1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
media / filters / frame_processor_unittest.cc [blame]
// Copyright 2014 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <stddef.h>
#include <stdint.h>
#include <cstring>
#include <map>
#include <memory>
#include <string>
#include <vector>
#include "base/functional/bind.h"
#include "base/run_loop.h"
#include "base/strings/string_number_conversions.h"
#include "base/strings/string_split.h"
#include "base/strings/string_util.h"
#include "base/test/task_environment.h"
#include "base/time/time.h"
#include "media/base/media_log.h"
#include "media/base/media_util.h"
#include "media/base/mock_filters.h"
#include "media/base/mock_media_log.h"
#include "media/base/test_helpers.h"
#include "media/base/timestamp_constants.h"
#include "media/filters/chunk_demuxer.h"
#include "media/filters/frame_processor.h"
#include "testing/gtest/include/gtest/gtest.h"
using base::Milliseconds;
using ::testing::_;
using ::testing::InSequence;
using ::testing::StrictMock;
using ::testing::Values;
namespace {
// Helpers to encode/decode a base::TimeDelta to/from a string, used in these
// tests to populate coded frame payloads with an encoded version of the
// original frame timestamp while (slightly) obfuscating the payload itself to
// help ensure the payload itself is neither changed by frame processing nor
// interpreted directly and mistakenly as a base::TimeDelta by frame processing.
std::string EncodeTestPayload(base::TimeDelta timestamp) {
return base::NumberToString(timestamp.InMicroseconds());
}
base::TimeDelta DecodeTestPayload(std::string_view payload) {
int64_t microseconds = 0;
CHECK(base::StringToInt64(payload, µseconds));
return base::Microseconds(microseconds);
}
} // namespace
namespace media {
typedef StreamParser::BufferQueue BufferQueue;
typedef StreamParser::TrackId TrackId;
// Used for setting expectations on callbacks. Using a StrictMock also lets us
// test for missing or extra callbacks.
class FrameProcessorTestCallbackHelper {
public:
FrameProcessorTestCallbackHelper() = default;
FrameProcessorTestCallbackHelper(const FrameProcessorTestCallbackHelper&) =
delete;
FrameProcessorTestCallbackHelper& operator=(
const FrameProcessorTestCallbackHelper&) = delete;
virtual ~FrameProcessorTestCallbackHelper() = default;
MOCK_METHOD1(OnParseWarning, void(const SourceBufferParseWarning));
MOCK_METHOD1(PossibleDurationIncrease, void(base::TimeDelta new_duration));
// Helper that calls the mock method as well as does basic sanity checks on
// |new_duration|.
void OnPossibleDurationIncrease(base::TimeDelta new_duration) {
PossibleDurationIncrease(new_duration);
ASSERT_NE(kNoTimestamp, new_duration);
ASSERT_NE(kInfiniteDuration, new_duration);
}
MOCK_METHOD2(OnAppend,
void(const DemuxerStream::Type type,
const BufferQueue* buffers));
MOCK_METHOD3(OnGroupStart,
void(const DemuxerStream::Type type,
DecodeTimestamp start_dts,
base::TimeDelta start_pts));
};
class FrameProcessorTest : public ::testing::TestWithParam<bool> {
public:
FrameProcessorTest(const FrameProcessorTest&) = delete;
FrameProcessorTest& operator=(const FrameProcessorTest&) = delete;
protected:
FrameProcessorTest()
: append_window_end_(kInfiniteDuration),
frame_duration_(Milliseconds(10)),
audio_id_(1),
video_id_(2) {
use_sequence_mode_ = GetParam();
frame_processor_ = std::make_unique<FrameProcessor>(
base::BindRepeating(
&FrameProcessorTestCallbackHelper::OnPossibleDurationIncrease,
base::Unretained(&callbacks_)),
&media_log_);
frame_processor_->SetParseWarningCallback(
base::BindRepeating(&FrameProcessorTestCallbackHelper::OnParseWarning,
base::Unretained(&callbacks_)));
}
enum StreamFlags {
HAS_AUDIO = 1 << 0,
HAS_VIDEO = 1 << 1,
OBSERVE_APPENDS_AND_GROUP_STARTS = 1 << 2,
USE_AUDIO_CODEC_SUPPORTING_NONKEYFRAMES = 1 << 3
};
void AddTestTracks(int stream_flags) {
const bool has_audio = (stream_flags & HAS_AUDIO) != 0;
const bool has_video = (stream_flags & HAS_VIDEO) != 0;
ASSERT_TRUE(has_audio || has_video);
const bool setup_observers =
(stream_flags & OBSERVE_APPENDS_AND_GROUP_STARTS) != 0;
const bool support_audio_nonkeyframes =
(stream_flags & USE_AUDIO_CODEC_SUPPORTING_NONKEYFRAMES) != 0;
ASSERT_TRUE(has_audio || !support_audio_nonkeyframes);
if (has_audio) {
CreateAndConfigureStream(DemuxerStream::AUDIO, setup_observers,
support_audio_nonkeyframes);
ASSERT_TRUE(audio_);
EXPECT_TRUE(frame_processor_->AddTrack(audio_id_, audio_.get()));
SeekStream(audio_.get(), Milliseconds(0));
}
if (has_video) {
CreateAndConfigureStream(DemuxerStream::VIDEO, setup_observers, false);
ASSERT_TRUE(video_);
EXPECT_TRUE(frame_processor_->AddTrack(video_id_, video_.get()));
SeekStream(video_.get(), Milliseconds(0));
}
}
void SetTimestampOffset(base::TimeDelta new_offset) {
timestamp_offset_ = new_offset;
frame_processor_->SetGroupStartTimestampIfInSequenceMode(timestamp_offset_);
}
base::TimeDelta MillisecondStringToTimestamp(std::string ts_string) {
if (ts_string == "Min") {
return kNoTimestamp;
}
if (ts_string == "Max") {
return kInfiniteDuration;
}
// Handle large integers precisely without converting through a double.
if (ts_string.find('.') == std::string::npos) {
int64_t milliseconds;
CHECK(base::StringToInt64(ts_string, &milliseconds));
return Milliseconds(milliseconds);
}
double ts_double;
CHECK(base::StringToDouble(ts_string, &ts_double));
return Milliseconds(ts_double);
}
BufferQueue StringToBufferQueue(const std::string& buffers_to_append,
const TrackId track_id,
const DemuxerStream::Type type) {
std::vector<std::string> timestamps = base::SplitString(
buffers_to_append, " ", base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL);
BufferQueue buffers;
for (size_t i = 0; i < timestamps.size(); i++) {
bool is_keyframe = false;
if (base::EndsWith(timestamps[i], "K", base::CompareCase::SENSITIVE)) {
is_keyframe = true;
// Remove the "K" off of the token.
timestamps[i] = timestamps[i].substr(0, timestamps[i].length() - 1);
}
// Use custom decode timestamp if included.
std::vector<std::string> buffer_timestamps = base::SplitString(
timestamps[i], "|", base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL);
if (buffer_timestamps.size() == 1)
buffer_timestamps.push_back(buffer_timestamps[0]);
CHECK_EQ(2u, buffer_timestamps.size());
const base::TimeDelta pts =
MillisecondStringToTimestamp(buffer_timestamps[0]);
const DecodeTimestamp dts = DecodeTimestamp::FromPresentationTime(
MillisecondStringToTimestamp(buffer_timestamps[1]));
// Create buffer. Encode the original pts as the buffer's data to enable
// later verification of possible buffer relocation in presentation
// timeline due to coded frame processing.
const std::string payload_string = EncodeTestPayload(pts);
const char* pts_as_cstr = payload_string.c_str();
scoped_refptr<StreamParserBuffer> buffer = StreamParserBuffer::CopyFrom(
reinterpret_cast<const uint8_t*>(pts_as_cstr), strlen(pts_as_cstr),
is_keyframe, type, track_id);
CHECK(DecodeTestPayload(base::as_string_view(*buffer)) == pts);
buffer->set_timestamp(pts);
if (DecodeTimestamp::FromPresentationTime(pts) != dts) {
buffer->SetDecodeTimestamp(dts);
}
buffer->set_duration(frame_duration_);
buffers.push_back(buffer);
}
return buffers;
}
bool ProcessFrames(const std::string& audio_timestamps,
const std::string& video_timestamps) {
StreamParser::BufferQueueMap buffer_queue_map;
const auto& audio_buffers =
StringToBufferQueue(audio_timestamps, audio_id_, DemuxerStream::AUDIO);
if (!audio_buffers.empty())
buffer_queue_map.insert(std::make_pair(audio_id_, audio_buffers));
const auto& video_buffers =
StringToBufferQueue(video_timestamps, video_id_, DemuxerStream::VIDEO);
if (!video_buffers.empty())
buffer_queue_map.insert(std::make_pair(video_id_, video_buffers));
return frame_processor_->ProcessFrames(
buffer_queue_map, append_window_start_, append_window_end_,
×tamp_offset_);
}
// Compares |expected| to the buffered ranges of |stream| formatted into a
// string as follows:
//
// If no ranges: "{ }"
// If one range: "{ [start1,end1) }"
// If multiple ranges, they are added space-delimited in sequence, like:
// "{ [start1,end1) [start2,end2) }"
//
// startN and endN are the respective buffered start and end times of the
// range in integer milliseconds.
