorithmTest, FillBuffer_WithOffset) {
Initialize();
const int kBufferSize = algorithm_.samples_per_second() / 10;
const int kOffset = kBufferSize / 10;
const int kFramesRequested =
kOutputDurationInSec * algorithm_.samples_per_second();
// No time-strech.
TestPlaybackRate(1.00, kBufferSize, kFramesRequested, kOffset);
// Resampling based time-strech.
TestPlaybackRate(1.05, kBufferSize, kFramesRequested, kOffset);
// WSOLA based time-strech.
TestPlaybackRate(1.25, kBufferSize, kFramesRequested, kOffset);
}
TEST_F(AudioRendererAlgorithmTest, FillBuffer_UnderFlow) {
Initialize();
TestResamplingWithUnderflow(0.75, true);
TestResamplingWithUnderflow(0.75, false);
TestResamplingWithUnderflow(1.25, true);
TestResamplingWithUnderflow(1.25, false);
}
TEST_F(AudioRendererAlgorithmTest, FillBuffer_OneAndAQuarterRate) {
Initialize();
TestPlaybackRate(1.25);
}
TEST_F(AudioRendererAlgorithmTest, FillBuffer_OneAndAHalfRate) {
Initialize();
TestPlaybackRate(1.5);
}
TEST_F(AudioRendererAlgorithmTest, FillBuffer_DoubleRate) {
Initialize();
TestPlaybackRate(2.0);
}
TEST_F(AudioRendererAlgorithmTest, FillBuffer_EightTimesRate) {
Initialize();
TestPlaybackRate(8.0);
}
TEST_F(AudioRendererAlgorithmTest, FillBuffer_ThreeQuartersRate) {
Initialize();
TestPlaybackRate(0.75);
}
TEST_F(AudioRendererAlgorithmTest, FillBuffer_HalfRate) {
Initialize();
TestPlaybackRate(0.5);
}
TEST_F(AudioRendererAlgorithmTest, FillBuffer_QuarterRate) {
Initialize();
TestPlaybackRate(0.25);
}
TEST_F(AudioRendererAlgorithmTest, FillBuffer_Pause) {
Initialize();
TestPlaybackRate(0.0);
}
TEST_F(AudioRendererAlgorithmTest, FillBuffer_SlowDown) {
Initialize();
TestPlaybackRate(4.5);
TestPlaybackRate(3.0);
TestPlaybackRate(2.0);
TestPlaybackRate(1.0);
TestPlaybackRate(0.5);
TestPlaybackRate(0.25);
}
TEST_F(AudioRendererAlgorithmTest, FillBuffer_SpeedUp) {
Initialize();
TestPlaybackRate(0.25);
TestPlaybackRate(0.5);
TestPlaybackRate(1.0);
TestPlaybackRate(2.0);
TestPlaybackRate(3.0);
TestPlaybackRate(4.5);
}
TEST_F(AudioRendererAlgorithmTest, FillBuffer_JumpAroundSpeeds) {
Initialize();
TestPlaybackRate(2.1);
TestPlaybackRate(0.9);
TestPlaybackRate(0.6);
TestPlaybackRate(1.4);
TestPlaybackRate(0.3);
}
TEST_F(AudioRendererAlgorithmTest, FillBuffer_SmallBufferSize) {
Initialize();
static const int kBufferSizeInFrames = 1;
static const int kFramesRequested = kOutputDurationInSec * kSamplesPerSecond;
TestPlaybackRate(1.0, kBufferSizeInFrames, kFramesRequested, 0);
TestPlaybackRate(0.5, kBufferSizeInFrames, kFramesRequested, 0);
TestPlaybackRate(1.5, kBufferSizeInFrames, kFramesRequested, 0);
}
TEST_F(AudioRendererAlgorithmTest, FillBuffer_LargeBufferSize) {
Initialize(CHANNEL_LAYOUT_STEREO, kSampleFormatS16, 44100, 441);
