1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
media / filters / audio_timestamp_validator_unittest.cc [blame]
// Copyright 2016 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "media/filters/audio_timestamp_validator.h"
#include <array>
#include <tuple>
#include "base/time/time.h"
#include "media/base/audio_decoder_config.h"
#include "media/base/media_util.h"
#include "media/base/mock_media_log.h"
#include "media/base/test_helpers.h"
#include "testing/gtest/include/gtest/gtest.h"
using ::testing::HasSubstr;
namespace media {
// Constants to specify the type of audio data used.
static const AudioCodec kCodec = AudioCodec::kVorbis;
static const SampleFormat kSampleFormat = kSampleFormatPlanarF32;
static const base::TimeDelta kSeekPreroll;
static const int kSamplesPerSecond = 10000;
static const base::TimeDelta kBufferDuration = base::Milliseconds(20);
static const ChannelLayout kChannelLayout = CHANNEL_LAYOUT_STEREO;
static const int kChannelCount = 2;
static const int kChannels = ChannelLayoutToChannelCount(kChannelLayout);
static const int kFramesPerBuffer = kBufferDuration.InMicroseconds() *
kSamplesPerSecond /
base::Time::kMicrosecondsPerSecond;
// Params are:
// 1. Output delay: number of encoded buffers before first decoded output
// 2. Codec delay: number of frames of codec delay in decoder config
// 3. Front discard: front discard for the first buffer
using ValidatorTestParams = testing::tuple<int, int, base::TimeDelta>;
class AudioTimestampValidatorTest
: public testing::Test,
public ::testing::WithParamInterface<ValidatorTestParams> {
public:
AudioTimestampValidatorTest() = default;
protected:
void SetUp() override {
output_delay_ = testing::get<0>(GetParam());
codec_delay_ = testing::get<1>(GetParam());
front_discard_ = testing::get<2>(GetParam());
}
int output_delay_;
int codec_delay_;
base::TimeDelta front_discard_;
testing::StrictMock<MockMediaLog> media_log_;
};
TEST_P(AudioTimestampValidatorTest, WarnForEraticTimes) {
AudioDecoderConfig decoder_config;
decoder_config.Initialize(kCodec, kSampleFormat, kChannelLayout,
kSamplesPerSecond, EmptyExtraData(),
EncryptionScheme::kUnencrypted, kSeekPreroll,
codec_delay_);
// Validator should fail to stabilize pattern for timestamp expectations.
EXPECT_MEDIA_LOG(
HasSubstr("Failed to reconcile encoded audio times "
"with decoded output."));
// No gap warnings should be emitted because the timestamps expectations never
// stabilized.
EXPECT_MEDIA_LOG(HasSubstr("timestamp gap detected")).Times(0);
AudioTimestampValidator validator(decoder_config, &media_log_);
const auto kRandomOffsets = std::to_array<base::TimeDelta>(
{base::Milliseconds(100), base::Milliseconds(350)});
for (int i = 0; i < 100; ++i) {
// Each buffer's timestamp is kBufferDuration from the previous buffer.
auto encoded_buffer = base::MakeRefCounted<DecoderBuffer>(0);
// Ping-pong between two random offsets to prevent validator from
// stabilizing timestamp pattern.
base::TimeDelta randomOffset =
kRandomOffsets[i % std::size(kRandomOffsets)];
encoded_buffer->set_timestamp(i * kBufferDuration + randomOffset);
if (i == 0) {
encoded_buffer->set_discard_padding(
std::make_pair(front_discard_, base::TimeDelta()));
}
validator.CheckForTimestampGap(*encoded_buffer);
if (i >= output_delay_) {
// kFramesPerBuffer is derived to perfectly match kBufferDuration, so
// no gaps exists as long as timestamps are exactly kBufferDuration apart.
scoped_refptr<AudioBuffer> decoded_buffer = MakeAudioBuffer<float>(
kSampleFormat, kChannelLayout, kChannelCount, kSamplesPerSecond, 1.0f,
0.0f, kFramesPerBuffer, i * kBufferDuration);
validator.RecordOutputDuration(*decoded_buffer);
}
}
}
TEST_P(AudioTimestampValidatorTest, NoWarningForValidTimes) {
AudioDecoderConfig decoder_config;
decoder_config.Initialize(kCodec, kSampleFormat, kChannelLayout,
kSamplesPerSecond, EmptyExtraData(),
EncryptionScheme::kUnencrypted, kSeekPreroll,
codec_delay_);
// Validator should quickly stabilize pattern for timestamp expectations.
EXPECT_MEDIA_LOG(HasSubstr("Failed to reconcile encoded audio times "
"with decoded output."))
.Times(0);
// Expect no gap warnings for series of buffers with valid timestamps.