void CheckExpectedRangesByTimestamp(ChunkDemuxerStream* stream,
const std::string& expected) {
Ranges<base::TimeDelta> r = stream->GetBufferedRanges(kInfiniteDuration);
std::stringstream ss;
ss << "{ ";
for (size_t i = 0; i < r.size(); ++i) {
int64_t start = r.start(i).InMilliseconds();
int64_t end = r.end(i).InMilliseconds();
ss << "[" << start << "," << end << ") ";
}
ss << "}";
EXPECT_EQ(expected, ss.str());
}
void CheckReadStalls(ChunkDemuxerStream* stream) {
int loop_count = 0;
do {
read_callback_called_ = false;
stream->Read(1, base::BindOnce(&FrameProcessorTest::StoreStatusAndBuffer,
base::Unretained(this)));
base::RunLoop().RunUntilIdle();
} while (++loop_count < 2 && read_callback_called_ &&
last_read_status_ == DemuxerStream::kAborted);
ASSERT_FALSE(read_callback_called_ &&
last_read_status_ == DemuxerStream::kAborted)
<< "2 kAborted reads in a row. Giving up.";
EXPECT_FALSE(read_callback_called_);
}
// Doesn't check keyframeness, but otherwise is the same as
// CheckReadsAndOptionallyKeyframenessThenReadStalls().
void CheckReadsThenReadStalls(ChunkDemuxerStream* stream,
const std::string& expected) {
CheckReadsAndOptionallyKeyframenessThenReadStalls(stream, expected, false);
}
// Checks keyframeness using
// CheckReadsAndOptionallyKeyframenessThenReadStalls().
void CheckReadsAndKeyframenessThenReadStalls(ChunkDemuxerStream* stream,
const std::string& expected) {
CheckReadsAndOptionallyKeyframenessThenReadStalls(stream, expected, true);
}
// Format of |expected| is a space-delimited sequence of
// timestamp_in_ms:original_timestamp_in_ms. original_timestamp_in_ms (and the
// colon) must be omitted if it is the same as timestamp_in_ms. If
// |check_keyframeness| is true, then each frame in |expected| must end with
// 'K' or 'N', which respectively must match the read result frames'
// keyframeness.
void CheckReadsAndOptionallyKeyframenessThenReadStalls(
ChunkDemuxerStream* stream,
const std::string& expected,
bool check_keyframeness) {
std::vector<std::string> timestamps = base::SplitString(
expected, " ", base::TRIM_WHITESPACE, base::SPLIT_WANT_ALL);
std::stringstream ss;
for (size_t i = 0; i < timestamps.size(); ++i) {
int loop_count = 0;
do {
read_callback_called_ = false;
stream->Read(1,
base::BindOnce(&FrameProcessorTest::StoreStatusAndBuffer,
base::Unretained(this)));
base::RunLoop().RunUntilIdle();
EXPECT_TRUE(read_callback_called_);
} while (++loop_count < 2 &&
last_read_status_ == DemuxerStream::kAborted);
ASSERT_FALSE(last_read_status_ == DemuxerStream::kAborted)
<< "2 kAborted reads in a row. Giving up.";
EXPECT_EQ(DemuxerStream::kOk, last_read_status_);
EXPECT_FALSE(last_read_buffer_->end_of_stream());
if (i > 0)
ss << " ";
int time_in_ms = last_read_buffer_->timestamp().InMilliseconds();
ss << time_in_ms;
// Decode the original_time_in_ms from the buffer's data.
double original_time_in_ms =
DecodeTestPayload(base::as_string_view(*last_read_buffer_))
.InMillisecondsF();
if (original_time_in_ms != time_in_ms)
ss << ":" << original_time_in_ms;
// Detect full-discard preroll buffer.
if (last_read_buffer_->discard_padding().first == kInfiniteDuration &&
last_read_buffer_->discard_padding().second.is_zero()) {
ss << "P";
}
// Conditionally check keyframeness.
if (check_keyframeness) {
if (last_read_buffer_->is_key_frame())
ss << "K";
else
ss << "N";
}
}
EXPECT_EQ(expected, ss.str());
CheckReadStalls(stream);
}
// TODO(wolenetz): Refactor to instead verify the expected signalling or lack
// thereof of new coded frame group by the FrameProcessor. See
// https://crbug.com/580613.
bool in_coded_frame_group() {
return !frame_processor_->pending_notify_all_group_start_;
}
void SeekStream(ChunkDemuxerStream* stream, base::TimeDelta seek_time) {
stream->AbortReads();
stream->Seek(seek_time);
stream->StartReturningData();
}
base::test::SingleThreadTaskEnvironment task_environment_;
StrictMock<MockMediaLog> media_log_;
StrictMock<FrameProcessorTestCallbackHelper> callbacks_;
bool use_sequence_mode_;
std::unique_ptr<FrameProcessor> frame_processor_;
base::TimeDelta append_window_start_;
base::TimeDelta append_window_end_;
base::TimeDelta timestamp_offset_;
base::TimeDelta frame_duration_;
std::unique_ptr<ChunkDemuxerStream> audio_;
std::unique_ptr<ChunkDemuxerStream> video_;
const TrackId audio_id_;
const TrackId video_id_;
const BufferQueue empty_queue_;
// StoreStatusAndBuffer's most recent result.
DemuxerStream::Status last_read_status_;
scoped_refptr<DecoderBuffer> last_read_buffer_;
bool read_callback_called_;
private:
void StoreStatusAndBuffer(DemuxerStream::Status status,
DemuxerStream::DecoderBufferVector buffers) {
DCHECK_LE(buffers.size(), 1u)
<< "FrameProcessorTest only reads a single-buffer.";
scoped_refptr<DecoderBuffer> buffer =
(buffers.empty() ? nullptr : std::move(buffers[0]));
if (status == DemuxerStream::kOk && buffer.get()) {
DVLOG(3) << __func__ << "status: " << status
<< " ts: " << buffer->timestamp().InSecondsF();
} else {
DVLOG(3) << __func__ << "status: " << status << " ts: n/a";
}
read_callback_called_ = true;
last_read_status_ = status;
last_read_buffer_ = buffer;
}
void CreateAndConfigureStream(DemuxerStream::Type type,
bool setup_observers,
bool support_audio_nonkeyframes) {
// TODO(wolenetz/dalecurtis): Also test with splicing disabled?
ChunkDemuxerStream* stream;
switch (type) {
case DemuxerStream::AUDIO: {
ASSERT_FALSE(audio_);
audio_ = std::make_unique<ChunkDemuxerStream>(DemuxerStream::AUDIO,
MediaTrack::Id("1"));
AudioDecoderConfig decoder_config;
if (support_audio_nonkeyframes) {
decoder_config = AudioDecoderConfig(
AudioCodec::kAAC, kSampleFormatPlanarF32, CHANNEL_LAYOUT_STEREO,
1000, EmptyExtraData(), EncryptionScheme::kUnencrypted);
decoder_config.set_profile(AudioCodecProfile::kXHE_AAC);
} else {
decoder_config =
AudioDecoderConfig(AudioCodec::kVorbis, kSampleFormatPlanarF32,
CHANNEL_LAYOUT_STEREO, 1000, EmptyExtraData(),
EncryptionScheme::kUnencrypted);
}
frame_processor_->OnPossibleAudioConfigUpdate(decoder_config);
ASSERT_TRUE(
audio_->UpdateAudioConfig(decoder_config, false, &media_log_));
stream = audio_.get();
break;
}
case DemuxerStream::VIDEO: {
ASSERT_FALSE(video_);
ASSERT_FALSE(support_audio_nonkeyframes);
video_ = std::make_unique<ChunkDemuxerStream>(DemuxerStream::VIDEO,
MediaTrack::Id("2"));
ASSERT_TRUE(video_->UpdateVideoConfig(TestVideoConfig::Normal(), false,
&media_log_));
stream = video_.get();
break;
}
case DemuxerStream::UNKNOWN: {
ASSERT_FALSE(true);
}
}
if (setup_observers) {
stream->set_append_observer_for_testing(
base::BindRepeating(&FrameProcessorTestCallbackHelper::OnAppend,
base::Unretained(&callbacks_), type));
stream->set_group_start_observer_for_testing(
base::BindRepeating(&FrameProcessorTestCallbackHelper::OnGroupStart,
base::Unretained(&callbacks_), type));
}
}
};
TEST_P(FrameProcessorTest, WrongTypeInAppendedBuffer) {
AddTestTracks(HAS_AUDIO);
EXPECT_FALSE(in_coded_frame_group());
StreamParser::BufferQueueMap buffer_queue_map;
const auto& audio_buffers =
StringToBufferQueue("0K", audio_id_, DemuxerStream::VIDEO);
buffer_queue_map.insert(std::make_pair(audio_id_, audio_buffers));
EXPECT_MEDIA_LOG(FrameTypeMismatchesTrackType("video", "1"));
ASSERT_FALSE(
frame_processor_->ProcessFrames(buffer_queue_map, append_window_start_,
append_window_end_, ×tamp_offset_));
EXPECT_FALSE(in_coded_frame_group());
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ }");
CheckReadStalls(audio_.get());
}
TEST_P(FrameProcessorTest, NonMonotonicallyIncreasingTimestampInOneCall) {
AddTestTracks(HAS_AUDIO);
EXPECT_MEDIA_LOG(ParsedBuffersNotInDTSSequence());
EXPECT_FALSE(ProcessFrames("10K 0K", ""));
EXPECT_FALSE(in_coded_frame_group());
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ }");
CheckReadStalls(audio_.get());
}
TEST_P(FrameProcessorTest, AudioOnly_SingleFrame) {
// Tests A: P(A) -> (a)
InSequence s;
AddTestTracks(HAS_AUDIO);
if (use_sequence_mode_)
frame_processor_->SetSequenceMode(true);
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(10)));
EXPECT_TRUE(ProcessFrames("0K", ""));
EXPECT_TRUE(in_coded_frame_group());
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,10) }");
CheckReadsThenReadStalls(audio_.get(), "0");
}
TEST_P(FrameProcessorTest, VideoOnly_SingleFrame) {
// Tests V: P(V) -> (v)
InSequence s;
AddTestTracks(HAS_VIDEO);
if (use_sequence_mode_)
frame_processor_->SetSequenceMode(true);
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(10)));
EXPECT_TRUE(ProcessFrames("", "0K"));
EXPECT_TRUE(in_coded_frame_group());
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(video_.get(), "{ [0,10) }");
CheckReadsThenReadStalls(video_.get(), "0");
}
TEST_P(FrameProcessorTest, AudioOnly_TwoFrames) {
// Tests A: P(A0, A10) -> (a0, a10)
InSequence s;
AddTestTracks(HAS_AUDIO);
if (use_sequence_mode_)
frame_processor_->SetSequenceMode(true);
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(20)));
EXPECT_TRUE(ProcessFrames("0K 10K", ""));
EXPECT_TRUE(in_coded_frame_group());
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,20) }");
CheckReadsThenReadStalls(audio_.get(), "0 10");
}
TEST_P(FrameProcessorTest, AudioOnly_SetOffsetThenSingleFrame) {
// Tests A: STSO(50)+P(A0) -> TSO==50,(a0@50)
InSequence s;
AddTestTracks(HAS_AUDIO);
if (use_sequence_mode_)
frame_processor_->SetSequenceMode(true);
SetTimestampOffset(Milliseconds(50));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(60)));
EXPECT_TRUE(ProcessFrames("0K", ""));
EXPECT_TRUE(in_coded_frame_group());
EXPECT_EQ(Milliseconds(50), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [50,60) }");
// We do not stall on reading without seeking to 50ms due to
// SourceBufferStream::kSeekToStartFudgeRoom().