TestPlaybackRate(1.0);
TestPlaybackRate(0.5);
TestPlaybackRate(1.5);
}
TEST_F(AudioRendererAlgorithmTest, FillBuffer_LowerQualityAudio) {
Initialize(CHANNEL_LAYOUT_MONO, kSampleFormatU8, kSamplesPerSecond,
kSamplesPerSecond / 100);
TestPlaybackRate(1.0);
TestPlaybackRate(0.5);
TestPlaybackRate(1.5);
}
TEST_F(AudioRendererAlgorithmTest, FillBuffer_HigherQualityAudio) {
Initialize(CHANNEL_LAYOUT_STEREO, kSampleFormatS32, kSamplesPerSecond,
kSamplesPerSecond / 100);
TestPlaybackRate(1.0);
TestPlaybackRate(0.5);
TestPlaybackRate(1.5);
}
TEST_F(AudioRendererAlgorithmTest, DotProduct) {
const int kChannels = 3;
const int kFrames = 20;
const int kHalfPulseWidth = 2;
std::unique_ptr<AudioBus> a = AudioBus::Create(kChannels, kFrames);
std::unique_ptr<AudioBus> b = AudioBus::Create(kChannels, kFrames);
auto dot_prod = std::make_unique<float[]>(kChannels);
FillWithSquarePulseTrain(kHalfPulseWidth, 0, 0, a.get());
FillWithSquarePulseTrain(kHalfPulseWidth, 1, 1, a.get());
FillWithSquarePulseTrain(kHalfPulseWidth, 2, 2, a.get());
FillWithSquarePulseTrain(kHalfPulseWidth, 0, 0, b.get());
FillWithSquarePulseTrain(kHalfPulseWidth, 0, 1, b.get());
FillWithSquarePulseTrain(kHalfPulseWidth, 0, 2, b.get());
internal::MultiChannelDotProduct(a.get(), 0, b.get(), 0, kFrames,
dot_prod.get());
EXPECT_FLOAT_EQ(kFrames, dot_prod[0]);
EXPECT_FLOAT_EQ(0, dot_prod[1]);
EXPECT_FLOAT_EQ(-kFrames, dot_prod[2]);
internal::MultiChannelDotProduct(a.get(), 4, b.get(), 8, kFrames / 2,
dot_prod.get());
EXPECT_FLOAT_EQ(kFrames / 2, dot_prod[0]);
EXPECT_FLOAT_EQ(0, dot_prod[1]);
EXPECT_FLOAT_EQ(-kFrames / 2, dot_prod[2]);
}
TEST_F(AudioRendererAlgorithmTest, MovingBlockEnergy) {
const int kChannels = 2;
const int kFrames = 20;
const int kFramesPerBlock = 3;
const int kNumBlocks = kFrames - (kFramesPerBlock - 1);
std::unique_ptr<AudioBus> a = AudioBus::Create(kChannels, kFrames);
auto energies = std::make_unique<float[]>(kChannels * kNumBlocks);
float* ch_left = a->channel(0);
float* ch_right = a->channel(1);
// Fill up both channels.
for (int n = 0; n < kFrames; ++n) {
ch_left[n] = n;
ch_right[n] = kFrames - 1 - n;
}
internal::MultiChannelMovingBlockEnergies(a.get(), kFramesPerBlock,
energies.get());
// Check if the energy of candidate blocks of each channel computed correctly.
for (int n = 0; n < kNumBlocks; ++n) {
float expected_energy = 0;
for (int k = 0; k < kFramesPerBlock; ++k)
expected_energy += ch_left[n + k] * ch_left[n + k];
// Left (first) channel.
EXPECT_FLOAT_EQ(expected_energy, energies[2 * n]);
expected_energy = 0;
for (int k = 0; k < kFramesPerBlock; ++k)
expected_energy += ch_right[n + k] * ch_right[n + k];
// Second (right) channel.