EXPECT_MEDIA_LOG(HasSubstr("timestamp gap detected")).Times(0);
AudioTimestampValidator validator(decoder_config, &media_log_);
for (int i = 0; i < 100; ++i) {
// Each buffer's timestamp is kBufferDuration from the previous buffer.
auto encoded_buffer = base::MakeRefCounted<DecoderBuffer>(0);
encoded_buffer->set_timestamp(i * kBufferDuration);
if (i == 0) {
encoded_buffer->set_discard_padding(
std::make_pair(front_discard_, base::TimeDelta()));
}
validator.CheckForTimestampGap(*encoded_buffer);
if (i >= output_delay_) {
// kFramesPerBuffer is derived to perfectly match kBufferDuration, so
// no gaps exists as long as timestamps are exactly kBufferDuration apart.
scoped_refptr<AudioBuffer> decoded_buffer = MakeAudioBuffer<float>(
kSampleFormat, kChannelLayout, kChannelCount, kSamplesPerSecond, 1.0f,
0.0f, kFramesPerBuffer, i * kBufferDuration);
validator.RecordOutputDuration(*decoded_buffer);
}
}
}
TEST_P(AudioTimestampValidatorTest, SingleWarnForSingleLargeGap) {
AudioDecoderConfig decoder_config;
decoder_config.Initialize(kCodec, kSampleFormat, kChannelLayout,
kSamplesPerSecond, EmptyExtraData(),
EncryptionScheme::kUnencrypted, kSeekPreroll,
codec_delay_);
AudioTimestampValidator validator(decoder_config, &media_log_);
// Validator should quickly stabilize pattern for timestamp expectations.
EXPECT_MEDIA_LOG(HasSubstr("Failed to reconcile encoded audio times "
"with decoded output."))
.Times(0);
for (int i = 0; i < 100; ++i) {
// Halfway through the stream, introduce sudden gap of 50 milliseconds.
base::TimeDelta offset;
if (i >= 50)
offset = base::Milliseconds(100);
// This gap never widens, so expect only a single warning when its first
// introduced.
if (i == 50)
EXPECT_MEDIA_LOG(HasSubstr("timestamp gap detected"));
auto encoded_buffer = base::MakeRefCounted<DecoderBuffer>(0);
encoded_buffer->set_timestamp(i * kBufferDuration + offset);
if (i == 0) {
encoded_buffer->set_discard_padding(
std::make_pair(front_discard_, base::TimeDelta()));
}
validator.CheckForTimestampGap(*encoded_buffer);
if (i >= output_delay_) {
// kFramesPerBuffer is derived to perfectly match kBufferDuration, so
// no gaps exists as long as timestamps are exactly kBufferDuration apart.
scoped_refptr<AudioBuffer> decoded_buffer = MakeAudioBuffer<float>(
kSampleFormat, kChannelLayout, kChannelCount, kSamplesPerSecond, 1.0f,
0.0f, kFramesPerBuffer, i * kBufferDuration);
validator.RecordOutputDuration(*decoded_buffer);
}
}
}
TEST_P(AudioTimestampValidatorTest, RepeatedWarnForSlowAccumulatingDrift) {
AudioDecoderConfig decoder_config;
decoder_config.Initialize(kCodec, kSampleFormat, kChannelLayout,
kSamplesPerSecond, EmptyExtraData(),
EncryptionScheme::kUnencrypted, kSeekPreroll,
codec_delay_);
AudioTimestampValidator validator(decoder_config, &media_log_);
EXPECT_MEDIA_LOG(HasSubstr("Failed to reconcile encoded audio times "
"with decoded output."))
.Times(0);
int num_timestamp_gap_warnings = 0;
const int kMaxTimestampGapWarnings = 10; // Must be the same as in .cc
for (int i = 0; i < 100; ++i) {
// Wait for delayed output to begin plus an additional two iterations to
// start using drift offset. The the two iterations without offset will
// allow the validator to stabilize the pattern of timestamps and begin
// checking for gaps. Once stable, increase offset by 1 millisecond for each
// iteration.
base::TimeDelta offset;
if (i >= output_delay_ + 2)
offset = i * base::Milliseconds(1);
auto encoded_buffer = base::MakeRefCounted<DecoderBuffer>(0);
encoded_buffer->set_timestamp((i * kBufferDuration) + offset);
// Expect gap warnings to start when drift hits 50 milliseconds. Warnings
// should continue as the gap widens until log limit is hit.
if (offset > base::Milliseconds(50)) {
EXPECT_LIMITED_MEDIA_LOG(HasSubstr("timestamp gap detected"),
num_timestamp_gap_warnings,
kMaxTimestampGapWarnings);
}
validator.CheckForTimestampGap(*encoded_buffer);
if (i >= output_delay_) {
// kFramesPerBuffer is derived to perfectly match kBufferDuration, so
// no gaps exists as long as timestamps are exactly kBufferDuration apart.
scoped_refptr<AudioBuffer> decoded_buffer = MakeAudioBuffer<float>(
kSampleFormat, kChannelLayout, kChannelCount, kSamplesPerSecond, 1.0f,
0.0f, kFramesPerBuffer, i * kBufferDuration);
validator.RecordOutputDuration(*decoded_buffer);
}
}
}
// Test with cartesian product of various output delay, codec delay, and front
// discard values. These simulate configurations for different containers/codecs
// which present different challenges when building timestamp expectations.
INSTANTIATE_TEST_SUITE_P(
All,
AudioTimestampValidatorTest,
::testing::Combine(::testing::Values(0, 10), // output delay
::testing::Values(0, 512), // codec delay
::testing::Values(base::TimeDelta(), // front discard
base::Milliseconds(65))));
} // namespace media