CheckReadsThenReadStalls(audio_.get(), "50:0");
}
TEST_P(FrameProcessorTest, AudioOnly_SetOffsetThenFrameTimestampBelowOffset) {
// Tests A: STSO(50)+P(A20) ->
// if sequence mode: TSO==30,(a20@50)
// if segments mode: TSO==50,(a20@70)
InSequence s;
AddTestTracks(HAS_AUDIO);
if (use_sequence_mode_)
frame_processor_->SetSequenceMode(true);
SetTimestampOffset(Milliseconds(50));
if (use_sequence_mode_) {
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(60)));
} else {
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(80)));
}
EXPECT_TRUE(ProcessFrames("20K", ""));
EXPECT_TRUE(in_coded_frame_group());
// We do not stall on reading without seeking to 50ms / 70ms due to
// SourceBufferStream::kSeekToStartFudgeRoom().
if (use_sequence_mode_) {
EXPECT_EQ(Milliseconds(30), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [50,60) }");
CheckReadsThenReadStalls(audio_.get(), "50:20");
} else {
EXPECT_EQ(Milliseconds(50), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [70,80) }");
CheckReadsThenReadStalls(audio_.get(), "70:20");
}
}
TEST_P(FrameProcessorTest, AudioOnly_SequentialProcessFrames) {
// Tests A: P(A0,A10)+P(A20,A30) -> (a0,a10,a20,a30)
InSequence s;
AddTestTracks(HAS_AUDIO);
if (use_sequence_mode_)
frame_processor_->SetSequenceMode(true);
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(20)));
EXPECT_TRUE(ProcessFrames("0K 10K", ""));
EXPECT_TRUE(in_coded_frame_group());
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,20) }");
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(40)));
EXPECT_TRUE(ProcessFrames("20K 30K", ""));
EXPECT_TRUE(in_coded_frame_group());
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,40) }");
CheckReadsThenReadStalls(audio_.get(), "0 10 20 30");
}
TEST_P(FrameProcessorTest, AudioOnly_NonSequentialProcessFrames) {
// Tests A: P(A20,A30)+P(A0,A10) ->
// if sequence mode: TSO==-20 after first P(), 20 after second P(), and
// a(20@0,a30@10,a0@20,a10@30)
// if segments mode: TSO==0,(a0,a10,a20,a30)
InSequence s;
AddTestTracks(HAS_AUDIO);
if (use_sequence_mode_) {
frame_processor_->SetSequenceMode(true);
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(20)));
} else {
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(40)));
}
EXPECT_TRUE(ProcessFrames("20K 30K", ""));
EXPECT_TRUE(in_coded_frame_group());
if (use_sequence_mode_) {
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,20) }");
EXPECT_EQ(Milliseconds(-20), timestamp_offset_);
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(40)));
} else {
CheckExpectedRangesByTimestamp(audio_.get(), "{ [20,40) }");
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(20)));
}
EXPECT_TRUE(ProcessFrames("0K 10K", ""));
EXPECT_TRUE(in_coded_frame_group());
if (use_sequence_mode_) {
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,40) }");
EXPECT_EQ(Milliseconds(20), timestamp_offset_);
CheckReadsThenReadStalls(audio_.get(), "0:20 10:30 20:0 30:10");
} else {
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,40) }");
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
// Re-seek to 0ms now that we've appended data earlier than what has already
// satisfied our initial seek to start, above.
SeekStream(audio_.get(), Milliseconds(0));
CheckReadsThenReadStalls(audio_.get(), "0 10 20 30");
}
}
TEST_P(FrameProcessorTest, AudioVideo_SequentialProcessFrames) {
// Tests AV: P(A0,A10;V0k,V10,V20)+P(A20,A30,A40,V30) ->
// (a0,a10,a20,a30,a40);(v0,v10,v20,v30)
InSequence s;
AddTestTracks(HAS_AUDIO | HAS_VIDEO);
if (use_sequence_mode_) {
frame_processor_->SetSequenceMode(true);
EXPECT_CALL(callbacks_,
OnParseWarning(SourceBufferParseWarning::kMuxedSequenceMode));
EXPECT_MEDIA_LOG(MuxedSequenceModeWarning());
}
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(30)));
EXPECT_TRUE(ProcessFrames("0K 10K", "0K 10 20"));
EXPECT_TRUE(in_coded_frame_group());
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,20) }");
CheckExpectedRangesByTimestamp(video_.get(), "{ [0,30) }");
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(50)));
EXPECT_TRUE(ProcessFrames("20K 30K 40K", "30"));
EXPECT_TRUE(in_coded_frame_group());
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,50) }");
CheckExpectedRangesByTimestamp(video_.get(), "{ [0,40) }");
CheckReadsThenReadStalls(audio_.get(), "0 10 20 30 40");
CheckReadsThenReadStalls(video_.get(), "0 10 20 30");
}
TEST_P(FrameProcessorTest, AudioVideo_Discontinuity) {
// Tests AV: P(A0,A10,A30,A40,A50;V0key,V10,V40,V50key) ->
// if sequence mode: TSO==10,(a0,a10,a30,a40,a50@60);(v0,v10,v50@60)
// if segments mode: TSO==0,(a0,a10,a30,a40,a50);(v0,v10,v50)
// This assumes A40K is processed before V40, which depends currently on
// MergeBufferQueues() behavior.
InSequence s;
AddTestTracks(HAS_AUDIO | HAS_VIDEO);
if (use_sequence_mode_) {
frame_processor_->SetSequenceMode(true);
EXPECT_CALL(callbacks_,
OnParseWarning(SourceBufferParseWarning::kMuxedSequenceMode));
EXPECT_MEDIA_LOG(MuxedSequenceModeWarning());
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(70)));
} else {
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(60)));
}
EXPECT_TRUE(ProcessFrames("0K 10K 30K 40K 50K", "0K 10 40 50K"));
EXPECT_TRUE(in_coded_frame_group());
if (use_sequence_mode_) {
EXPECT_EQ(Milliseconds(10), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,70) }");
CheckExpectedRangesByTimestamp(video_.get(), "{ [0,20) [60,70) }");
CheckReadsThenReadStalls(audio_.get(), "0 10 30 40 60:50");
CheckReadsThenReadStalls(video_.get(), "0 10");
SeekStream(video_.get(), Milliseconds(60));
CheckReadsThenReadStalls(video_.get(), "60:50");
} else {
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,60) }");
CheckExpectedRangesByTimestamp(video_.get(), "{ [0,20) [50,60) }");
CheckReadsThenReadStalls(audio_.get(), "0 10 30 40 50");
CheckReadsThenReadStalls(video_.get(), "0 10");
SeekStream(video_.get(), Milliseconds(50));
CheckReadsThenReadStalls(video_.get(), "50");
}
}
TEST_P(FrameProcessorTest, AudioVideo_Discontinuity_TimestampOffset) {
InSequence s;
AddTestTracks(HAS_AUDIO | HAS_VIDEO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
if (use_sequence_mode_) {
EXPECT_CALL(callbacks_,
OnParseWarning(SourceBufferParseWarning::kMuxedSequenceMode));
EXPECT_MEDIA_LOG(MuxedSequenceModeWarning());
}
// Start a coded frame group at time 100ms. Note the jagged start still uses
// the coded frame group's start time as the range start for both streams.
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(140)));
SetTimestampOffset(Milliseconds(100));
EXPECT_TRUE(ProcessFrames("0K 10K 20K", "10K 20K 30K"));
EXPECT_EQ(Milliseconds(100), timestamp_offset_);
EXPECT_TRUE(in_coded_frame_group());
CheckExpectedRangesByTimestamp(audio_.get(), "{ [100,130) }");
CheckExpectedRangesByTimestamp(video_.get(), "{ [100,140) }");
// Test the behavior of both 'sequence' and 'segments' mode if the coded frame
// sequence jumps forward beyond the normal discontinuity threshold.