EXPECT_FLOAT_EQ(expected_energy, energies[2 * n + 1]);
}
}
TEST_F(AudioRendererAlgorithmTest, FullAndDecimatedSearch) {
const int kFramesInSearchRegion = 12;
const int kChannels = 2;
float ch_0[] = {
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.0f, 1.0f, 1.0f, 0.0f, 0.0f, 0.0f, 0.0f };
float ch_1[] = {
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.1f, 1.0f, 0.1f, 0.0f, 0.0f };
ASSERT_EQ(sizeof(ch_0), sizeof(ch_1));
ASSERT_EQ(static_cast<size_t>(kFramesInSearchRegion),
sizeof(ch_0) / sizeof(*ch_0));
std::unique_ptr<AudioBus> search_region =
AudioBus::Create(kChannels, kFramesInSearchRegion);
float* ch = search_region->channel(0);
memcpy(ch, ch_0, sizeof(float) * kFramesInSearchRegion);
ch = search_region->channel(1);
memcpy(ch, ch_1, sizeof(float) * kFramesInSearchRegion);
const int kFramePerBlock = 4;
float target_0[] = { 1.0f, 1.0f, 1.0f, 0.0f };
float target_1[] = { 0.0f, 1.0f, 0.1f, 1.0f };
ASSERT_EQ(sizeof(target_0), sizeof(target_1));
ASSERT_EQ(static_cast<size_t>(kFramePerBlock),
sizeof(target_0) / sizeof(*target_0));
std::unique_ptr<AudioBus> target =
AudioBus::Create(kChannels, kFramePerBlock);
ch = target->channel(0);
memcpy(ch, target_0, sizeof(float) * kFramePerBlock);
ch = target->channel(1);
memcpy(ch, target_1, sizeof(float) * kFramePerBlock);
auto energy_target = std::make_unique<float[]>(kChannels);
internal::MultiChannelDotProduct(target.get(), 0, target.get(), 0,
kFramePerBlock, energy_target.get());
ASSERT_EQ(3.f, energy_target[0]);
ASSERT_EQ(2.01f, energy_target[1]);
const int kNumCandidBlocks = kFramesInSearchRegion - (kFramePerBlock - 1);
auto energy_candid_blocks =
std::make_unique<float[]>(kNumCandidBlocks * kChannels);
internal::MultiChannelMovingBlockEnergies(
search_region.get(), kFramePerBlock, energy_candid_blocks.get());
// Check the energy of the candidate blocks of the first channel.
ASSERT_FLOAT_EQ(0, energy_candid_blocks[0]);
ASSERT_FLOAT_EQ(0, energy_candid_blocks[2]);
ASSERT_FLOAT_EQ(1, energy_candid_blocks[4]);
ASSERT_FLOAT_EQ(2, energy_candid_blocks[6]);
ASSERT_FLOAT_EQ(3, energy_candid_blocks[8]);
ASSERT_FLOAT_EQ(3, energy_candid_blocks[10]);
ASSERT_FLOAT_EQ(2, energy_candid_blocks[12]);
ASSERT_FLOAT_EQ(1, energy_candid_blocks[14]);
ASSERT_FLOAT_EQ(0, energy_candid_blocks[16]);
// Check the energy of the candidate blocks of the second channel.
ASSERT_FLOAT_EQ(0, energy_candid_blocks[1]);
ASSERT_FLOAT_EQ(0, energy_candid_blocks[3]);
ASSERT_FLOAT_EQ(0, energy_candid_blocks[5]);
ASSERT_FLOAT_EQ(0, energy_candid_blocks[7]);
ASSERT_FLOAT_EQ(0.01f, energy_candid_blocks[9]);
ASSERT_FLOAT_EQ(1.01f, energy_candid_blocks[11]);
ASSERT_FLOAT_EQ(1.02f, energy_candid_blocks[13]);
ASSERT_FLOAT_EQ(1.02f, energy_candid_blocks[15]);
ASSERT_FLOAT_EQ(1.01f, energy_candid_blocks[17]);
// An interval which is of no effect.