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(240)));
SetTimestampOffset(Milliseconds(200));
EXPECT_TRUE(ProcessFrames("0K 10K 20K", "10K 20K 30K"));
EXPECT_EQ(Milliseconds(200), timestamp_offset_);
EXPECT_TRUE(in_coded_frame_group());
CheckExpectedRangesByTimestamp(audio_.get(), "{ [100,130) [200,230) }");
CheckExpectedRangesByTimestamp(video_.get(), "{ [100,140) [200,240) }");
// Test the behavior when timestampOffset adjustment causes next frames to be
// in the past relative to the previously processed frame and triggers a new
// coded frame group.
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(95)));
SetTimestampOffset(Milliseconds(55));
EXPECT_TRUE(ProcessFrames("0K 10K 20K", "10K 20K 30K"));
EXPECT_EQ(Milliseconds(55), timestamp_offset_);
EXPECT_TRUE(in_coded_frame_group());
// The new audio range is not within SourceBufferStream's coalescing threshold
// relative to the next range, but the new video range is within the
// threshold.
CheckExpectedRangesByTimestamp(audio_.get(),
"{ [55,85) [100,130) [200,230) }");
// Note that the range adjacency logic used in this case considers
// DTS 85 to be close enough to [100,140), even though the first DTS in video
// range [100,140) is actually 110. The muxed data started a coded frame
// group at time 100, informing the adjacency logic.
CheckExpectedRangesByTimestamp(video_.get(), "{ [55,140) [200,240) }");
// Verify the buffers.
// Re-seek now that we've appended data earlier than what already satisfied
// our initial seek to start.
SeekStream(audio_.get(), Milliseconds(55));
CheckReadsThenReadStalls(audio_.get(), "55:0 65:10 75:20");
SeekStream(audio_.get(), Milliseconds(100));
CheckReadsThenReadStalls(audio_.get(), "100:0 110:10 120:20");
SeekStream(audio_.get(), Milliseconds(200));
CheckReadsThenReadStalls(audio_.get(), "200:0 210:10 220:20");
SeekStream(video_.get(), Milliseconds(55));
CheckReadsThenReadStalls(video_.get(),
"65:10 75:20 85:30 110:10 120:20 130:30");
SeekStream(video_.get(), Milliseconds(200));
CheckReadsThenReadStalls(video_.get(), "210:10 220:20 230:30");
}
TEST_P(FrameProcessorTest, AudioVideo_OutOfSequence_After_Discontinuity) {
// Once a discontinuity is detected (and all tracks drop everything until the
// next keyframe per each track), we should gracefully handle the case where
// some tracks' first keyframe after the discontinuity are appended after, but
// end up earlier in timeline than some other track(s). In particular, we
// shouldn't notify all tracks that a new coded frame group is starting and
// begin dropping leading non-keyframes from all tracks. Rather, we should
// notify just the track encountering this new type of discontinuity. Since
// MSE doesn't require all media segments to contain media from every track,
// these append sequences can occur.
InSequence s;
AddTestTracks(HAS_AUDIO | HAS_VIDEO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
// Begin with a simple set of appends for all tracks.
if (use_sequence_mode_) {
// Allow room in the timeline for the last audio append (50K, below) in this
// test to remain within default append window [0, +Infinity]. Moving the
// sequence mode appends to begin at time 100ms, the same time as the first
// append, below, results in a -20ms offset (instead of a -120ms offset)
// applied to frames beginning at the first frame after the discontinuity
// caused by the video append at 160K, below.
SetTimestampOffset(Milliseconds(100));
EXPECT_CALL(callbacks_,
OnParseWarning(SourceBufferParseWarning::kMuxedSequenceMode));
EXPECT_MEDIA_LOG(MuxedSequenceModeWarning());
}
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(140)));
EXPECT_TRUE(ProcessFrames("100K 110K 120K", "110K 120K 130K"));
EXPECT_TRUE(in_coded_frame_group());
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [100,130) }");
CheckExpectedRangesByTimestamp(video_.get(), "{ [100,140) }");
// Trigger (normal) discontinuity with one track (video).
if (use_sequence_mode_)
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(150)));
else
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(170)));
EXPECT_TRUE(ProcessFrames("", "160K"));
EXPECT_TRUE(in_coded_frame_group());
if (use_sequence_mode_) {
// The new video buffer is relocated into [140,150).
EXPECT_EQ(Milliseconds(-20), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [100,130) }");
CheckExpectedRangesByTimestamp(video_.get(), "{ [100,150) }");
} else {
// The new video buffer is at [160,170).
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [100,130) }");
CheckExpectedRangesByTimestamp(video_.get(), "{ [100,140) [160,170) }");
}
// Append to the other track (audio) with lower time than the video frame we
// just appended. Append with a timestamp such that segments mode demonstrates
// we don't retroactively extend the new video buffer appended above's range
// start back to this audio start time.
if (use_sequence_mode_)
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(150)));
else
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(170)));
EXPECT_TRUE(ProcessFrames("50K", ""));
EXPECT_TRUE(in_coded_frame_group());
// Because this is the first audio buffer appended following the discontinuity
// detected while appending the video frame, above, a new coded frame group
// for video is not triggered.
if (use_sequence_mode_) {
// The new audio buffer is relocated into [30,40). Note the muxed 'sequence'
// mode append mode results in a buffered range gap in this case.
EXPECT_EQ(Milliseconds(-20), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [30,40) [100,130) }");
CheckExpectedRangesByTimestamp(video_.get(), "{ [100,150) }");
} else {
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [50,60) [100,130) }");
CheckExpectedRangesByTimestamp(video_.get(), "{ [100,140) [160,170) }");
}
// Finally, append a non-keyframe to the first track (video), to continue the
// GOP that started the normal discontinuity on the previous video append.
if (use_sequence_mode_)
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(160)));
else
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(180)));
EXPECT_TRUE(ProcessFrames("", "170"));
EXPECT_TRUE(in_coded_frame_group());
// Verify the final buffers. First, re-seek audio since we appended data
// earlier than what already satisfied our initial seek to start. We satisfy
// the seek with the first buffer in [0,1000).
SeekStream(audio_.get(), Milliseconds(0));
if (use_sequence_mode_) {
// The new video buffer is relocated into [150,160).
EXPECT_EQ(Milliseconds(-20), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [30,40) [100,130) }");
CheckReadsThenReadStalls(audio_.get(), "30:50");
SeekStream(audio_.get(), Milliseconds(100));
CheckReadsThenReadStalls(audio_.get(), "100 110 120");
CheckExpectedRangesByTimestamp(video_.get(), "{ [100,160) }");
CheckReadsThenReadStalls(video_.get(), "110 120 130 140:160 150:170");
} else {
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [50,60) [100,130) }");
CheckReadsThenReadStalls(audio_.get(), "50");
SeekStream(audio_.get(), Milliseconds(100));
CheckReadsThenReadStalls(audio_.get(), "100 110 120");
CheckExpectedRangesByTimestamp(video_.get(), "{ [100,140) [160,180) }");
CheckReadsThenReadStalls(video_.get(), "110 120 130");
SeekStream(video_.get(), Milliseconds(160));
CheckReadsThenReadStalls(video_.get(), "160 170");
}
}
TEST_P(FrameProcessorTest,
AppendWindowFilterOfNegativeBufferTimestampsWithPrerollDiscard) {
InSequence s;
AddTestTracks(HAS_AUDIO);
if (use_sequence_mode_)
frame_processor_->SetSequenceMode(true);
SetTimestampOffset(Milliseconds(-20));
EXPECT_MEDIA_LOG(DroppedFrame("audio", -20000));
EXPECT_MEDIA_LOG(DroppedFrame("audio", -10000));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(10)));
EXPECT_TRUE(ProcessFrames("0K 10K 20K", ""));
EXPECT_TRUE(in_coded_frame_group());
EXPECT_EQ(Milliseconds(-20), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,10) }");
CheckReadsThenReadStalls(audio_.get(), "0:10P 0:20");
}
TEST_P(FrameProcessorTest, AppendWindowFilterWithInexactPreroll) {
InSequence s;
AddTestTracks(HAS_AUDIO);
if (use_sequence_mode_)
frame_processor_->SetSequenceMode(true);
SetTimestampOffset(Milliseconds(-10));
EXPECT_MEDIA_LOG(DroppedFrame("audio", -10000));
EXPECT_MEDIA_LOG(TruncatedFrame(-250, 9750, "start", 0));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(20)));
EXPECT_TRUE(ProcessFrames("0K 9.75K 20K", ""));
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,20) }");
CheckReadsThenReadStalls(audio_.get(), "0P 0:9.75 10:20");
}
TEST_P(FrameProcessorTest, AppendWindowFilterWithInexactPreroll_2) {
InSequence s;
AddTestTracks(HAS_AUDIO);
if (use_sequence_mode_)
frame_processor_->SetSequenceMode(true);
SetTimestampOffset(Milliseconds(-10));
EXPECT_MEDIA_LOG(DroppedFrame("audio", -10000));
// Splice trimming checks are done on every audio frame following either a
// discontinuity or the beginning of ProcessFrames(), and are also done on
// audio frames with PTS not directly continuous with the highest frame end
// PTS already processed.
if (use_sequence_mode_)
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(-10)));
else
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(0)));
EXPECT_TRUE(ProcessFrames("0K", ""));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(base::Microseconds(10250)));
EXPECT_TRUE(ProcessFrames("10.25K", ""));
EXPECT_MEDIA_LOG(SkippingSpliceTooLittleOverlap(10000, 250));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(20)));
EXPECT_TRUE(ProcessFrames("20K", ""));
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,20) }");
CheckReadsThenReadStalls(audio_.get(), "0P 0:10.25 10:20");
}
TEST_P(FrameProcessorTest, AllowNegativeFramePTSAndDTSBeforeOffsetAdjustment) {
InSequence s;
AddTestTracks(HAS_AUDIO);
if (use_sequence_mode_) {
frame_processor_->SetSequenceMode(true);
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(30)));
} else {
EXPECT_MEDIA_LOG(TruncatedFrame(-5000, 5000, "start", 0));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(25)));
}
EXPECT_TRUE(ProcessFrames("-5K 5K 15K", ""));
if (use_sequence_mode_) {
EXPECT_EQ(Milliseconds(5), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,30) }");
CheckReadsThenReadStalls(audio_.get(), "0:-5 10:5 20:15");
} else {
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,25) }");
CheckReadsThenReadStalls(audio_.get(), "0:-5 5 15");
}
}
TEST_P(FrameProcessorTest, PartialAppendWindowFilterNoDiscontinuity) {
// Tests that spurious discontinuity is not introduced by a partially
// trimmed frame.
append_window_start_ = Milliseconds(7);
InSequence s;
AddTestTracks(HAS_AUDIO);
if (use_sequence_mode_)
frame_processor_->SetSequenceMode(true);
EXPECT_MEDIA_LOG(TruncatedFrame(0, 10000, "start", 7000));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(29)));
EXPECT_TRUE(ProcessFrames("0K 19K", ""));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [7,29) }");
CheckReadsThenReadStalls(audio_.get(), "7:0 19");
}
TEST_P(FrameProcessorTest,
PartialAppendWindowFilterNoDiscontinuity_DtsAfterPts) {
// Tests that spurious discontinuity is not introduced by a partially trimmed
// frame that originally had DTS > PTS.
InSequence s;
AddTestTracks(HAS_AUDIO);
if (use_sequence_mode_) {
frame_processor_->SetSequenceMode(true);
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(20)));
} else {
EXPECT_MEDIA_LOG(TruncatedFrame(-7000, 3000, "start", 0));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(13)));
}
// Process a sequence of two audio frames:
// A: PTS -7ms, DTS 10ms, duration 10ms, keyframe
// B: PTS 3ms, DTS 20ms, duration 10ms, keyframe
EXPECT_TRUE(ProcessFrames("-7|10K 3|20K", ""));
if (use_sequence_mode_) {
// Sequence mode detected that frame A needs to be relocated 7ms into the
// future to begin the sequence at time 0. There is no append window
// filtering because the PTS result of the relocation is within the append
// window of [0,+Infinity).
// Frame A is relocated by 7 to PTS 0, DTS 17, duration 10.
// Frame B is relocated by 7 to PTS 10, DTS 27, duration 10.
EXPECT_EQ(Milliseconds(7), timestamp_offset_);
// Start of frame A (0) through end of frame B (10+10).
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,20) }");
// Frame A is now at PTS 0 (originally at PTS -7)
// Frame B is now at PTS 10 (originally at PTS 3)
CheckReadsThenReadStalls(audio_.get(), "0:-7 10:3");
} else {
// Segments mode does not update timestampOffset automatically, so it
// remained 0 and neither frame was relocated by timestampOffset.
// Frame A's start *was* relocated by append window partial audio cropping:
// Append window filtering (done by PTS, regardless of range buffering API)
// did a partial crop of the first 7ms of frame A which was before
// the default append window start time 0, and moved both the PTS and DTS of
// frame A forward by 7 and reduced its duration by 7. Frame B was fully
// inside the append window and remained uncropped and unrelocated.
// Frame A is buffered at PTS -7+7=0, DTS 10+7=17, duration 10-7=3.
// Frame B is buffered at PTS 3, DTS 20, duration 10.
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
// Start of frame A (0) through end of frame B (3+10).
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,13) }");
// Frame A is now at PTS 0 (originally at PTS -7)
// Frame B is now at PTS 3 (same as it was originally)
CheckReadsThenReadStalls(audio_.get(), "0:-7 3");
}
}
TEST_P(FrameProcessorTest, PartialAppendWindowFilterNoNewMediaSegment) {
// Tests that a new media segment is not forcibly signalled for audio frame
// partial front trim, to prevent incorrect introduction of a discontinuity
// and potentially a non-keyframe video frame to be processed next after the
// discontinuity.
InSequence s;
AddTestTracks(HAS_AUDIO | HAS_VIDEO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
if (use_sequence_mode_) {
EXPECT_CALL(callbacks_,
OnParseWarning(SourceBufferParseWarning::kMuxedSequenceMode));
EXPECT_MEDIA_LOG(MuxedSequenceModeWarning());
}
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(10)));
EXPECT_TRUE(ProcessFrames("", "0K"));
EXPECT_MEDIA_LOG(TruncatedFrame(-5000, 5000, "start", 0));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(10)));
EXPECT_TRUE(ProcessFrames("-5K", ""));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(20)));
EXPECT_TRUE(ProcessFrames("", "10"));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
EXPECT_TRUE(in_coded_frame_group());
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,5) }");
CheckExpectedRangesByTimestamp(video_.get(), "{ [0,20) }");
CheckReadsThenReadStalls(audio_.get(), "0:-5");
CheckReadsThenReadStalls(video_.get(), "0 10");
}
TEST_P(FrameProcessorTest, AudioOnly_SequenceModeContinuityAcrossReset) {
if (!use_sequence_mode_) {
DVLOG(1) << "Skipping segments mode variant; inapplicable to this case.";
return;
}
InSequence s;
AddTestTracks(HAS_AUDIO);
frame_processor_->SetSequenceMode(true);
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(10)));
EXPECT_TRUE(ProcessFrames("0K", ""));
frame_processor_->Reset();
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(20)));
EXPECT_TRUE(ProcessFrames("100K", ""));
EXPECT_EQ(Milliseconds(-90), timestamp_offset_);
EXPECT_TRUE(in_coded_frame_group());
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,20) }");
CheckReadsThenReadStalls(audio_.get(), "0 10:100");
}
TEST_P(FrameProcessorTest, PartialAppendWindowZeroDurationPreroll) {
InSequence s;
AddTestTracks(HAS_AUDIO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
append_window_start_ = Milliseconds(5);
EXPECT_MEDIA_LOG(DroppedFrame("audio", use_sequence_mode_ ? 0 : 4000));
// Append a 0 duration frame that falls just before the append window.
frame_duration_ = Milliseconds(0);
EXPECT_FALSE(in_coded_frame_group());
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(0)));
EXPECT_TRUE(ProcessFrames("4K", ""));
// Verify buffer is not part of ranges. It should be silently saved for
// preroll for future append.
CheckExpectedRangesByTimestamp(audio_.get(), "{ }");
CheckReadsThenReadStalls(audio_.get(), "");
EXPECT_FALSE(in_coded_frame_group());
// Abort the reads from last stall. We don't want those reads to "complete"
// when we append below. We will initiate new reads to confirm the buffer
// looks as we expect.
SeekStream(audio_.get(), Milliseconds(0));
if (use_sequence_mode_) {
EXPECT_MEDIA_LOG(TruncatedFrame(0, 10000, "start", 5000));
} else {
EXPECT_MEDIA_LOG(TruncatedFrame(4000, 14000, "start", 5000));
}
// Append a frame with 10ms duration, with 9ms falling after the window start.
EXPECT_CALL(callbacks_, PossibleDurationIncrease(
Milliseconds(use_sequence_mode_ ? 10 : 14)));
frame_duration_ = Milliseconds(10);
EXPECT_TRUE(ProcessFrames("4K", ""));
EXPECT_TRUE(in_coded_frame_group());
// Verify range updated to reflect last append was processed and trimmed, and
// also that zero duration buffer was saved and attached as preroll.
if (use_sequence_mode_) {
// For sequence mode, append window trimming is applied after the append
// is adjusted for timestampOffset. Basically, everything gets rebased to 0
// and trimming then removes 5 seconds from the front.
CheckExpectedRangesByTimestamp(audio_.get(), "{ [5,10) }");
CheckReadsThenReadStalls(audio_.get(), "5:4P 5:4");
} else { // segments mode
CheckExpectedRangesByTimestamp(audio_.get(), "{ [5,14) }");
CheckReadsThenReadStalls(audio_.get(), "5:4P 5:4");
}
// Verify the preroll buffer still has zero duration.
StreamParserBuffer* last_read_parser_buffer =
static_cast<StreamParserBuffer*>(last_read_buffer_.get());
ASSERT_EQ(Milliseconds(0),
last_read_parser_buffer->preroll_buffer()->duration());
}
TEST_P(FrameProcessorTest,
OOOKeyframePrecededByDependantNonKeyframeShouldWarn) {
InSequence s;
AddTestTracks(HAS_VIDEO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
if (use_sequence_mode_) {
// Allow room in the timeline for the last video append (40|70, below) in
// this test to remain within default append window [0, +Infinity]. Moving
// the sequence mode appends to begin at time 50ms, the same time as the
// first append, below, also results in identical expectation checks for
// buffered ranges and buffer reads for both segments and sequence modes.
SetTimestampOffset(Milliseconds(50));
}
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(70)));
EXPECT_TRUE(ProcessFrames("", "50K 60"));
CheckExpectedRangesByTimestamp(video_.get(), "{ [50,70) }");
EXPECT_CALL(callbacks_,
OnParseWarning(
SourceBufferParseWarning::kKeyframeTimeGreaterThanDependant));
EXPECT_MEDIA_LOG(KeyframeTimeGreaterThanDependant("0.05", "0.04"));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(70)));
EXPECT_TRUE(ProcessFrames("", "40|70")); // PTS=40, DTS=70
// This reflects the expectation that PTS start is not "pulled backward" for
// the new frame at PTS=40 because current spec doesn't support SAP Type 2; it
// has no steps in the coded frame processing algorithm that would do that
// "pulling backward". See https://github.com/w3c/media-source/issues/187.