internal::Interval exclude_interval = std::make_pair(-100, -10);
EXPECT_EQ(5, internal::FullSearch(
0, kNumCandidBlocks - 1, exclude_interval, target.get(),
search_region.get(), energy_target.get(), energy_candid_blocks.get()));
// Exclude the the best match.
exclude_interval = std::make_pair(2, 5);
EXPECT_EQ(7, internal::FullSearch(
0, kNumCandidBlocks - 1, exclude_interval, target.get(),
search_region.get(), energy_target.get(), energy_candid_blocks.get()));
// An interval which is of no effect.
exclude_interval = std::make_pair(-100, -10);
EXPECT_EQ(4, internal::DecimatedSearch(
4, exclude_interval, target.get(), search_region.get(),
energy_target.get(), energy_candid_blocks.get()));
EXPECT_EQ(5, internal::OptimalIndex(search_region.get(), target.get(),
exclude_interval));
}
TEST_F(AudioRendererAlgorithmTest, QuadraticInterpolation) {
// Arbitrary coefficients.
const float kA = 0.7f;
const float kB = 1.2f;
const float kC = 0.8f;
float y_values[3];
y_values[0] = kA - kB + kC;
y_values[1] = kC;
y_values[2] = kA + kB + kC;
float extremum;
float extremum_value;
internal::QuadraticInterpolation(y_values, &extremum, &extremum_value);
float x_star = -kB / (2.f * kA);
float y_star = kA * x_star * x_star + kB * x_star + kC;
EXPECT_FLOAT_EQ(x_star, extremum);
EXPECT_FLOAT_EQ(y_star, extremum_value);
}
TEST_F(AudioRendererAlgorithmTest, QuadraticInterpolation_Colinear) {
float y_values[3];
y_values[0] = 1.0;
y_values[1] = 1.0;
y_values[2] = 1.0;
float extremum;
float extremum_value;
internal::QuadraticInterpolation(y_values, &extremum, &extremum_value);
EXPECT_FLOAT_EQ(extremum, 0.0);
EXPECT_FLOAT_EQ(extremum_value, 1.0);
}
TEST_F(AudioRendererAlgorithmTest, WsolaSlowdown) {
WsolaTest(0.6);
}
TEST_F(AudioRendererAlgorithmTest, WsolaSpeedup) {
WsolaTest(1.6);
}
TEST_F(AudioRendererAlgorithmTest, FillBufferOffset) {
Initialize();
// Pad the queue capacity so fill requests for all rates below can be fully
// satisfied.
algorithm_.IncreasePlaybackThreshold();
std::unique_ptr<AudioBus> bus = AudioBus::Create(channels_, kFrameSize);
// Verify that the first half of |bus| remains zero and the last half is
// filled appropriately at normal, above normal, and below normal.
const int kHalfSize = kFrameSize / 2;
const float kAudibleRates[] = {1.0f, 2.0f, 0.5f, 5.0f, 0.25f};
for (size_t i = 0; i < std::size(kAudibleRates); ++i) {
SCOPED_TRACE(kAudibleRates[i]);
bus->Zero();
const int frames_filled = algorithm_.FillBuffer(
bus.get(), kHalfSize, kHalfSize, kAudibleRates[i]);
ASSERT_EQ(kHalfSize, frames_filled);
ASSERT_TRUE(VerifyAudioData(bus.get(), 0, kHalfSize, 0));
ASSERT_FALSE(VerifyAudioData(bus.get(), kHalfSize, kHalfSize, 0));
FillAlgorithmQueueUntilFull();
}
}
TEST_F(AudioRendererAlgorithmTest, FillBuffer_ChannelMask) {
// Setup a quad channel layout where even channels are always muted.