CheckExpectedRangesByTimestamp(video_.get(), "{ [50,70) }");
SeekStream(video_.get(), Milliseconds(0));
CheckReadsThenReadStalls(video_.get(), "50 60 40");
}
TEST_P(FrameProcessorTest, OOOKeyframePts_1) {
InSequence s;
AddTestTracks(HAS_AUDIO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(1010)));
// Note that the following does not contain a DTS continuity, but *does*
// contain a PTS discontinuity (keyframe at 0.1s after keyframe at 1s).
EXPECT_TRUE(ProcessFrames("0K 1000|10K 100|20K", ""));
// Force sequence mode to place the next frames where segments mode would put
// them, to simplify this test case.
if (use_sequence_mode_)
SetTimestampOffset(Milliseconds(500));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(510)));
EXPECT_TRUE(ProcessFrames("500|100K", ""));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
// Note that the PTS discontinuity (100ms) in the first ProcessFrames() call,
// above, overlaps the previously buffered range [0,1010), so the frame at
// 100ms is processed with an adjusted coded frame group start to be 0.001ms,
// which is just after the highest timestamp before it in the overlapped
// range. This enables it to be continuous with the frame before it. The
// remainder of the overlapped range (the buffer at [1000,1010)) is adjusted
// to have a range start time at the split point (110), and is within fudge
// room and merged into [0,110). The same happens with the buffer appended
// [500,510).
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,1010) }");
CheckReadsThenReadStalls(audio_.get(), "0 100 500 1000");
}
TEST_P(FrameProcessorTest, OOOKeyframePts_2) {
InSequence s;
AddTestTracks(HAS_AUDIO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(1010)));
EXPECT_TRUE(ProcessFrames("0K 1000|10K", ""));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(1010)));
EXPECT_TRUE(ProcessFrames("100|20K", ""));
// Note that the PTS discontinuity (100ms) in the first ProcessFrames() call,
// above, overlaps the previously buffered range [0,1010), so the frame at
// 100ms is processed with an adjusted coded frame group start to be 0.001ms,
// which is just after the highest timestamp before it in the overlapped
// range. This enables it to be continuous with the frame before it. The
// remainder of the overlapped range (the buffer at [1000,1010)) is adjusted
// to have a range start time at the split point (110), and is within fudge
// room and merged into [0,110).
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,1010) }");
CheckReadsThenReadStalls(audio_.get(), "0 100 1000");
}
TEST_P(FrameProcessorTest, AudioNonKeyframeChangedToKeyframe) {
// Verifies that an audio non-keyframe is changed to a keyframe with a media
// log warning. An exact overlap append of the preceding keyframe is also done
// to ensure that the (original non-keyframe) survives (because it was changed
// to a keyframe, so no longer depends on the original preceding keyframe).
// The sequence mode test version uses SetTimestampOffset to make it behave
// like segments mode to simplify the tests.
// Note, see the NonkeyframeAudioBuffering tests to verify buffering of audio
// nonkeyframes for codec(s) that use nonkeyframes.
InSequence s;
AddTestTracks(HAS_AUDIO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
EXPECT_MEDIA_LOG(AudioNonKeyframe(10000, 10000));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(30)));
EXPECT_TRUE(ProcessFrames("0K 10 20K", ""));
if (use_sequence_mode_)
SetTimestampOffset(Milliseconds(0));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(10)));
EXPECT_TRUE(ProcessFrames("0K", ""));
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,30) }");
SeekStream(audio_.get(), Milliseconds(0));
CheckReadsThenReadStalls(audio_.get(), "0 10 20");
}
TEST_P(FrameProcessorTest, TimestampOffsetNegativeDts) {
// Shift a GOP earlier using timestampOffset such that the GOP
// starts with negative DTS, but PTS 0.
InSequence s;
AddTestTracks(HAS_VIDEO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
if (!use_sequence_mode_) {
// Simulate the offset that sequence mode would apply, to make the results
// the same regardless of sequence vs segments mode.
SetTimestampOffset(Milliseconds(-100));
}
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(40)));
EXPECT_TRUE(ProcessFrames("", "100|70K 130|80"));
EXPECT_EQ(Milliseconds(-100), timestamp_offset_);
CheckExpectedRangesByTimestamp(video_.get(), "{ [0,40) }");
SeekStream(video_.get(), Milliseconds(0));
CheckReadsThenReadStalls(video_.get(), "0:100 30:130");
}
TEST_P(FrameProcessorTest, LargeTimestampOffsetJumpForward) {
// Verifies that jumps forward in buffers emitted from the coded frame
// processing algorithm can create discontinuous buffered ranges if those
// jumps are large enough, in both kinds of AppendMode.
InSequence s;
AddTestTracks(HAS_AUDIO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(10)));
EXPECT_TRUE(ProcessFrames("0K", ""));
SetTimestampOffset(Milliseconds(5000));
// Along with the new timestampOffset set above, this should cause a large
// jump forward in both PTS and DTS for both sequence and segments append
// modes.
if (use_sequence_mode_) {
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(5010)));
} else {
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(10010)));
}
EXPECT_TRUE(ProcessFrames("5000|100K", ""));
if (use_sequence_mode_) {
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
} else {
EXPECT_EQ(Milliseconds(5000), timestamp_offset_);
}
if (use_sequence_mode_) {
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,10) [5000,5010) }");
CheckReadsThenReadStalls(audio_.get(), "0");
SeekStream(audio_.get(), Milliseconds(5000));
CheckReadsThenReadStalls(audio_.get(), "5000");
} else {
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,10) [10000,10010) }");
CheckReadsThenReadStalls(audio_.get(), "0");
SeekStream(audio_.get(), Milliseconds(10000));
CheckReadsThenReadStalls(audio_.get(), "10000:5000");
}
}
TEST_P(FrameProcessorTest, ContinuousDts_SapType2_and_PtsJumpForward) {
InSequence s;
AddTestTracks(HAS_VIDEO | OBSERVE_APPENDS_AND_GROUP_STARTS);
frame_processor_->SetSequenceMode(use_sequence_mode_);
// Make the sequence mode buffering appear just like segments mode to simplify
// this test case.
if (use_sequence_mode_)
SetTimestampOffset(Milliseconds(1060));
// Note that the PTS of GOP non-keyframes earlier than the keyframe doesn't
// modify the GOP start of the buffered range here. This may change if we
// decide to improve spec for SAP Type 2 GOPs that begin a coded frame group.
EXPECT_CALL(callbacks_, OnGroupStart(DemuxerStream::VIDEO, DecodeTimestamp(),
Milliseconds(1060)));
EXPECT_CALL(callbacks_,
OnParseWarning(
SourceBufferParseWarning::kKeyframeTimeGreaterThanDependant));
EXPECT_MEDIA_LOG(KeyframeTimeGreaterThanDependant("1.06", "1"));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(1070)));
EXPECT_TRUE(ProcessFrames(
"", "1060|0K 1000|10 1050|20 1010|30 1040|40 1020|50 1030|60"));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(video_.get(), "{ [1060,1070) }");
// Process just the keyframe of the next SAP Type 2 GOP in decode continuity
// with the previous one.
// Note that this second GOP is buffered continuous with the first because
// there is no decode discontinuity detected. This results in inclusion of
// the significant PTS jump forward in the same continuous range.
EXPECT_CALL(
callbacks_,
OnGroupStart(DemuxerStream::VIDEO,
DecodeTimestamp::FromPresentationTime(Milliseconds(60)),
Milliseconds(1070)));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(1140)));
EXPECT_TRUE(ProcessFrames("", "1130|70K"));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(video_.get(), "{ [1060,1140) }");
// Process the remainder of the second GOP.
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(1140)));
EXPECT_TRUE(
ProcessFrames("", "1070|80 1120|90 1080|100 1110|110 1090|120 1100|130"));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(video_.get(), "{ [1060,1140) }");
// [1060,1140) should demux continuously without read stall in the middle.
SeekStream(video_.get(), Milliseconds(1060));
CheckReadsThenReadStalls(
video_.get(),
"1060 1000 1050 1010 1040 1020 1030 1130 1070 1120 1080 1110 1090 1100");
// Verify that seek and read of the second GOP is correct.
SeekStream(video_.get(), Milliseconds(1130));
CheckReadsThenReadStalls(video_.get(), "1130 1070 1120 1080 1110 1090 1100");
}
TEST_P(FrameProcessorTest, ContinuousDts_NewGopEndOverlapsLastGop_1) {
// API user might craft a continuous-in-DTS-with-previous-append GOP that has
// PTS interval overlapping the previous append.
// Tests SAP-Type-1 GOPs, where newly appended GOP overlaps a nonkeyframe of
// the last GOP appended.
InSequence s;
AddTestTracks(HAS_VIDEO | OBSERVE_APPENDS_AND_GROUP_STARTS);
frame_processor_->SetSequenceMode(use_sequence_mode_);
// Make the sequence mode buffering appear just like segments mode to simplify
// this test case.
if (use_sequence_mode_)
SetTimestampOffset(Milliseconds(100));
EXPECT_CALL(callbacks_, OnGroupStart(DemuxerStream::VIDEO, DecodeTimestamp(),
Milliseconds(100)));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(140)));
EXPECT_TRUE(ProcessFrames("", "100|0K 110|10 120|20 130|30"));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
EXPECT_CALL(
callbacks_,
OnGroupStart(DemuxerStream::VIDEO,
DecodeTimestamp::FromPresentationTime(Milliseconds(30)),
Milliseconds(125)));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(165)));
EXPECT_TRUE(ProcessFrames("", "125|40K 135|50 145|60 155|70"));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(video_.get(), "{ [100,165) }");
CheckReadsThenReadStalls(video_.get(), "100 110 120 125 135 145 155");
}
TEST_P(FrameProcessorTest, ContinuousDts_NewGopEndOverlapsLastGop_2) {
// API user might craft a continuous-in-DTS-with-previous-append GOP that has
// PTS interval overlapping the previous append.
// Tests SAP-Type 1 GOPs, where newly appended GOP overlaps the keyframe of
// the last GOP appended.
InSequence s;
AddTestTracks(HAS_VIDEO | OBSERVE_APPENDS_AND_GROUP_STARTS);
frame_processor_->SetSequenceMode(use_sequence_mode_);
// Make the sequence mode buffering appear just like segments mode to simplify
// this test case.
if (use_sequence_mode_)
SetTimestampOffset(Milliseconds(100));
EXPECT_CALL(callbacks_, OnGroupStart(DemuxerStream::VIDEO, DecodeTimestamp(),
Milliseconds(100)));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(140)));
EXPECT_TRUE(ProcessFrames("", "100|0K 110|10 120|20K 130|30"));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
EXPECT_CALL(
callbacks_,
OnGroupStart(DemuxerStream::VIDEO,
DecodeTimestamp::FromPresentationTime(Milliseconds(30)),
Milliseconds(115)));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
// TODO(wolenetz): Duration shouldn't be allowed to possibly increase to 140ms
// here. See https://crbug.com/763620.
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(140)));
EXPECT_TRUE(ProcessFrames("", "115|40K 125|50"));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(video_.get(), "{ [100,135) }");
CheckReadsThenReadStalls(video_.get(), "100 110 115 125");
}
TEST_P(FrameProcessorTest, ContinuousDts_NewSap2GopEndOverlapsLastGop_1) {
// API user might craft a continuous-in-DTS-with-previous-append GOP that has
// PTS interval overlapping the previous append, using SAP Type 2 GOPs.
// Tests SAP-Type 2 GOPs, where newly appended GOP overlaps nonkeyframes of
// the last GOP appended.
InSequence s;
AddTestTracks(HAS_VIDEO | OBSERVE_APPENDS_AND_GROUP_STARTS);
frame_processor_->SetSequenceMode(use_sequence_mode_);
// Make the sequence mode buffering appear just like segments mode to simplify
// this test case.
if (use_sequence_mode_)
SetTimestampOffset(Milliseconds(120));
EXPECT_CALL(callbacks_, OnGroupStart(DemuxerStream::VIDEO, DecodeTimestamp(),
Milliseconds(120)));
EXPECT_CALL(callbacks_,
OnParseWarning(
SourceBufferParseWarning::kKeyframeTimeGreaterThanDependant));
EXPECT_MEDIA_LOG(KeyframeTimeGreaterThanDependant("0.12", "0.1"));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(140)));
EXPECT_TRUE(ProcessFrames("", "120|0K 100|10 130|20 110|30"));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
// Note, we *don't* expect another OnGroupStart during the next ProcessFrames,
// since the next GOP's keyframe PTS is after the first GOP and close enough
// to be assured adjacent.
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(165)));
EXPECT_TRUE(ProcessFrames("", "145|40K 125|50 155|60 135|70"));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(video_.get(), "{ [120,165) }");
// [120,165) should demux continuously without read stall in the middle.
CheckReadsThenReadStalls(video_.get(), "120 100 130 110 145 125 155 135");
// Verify that seek and read of the second GOP is correct.
SeekStream(video_.get(), Milliseconds(145));
CheckReadsThenReadStalls(video_.get(), "145 125 155 135");
}
TEST_P(FrameProcessorTest, ContinuousDts_NewSap2GopEndOverlapsLastGop_2) {
// API user might craft a continuous-in-DTS-with-previous-append GOP that has
// PTS interval overlapping the previous append, using SAP Type 2 GOPs.
// Tests SAP-Type 2 GOPs, where newly appended GOP overlaps the keyframe of
// last GOP appended.
InSequence s;
AddTestTracks(HAS_VIDEO | OBSERVE_APPENDS_AND_GROUP_STARTS);
frame_processor_->SetSequenceMode(use_sequence_mode_);
// Make the sequence mode buffering appear just like segments mode to simplify
// this test case.
if (use_sequence_mode_)
SetTimestampOffset(Milliseconds(120));
EXPECT_CALL(callbacks_, OnGroupStart(DemuxerStream::VIDEO, DecodeTimestamp(),
Milliseconds(120)));
EXPECT_CALL(callbacks_,
OnParseWarning(
SourceBufferParseWarning::kKeyframeTimeGreaterThanDependant));
EXPECT_MEDIA_LOG(KeyframeTimeGreaterThanDependant("0.12", "0.1"));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
// There is a second GOP that is SAP-Type-2 within this first ProcessFrames,
// with PTS jumping forward far enough to trigger group start signalling and a
// flush.
EXPECT_CALL(
callbacks_,
OnGroupStart(DemuxerStream::VIDEO,
DecodeTimestamp::FromPresentationTime(Milliseconds(30)),
Milliseconds(140)));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(180)));
EXPECT_TRUE(ProcessFrames(
"", "120|0K 100|10 130|20 110|30 160|40K 140|50 170|60 150|70"));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
EXPECT_CALL(
callbacks_,
OnGroupStart(DemuxerStream::VIDEO,
DecodeTimestamp::FromPresentationTime(Milliseconds(70)),
Milliseconds(155)));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
// TODO(wolenetz): Duration shouldn't be allowed to possibly increase to 180ms
// here. See https://crbug.com/763620.
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(180)));
EXPECT_TRUE(ProcessFrames("", "155|80K 145|90"));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(video_.get(), "{ [120,165) }");
// [120,165) should demux continuously without read stall in the middle.
CheckReadsThenReadStalls(video_.get(), "120 100 130 110 155 145");
// Verify seek and read of the second GOP is correct.
SeekStream(video_.get(), Milliseconds(155));
CheckReadsThenReadStalls(video_.get(), "155 145");
}
TEST_P(FrameProcessorTest,
ContinuousDts_NewSap2GopEndOverlapsLastGop_3_GopByGop) {
// API user might craft a continuous-in-DTS-with-previous-append GOP that has
// PTS interval overlapping the previous append, using SAP Type 2 GOPs. Tests
// SAP-Type 2 GOPs, where newly appended GOP overlaps enough nonkeyframes of
// the previous GOP such that dropped decode dependencies might cause problems
// if the first nonkeyframe with PTS prior to the GOP's keyframe PTS is
// flushed at the same time as its keyframe, but the second GOP's keyframe PTS
// is close enough to the end of the first GOP's presentation interval to not
// signal a new coded frame group start.
InSequence s;
AddTestTracks(HAS_VIDEO | OBSERVE_APPENDS_AND_GROUP_STARTS);
frame_processor_->SetSequenceMode(use_sequence_mode_);
// Make the sequence mode buffering appear just like segments mode to simplify
// this test case.
if (use_sequence_mode_)
SetTimestampOffset(Milliseconds(500));
EXPECT_CALL(callbacks_, OnGroupStart(DemuxerStream::VIDEO, DecodeTimestamp(),
Milliseconds(500)));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(530)));
EXPECT_TRUE(ProcessFrames("", "500|0K 520|10 510|20"));
CheckExpectedRangesByTimestamp(video_.get(), "{ [500,530) }");
EXPECT_CALL(callbacks_,
OnParseWarning(
SourceBufferParseWarning::kKeyframeTimeGreaterThanDependant));
EXPECT_MEDIA_LOG(KeyframeTimeGreaterThanDependant("0.54", "0.52"));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(550)));
EXPECT_TRUE(ProcessFrames("", "540|30K 520|40 530|50"));
CheckExpectedRangesByTimestamp(video_.get(), "{ [500,550) }");
SeekStream(video_.get(), Milliseconds(500));
CheckReadsThenReadStalls(video_.get(), "500 520 510 540 520 530");
}
TEST_P(FrameProcessorTest,
ContinuousDts_NewSap2GopEndOverlapsLastGop_3_FrameByFrame) {
// Tests that the buffered range results match the previous GopByGop test if
// each frame of the second GOP is explicitly appended by the app
// one-at-a-time.
InSequence s;
AddTestTracks(HAS_VIDEO | OBSERVE_APPENDS_AND_GROUP_STARTS);
frame_processor_->SetSequenceMode(use_sequence_mode_);
// Make the sequence mode buffering appear just like segments mode to simplify
// this test case.
if (use_sequence_mode_)
SetTimestampOffset(Milliseconds(500));
EXPECT_CALL(callbacks_, OnGroupStart(DemuxerStream::VIDEO, DecodeTimestamp(),
Milliseconds(500)));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(530)));
EXPECT_TRUE(ProcessFrames("", "500|0K 520|10 510|20"));
CheckExpectedRangesByTimestamp(video_.get(), "{ [500,530) }");
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(550)));
EXPECT_TRUE(ProcessFrames("", "540|30K"));
EXPECT_CALL(callbacks_,
OnParseWarning(
SourceBufferParseWarning::kKeyframeTimeGreaterThanDependant));
EXPECT_MEDIA_LOG(KeyframeTimeGreaterThanDependant("0.54", "0.52"));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(550)));
EXPECT_TRUE(ProcessFrames("", "520|40"));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(550)));
EXPECT_TRUE(ProcessFrames("", "530|50"));
CheckExpectedRangesByTimestamp(video_.get(), "{ [500,550) }");
SeekStream(video_.get(), Milliseconds(500));
CheckReadsThenReadStalls(video_.get(), "500 520 510 540 520 530");
}
TEST_P(FrameProcessorTest,
ContinuousDts_NewSap2GopEndOverlapsLastGop_4_GopByGop) {
// API user might craft a continuous-in-DTS-with-previous-append GOP that has
// PTS interval overlapping the previous append, using SAP Type 2 GOPs. Tests
// SAP-Type 2 GOPs, where newly appended GOP overlaps enough nonkeyframes of
// the previous GOP such that dropped decode dependencies might cause problems
// if the first nonkeyframe with PTS prior to the GOP's keyframe PTS is
// flushed at the same time as its keyframe.