Initialize(CHANNEL_LAYOUT_QUAD, kSampleFormatS16, 44100, 441,
{true, false, true, false});
std::unique_ptr<AudioBus> bus = AudioBus::Create(channels_, kFrameSize);
int frames_filled = algorithm_.FillBuffer(bus.get(), 0, kFrameSize, 2.0);
ASSERT_GT(frames_filled, 0);
// Verify the channels are muted appropriately; even though the created buffer
// actually has audio data in it.
for (int ch = 0; ch < bus->channels(); ++ch) {
double sum = 0;
for (int i = 0; i < bus->frames(); ++i)
sum += bus->channel(ch)[i];
if (ch % 2 == 1)
ASSERT_EQ(sum, 0);
else
ASSERT_NE(sum, 0);
}
// Update the channel mask and verify it's reflected correctly.
algorithm_.SetChannelMask({true, true, true, true});
frames_filled = algorithm_.FillBuffer(bus.get(), 0, kFrameSize, 2.0);
ASSERT_GT(frames_filled, 0);
// Verify no channels are muted now.
for (int ch = 0; ch < bus->channels(); ++ch) {
double sum = 0;
for (int i = 0; i < bus->frames(); ++i)
sum += bus->channel(ch)[i];
ASSERT_NE(sum, 0);
}
}
// The |plabyack_threshold_| should == |capacity_| by default, when no
// |latency_hint_| is set.
TEST_F(AudioRendererAlgorithmTest, NoLatencyHint) {
// Queue is initially empty. Capacity is unset.
EXPECT_EQ(algorithm_.BufferedFrames(), 0);
EXPECT_EQ(algorithm_.QueueCapacity(), 0);
// Initialize sets capacity fills queue.
Initialize();
EXPECT_GT(algorithm_.QueueCapacity(), 0);
EXPECT_TRUE(algorithm_.IsQueueFull());
EXPECT_TRUE(algorithm_.IsQueueAdequateForPlayback());
// No latency hint is set, so playback threshold should == capacity. Observe
// that the queue is neither "full" nor "adequate for playback" if we are one
// one frame below the capacity limit.
std::unique_ptr<AudioBus> bus = AudioBus::Create(channels_, kFrameSize);
int requested_frames =
(algorithm_.BufferedFrames() - algorithm_.QueueCapacity()) + 1;
const int frames_filled =
algorithm_.FillBuffer(bus.get(), 0, requested_frames, 1);
EXPECT_EQ(frames_filled, requested_frames);
EXPECT_EQ(algorithm_.BufferedFrames(), algorithm_.QueueCapacity() - 1);
EXPECT_FALSE(algorithm_.IsQueueFull());
EXPECT_FALSE(algorithm_.IsQueueAdequateForPlayback());
// Queue should again be "adequate for playback" and "full" it we add a single
// frame such that BufferedFrames() == QueueCapacity().
DCHECK_EQ(sample_format_, kSampleFormatS16);
algorithm_.EnqueueBuffer(MakeBuffer(1));
EXPECT_TRUE(algorithm_.IsQueueFull());
EXPECT_TRUE(algorithm_.IsQueueAdequateForPlayback());
EXPECT_EQ(algorithm_.BufferedFrames(), algorithm_.QueueCapacity());
// Increasing playback threshold should also increase capacity.
int orig_capacity = algorithm_.QueueCapacity();
algorithm_.IncreasePlaybackThreshold();
EXPECT_GT(algorithm_.QueueCapacity(), orig_capacity);
EXPECT_FALSE(algorithm_.IsQueueFull());
EXPECT_FALSE(algorithm_.IsQueueAdequateForPlayback());
// Filling again, 1 frame at a time, we should reach "adequate" and "full" in
// the same step.
while (!algorithm_.IsQueueFull()) {
algorithm_.EnqueueBuffer(MakeBuffer(1));
EXPECT_EQ(algorithm_.IsQueueFull(),
algorithm_.IsQueueAdequateForPlayback());
}
// Flushing should restore queue capacity and playback threshold to the
// original value.
algorithm_.FlushBuffers();
EXPECT_EQ(algorithm_.QueueCapacity(), orig_capacity);
EXPECT_FALSE(algorithm_.IsQueueFull());
EXPECT_FALSE(algorithm_.IsQueueAdequateForPlayback());
// Filling again, 1 frame at a time, we should reach "adequate" and "full" in
// the same step.
while (!algorithm_.IsQueueFull()) {
algorithm_.EnqueueBuffer(MakeBuffer(1));
EXPECT_EQ(algorithm_.IsQueueFull(),
algorithm_.IsQueueAdequateForPlayback());
}
}
// The |playback_threshold_| should be < |capacity_| when a latency hint is
// set to reduce the playback delay.
TEST_F(AudioRendererAlgorithmTest, LowLatencyHint) {
// Initialize with a buffer size that leaves some gap between the min capacity
// (2*buffer_size) and the default capacity (200ms).
const int kBufferSize = kSamplesPerSecond / 50;
Initialize(CHANNEL_LAYOUT_STEREO, kSampleFormatS16, kSamplesPerSecond,
kBufferSize);
// FlushBuffers to start out empty.
algorithm_.FlushBuffers();
EXPECT_GT(algorithm_.QueueCapacity(), 0);
EXPECT_FALSE(algorithm_.IsQueueFull());
EXPECT_FALSE(algorithm_.IsQueueAdequateForPlayback());
// Set a latency hint at half the default capacity.
const int orig_queue_capcity = algorithm_.QueueCapacity();
base::TimeDelta low_latency_hint = AudioTimestampHelper::FramesToTime(
orig_queue_capcity / 2, samples_per_second_);
algorithm_.SetLatencyHint(low_latency_hint);
// Hint is less than capacity, so capacity should be unchanged.
EXPECT_EQ(algorithm_.QueueCapacity(), orig_queue_capcity);
// Fill until "adequate". Verify "adequate" buffer time reflects the hinted
// latency, and that "adequate" is less than "full".
FillAlgorithmQueueUntilAdequate();
EXPECT_EQ(BufferedTime(), low_latency_hint);
EXPECT_FALSE(algorithm_.IsQueueFull());
// Set a new *slightly higher* hint. Verify we're no longer "adequate".
low_latency_hint += base::Milliseconds(10);
algorithm_.SetLatencyHint(low_latency_hint);
EXPECT_FALSE(algorithm_.IsQueueAdequateForPlayback());
// Fill until "adequate". Verify "adequate" buffer time reflects the
// *slightly higher* hinted latency, and that "adequate" is less than "full".
FillAlgorithmQueueUntilAdequate();
EXPECT_EQ(BufferedTime(), low_latency_hint);
EXPECT_FALSE(algorithm_.IsQueueFull());
// Clearing the hint should restore the higher default playback threshold,
// such that we no longer have enough buffer to be "adequate for playback".
algorithm_.SetLatencyHint(std::nullopt);
EXPECT_FALSE(algorithm_.IsQueueAdequateForPlayback());
// Fill until "full". Verify that "adequate" now matches "full".
while (!algorithm_.IsQueueFull()) {
algorithm_.EnqueueBuffer(MakeBuffer(1));
EXPECT_EQ(algorithm_.IsQueueAdequateForPlayback(),
algorithm_.IsQueueFull());
}
}
// Note: the behavior of FlushBuffers() that is not specific to high vs low
// latency hints. Testing it with "high" is slightly more interesting. Testing
// with both "high" and "low" is excessive.
TEST_F(AudioRendererAlgorithmTest, HighLatencyHint) {
// Initialize with a buffer size that leaves some gap between the min capacity
// (2*buffer_size) and the default capacity (200ms).
const int kBufferSize = kSamplesPerSecond / 50;
Initialize(CHANNEL_LAYOUT_STEREO, kSampleFormatS16, kSamplesPerSecond,
kBufferSize);
const int default_capacity = algorithm_.QueueCapacity();
// FlushBuffers to start out empty.
algorithm_.FlushBuffers();
// Set a "high" latency hint.
const base::TimeDelta high_latency_hint = AudioTimestampHelper::FramesToTime(
algorithm_.QueueCapacity() * 2, samples_per_second_);
algorithm_.SetLatencyHint(high_latency_hint);
const int high_latency_capacity = algorithm_.QueueCapacity();
EXPECT_GT(high_latency_capacity, default_capacity);
// Fill until "adequate". Verify it reflects the high latency hint.
EXPECT_TRUE(BufferedTime().is_zero());
FillAlgorithmQueueUntilAdequate();
EXPECT_EQ(BufferedTime(), high_latency_hint);
// Flush the queue!
algorithm_.FlushBuffers();
// Verify |capcity_| was not changed by flush. The latency hint supersedes any
// automatic queue size adjustments.
EXPECT_EQ(algorithm_.QueueCapacity(), high_latency_capacity);
// Similarly, verify that |playback_threshold_| was not changed by refilling
// and observing that the "adequate" buffered time still matches the hint.
FillAlgorithmQueueUntilAdequate();
EXPECT_EQ(BufferedTime(), high_latency_hint);
// Clearing the hint should restore the lower default playback threshold and
// capacity.
algorithm_.SetLatencyHint(std::nullopt);
EXPECT_EQ(algorithm_.QueueCapacity(), default_capacity);
// The queue is over-full from our last fill when the hint was set. Flush and
// refill to the reduced "adequate" threshold.
algorithm_.FlushBuffers();
FillAlgorithmQueueUntilAdequate();
EXPECT_LT(BufferedTime(), high_latency_hint);
// With latency hint now unset, callers are now free to adjust the queue size
// (e.g. in response to underflow). Lets increase the threshold!
algorithm_.IncreasePlaybackThreshold();
// Verify higher capacity means we're no longer "adequate" nor "full".
EXPECT_GT(algorithm_.QueueCapacity(), default_capacity);
EXPECT_FALSE(algorithm_.IsQueueAdequateForPlayback());
EXPECT_FALSE(algorithm_.IsQueueFull());
// Flush the queue and verify the increase has been reverted.
algorithm_.FlushBuffers();
EXPECT_EQ(algorithm_.QueueCapacity(), default_capacity);
// Refill to verify "adequate" matches the "full" at the default capacity.
while (!algorithm_.IsQueueAdequateForPlayback()) {
algorithm_.EnqueueBuffer(MakeBuffer(1));
EXPECT_EQ(algorithm_.IsQueueAdequateForPlayback(),
algorithm_.IsQueueFull());
}
}
// Algorithm should clam specified hint to a reasonable min/max.
TEST_F(AudioRendererAlgorithmTest, ClampLatencyHint) {
// Initialize with a buffer size that leaves some gap between the min capacity
// (2*buffer_size) and the default capacity (200ms).
const int kBufferSize = kSamplesPerSecond / 50;
Initialize(CHANNEL_LAYOUT_STEREO, kSampleFormatS16, kSamplesPerSecond,
kBufferSize);
const int default_capacity = algorithm_.QueueCapacity();
// FlushBuffers to start out empty.
algorithm_.FlushBuffers();
// Set a crazy high latency hint.
algorithm_.SetLatencyHint(base::Seconds(100));
const base::TimeDelta kDefaultMax = base::Seconds(3);
// Verify "full" and "adequate" thresholds increased, but to a known max well
// below the hinted value.
EXPECT_GT(algorithm_.QueueCapacity(), default_capacity);
FillAlgorithmQueueUntilAdequate();
EXPECT_EQ(BufferedTime(), kDefaultMax);
// FlushBuffers to return to empty.
algorithm_.FlushBuffers();
// Set an impossibly low latency hint.
algorithm_.SetLatencyHint(base::Seconds(0));
// Verify "full" and "adequate" thresholds decreased, but to a known minimum
// well above the hinted value.
EXPECT_EQ(algorithm_.QueueCapacity(), default_capacity);
FillAlgorithmQueueUntilAdequate();
EXPECT_EQ(algorithm_.BufferedFrames(), 2 * kBufferSize);
}
} // namespace media