InSequence s;
AddTestTracks(HAS_VIDEO | OBSERVE_APPENDS_AND_GROUP_STARTS);
frame_processor_->SetSequenceMode(use_sequence_mode_);
// Make the sequence mode buffering appear just like segments mode to simplify
// this test case.
if (use_sequence_mode_)
SetTimestampOffset(Milliseconds(500));
EXPECT_CALL(callbacks_, OnGroupStart(DemuxerStream::VIDEO, DecodeTimestamp(),
Milliseconds(500)));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(530)));
EXPECT_TRUE(ProcessFrames("", "500|0K 520|10 510|20"));
CheckExpectedRangesByTimestamp(video_.get(), "{ [500,530) }");
EXPECT_CALL(
callbacks_,
OnGroupStart(DemuxerStream::VIDEO,
DecodeTimestamp::FromPresentationTime(Milliseconds(20)),
Milliseconds(530)));
EXPECT_CALL(callbacks_,
OnParseWarning(
SourceBufferParseWarning::kKeyframeTimeGreaterThanDependant));
EXPECT_MEDIA_LOG(KeyframeTimeGreaterThanDependant("0.55", "0.52"));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(560)));
EXPECT_TRUE(ProcessFrames("", "550|30K 520|40 530|50 540|60"));
CheckExpectedRangesByTimestamp(video_.get(), "{ [500,560) }");
SeekStream(video_.get(), Milliseconds(500));
CheckReadsThenReadStalls(video_.get(), "500 520 510 550 520 530 540");
}
TEST_P(FrameProcessorTest,
ContinuousDts_NewSap2GopEndOverlapsLastGop_4_FrameByFrame) {
// Tests that the buffered range results match the previous GopByGop test if
// each frame of the second GOP is explicitly appended by the app
// one-at-a-time.
InSequence s;
AddTestTracks(HAS_VIDEO | OBSERVE_APPENDS_AND_GROUP_STARTS);
frame_processor_->SetSequenceMode(use_sequence_mode_);
// Make the sequence mode buffering appear just like segments mode to simplify
// this test case.
if (use_sequence_mode_)
SetTimestampOffset(Milliseconds(500));
EXPECT_CALL(callbacks_, OnGroupStart(DemuxerStream::VIDEO, DecodeTimestamp(),
Milliseconds(500)));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(530)));
EXPECT_TRUE(ProcessFrames("", "500|0K 520|10 510|20"));
CheckExpectedRangesByTimestamp(video_.get(), "{ [500,530) }");
EXPECT_CALL(
callbacks_,
OnGroupStart(DemuxerStream::VIDEO,
DecodeTimestamp::FromPresentationTime(Milliseconds(20)),
Milliseconds(530)));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(560)));
EXPECT_TRUE(ProcessFrames("", "550|30K"));
EXPECT_CALL(callbacks_,
OnParseWarning(
SourceBufferParseWarning::kKeyframeTimeGreaterThanDependant));
EXPECT_MEDIA_LOG(KeyframeTimeGreaterThanDependant("0.55", "0.52"));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(560)));
EXPECT_TRUE(ProcessFrames("", "520|40"));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(560)));
EXPECT_TRUE(ProcessFrames("", "530|50"));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(560)));
EXPECT_TRUE(ProcessFrames("", "540|60"));
CheckExpectedRangesByTimestamp(video_.get(), "{ [500,560) }");
SeekStream(video_.get(), Milliseconds(500));
CheckReadsThenReadStalls(video_.get(), "500 520 510 550 520 530 540");
}
TEST_P(FrameProcessorTest, ContinuousDts_GopKeyframePtsOrder_2_1_3) {
// White-box test, demonstrating expected behavior for a specially crafted
// sequence that "should" be unusual, but gracefully handled:
// SAP-Type 1 GOPs for simplicity of test. First appended GOP is highest in
// timeline. Second appended GOP is earliest in timeline. Third appended GOP
// is continuous in time with highest end time of first appended GOP. The
// result should be a single continuous range containing just the second and
// third appended GOPs (since the first-appended GOP was overlap-removed from
// the timeline due to being in the gap between the second and third appended
// GOPs). Note that MseTrackBuffer::ResetHighestPresentationTimestamp() done
// at the beginning of the second appended GOP is the key to gracefully
// handling the third appended GOP.
InSequence s;
AddTestTracks(HAS_VIDEO | OBSERVE_APPENDS_AND_GROUP_STARTS);
frame_processor_->SetSequenceMode(use_sequence_mode_);
// Make the sequence mode buffering appear just like segments mode to simplify
// this test case.
if (use_sequence_mode_)
SetTimestampOffset(Milliseconds(200));
EXPECT_CALL(callbacks_, OnGroupStart(DemuxerStream::VIDEO, DecodeTimestamp(),
Milliseconds(200)));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(240)));
EXPECT_TRUE(ProcessFrames("", "200|0K 210|10 220|20 230|30"));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(video_.get(), "{ [200,240) }");
EXPECT_CALL(
callbacks_,
OnGroupStart(DemuxerStream::VIDEO,
DecodeTimestamp::FromPresentationTime(Milliseconds(30)),
Milliseconds(100)));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
// TODO(wolenetz): Duration shouldn't be allowed to possibly increase to 240ms
// here. See https://crbug.com/763620.
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(240)));
EXPECT_TRUE(ProcessFrames("", "100|40K 110|50 120|60 130|70"));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(video_.get(), "{ [100,140) [200,240) }");
EXPECT_CALL(
callbacks_,
OnGroupStart(DemuxerStream::VIDEO,
DecodeTimestamp::FromPresentationTime(Milliseconds(70)),
Milliseconds(140)));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(260)));
EXPECT_TRUE(ProcessFrames("", "240|80K 250|90"));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(video_.get(), "{ [100,260) }");
SeekStream(video_.get(), Milliseconds(100));
CheckReadsThenReadStalls(video_.get(), "100 110 120 130 240 250");
}
TEST_P(FrameProcessorTest, ContinuousPts_DiscontinuousDts_AcrossGops) {
// GOPs which overlap in DTS, but are continuous in PTS should be buffered
// correctly. In particular, monotonic increase of DTS in continuous-in-PTS
// append sequences is not required across GOPs (just within GOPs).
InSequence s;
AddTestTracks(HAS_VIDEO | OBSERVE_APPENDS_AND_GROUP_STARTS);
frame_processor_->SetSequenceMode(use_sequence_mode_);
// Make the sequence mode buffering appear just like segments mode to simplify
// this test case.
if (use_sequence_mode_)
SetTimestampOffset(Milliseconds(200));
EXPECT_CALL(
callbacks_,
OnGroupStart(DemuxerStream::VIDEO,
DecodeTimestamp::FromPresentationTime(Milliseconds(200)),
Milliseconds(200)));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(240)));
EXPECT_TRUE(ProcessFrames("", "200K 210 220 230"));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(video_.get(), "{ [200,240) }");
EXPECT_CALL(
callbacks_,
OnGroupStart(DemuxerStream::VIDEO,
DecodeTimestamp::FromPresentationTime(Milliseconds(225)),
Milliseconds(240)));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::VIDEO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(280)));
// Append a second GOP whose first DTS is below the last DTS of the first GOP,
// but whose PTS interval is continuous with the end of the first GOP.
EXPECT_TRUE(ProcessFrames("", "240|225K 250|235 260|245 270|255"));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
SeekStream(video_.get(), Milliseconds(200));
CheckExpectedRangesByTimestamp(video_.get(), "{ [200,280) }");
CheckReadsThenReadStalls(video_.get(), "200 210 220 230 240 250 260 270");
}
TEST_P(FrameProcessorTest, OnlyKeyframes_ContinuousDts_ContinousPts_1) {
// Verifies that precisely one group start and one stream append occurs for a
// single continuous set of frames.
InSequence s;
AddTestTracks(HAS_AUDIO | OBSERVE_APPENDS_AND_GROUP_STARTS);
if (use_sequence_mode_)
frame_processor_->SetSequenceMode(true);
// Default test frame duration is 10 milliseconds.
EXPECT_CALL(callbacks_, OnGroupStart(DemuxerStream::AUDIO, DecodeTimestamp(),
base::TimeDelta()));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::AUDIO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(40)));
EXPECT_TRUE(ProcessFrames("0K 10K 20K 30K", ""));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,40) }");
CheckReadsThenReadStalls(audio_.get(), "0 10 20 30");
}
TEST_P(FrameProcessorTest, OnlyKeyframes_ContinuousDts_ContinuousPts_2) {
// Verifies that precisely one group start and one stream append occurs while
// processing a single continuous set of frames that uses fudge room to just
// barely remain adjacent.
InSequence s;
AddTestTracks(HAS_AUDIO | OBSERVE_APPENDS_AND_GROUP_STARTS);
if (use_sequence_mode_)
frame_processor_->SetSequenceMode(true);
frame_duration_ = Milliseconds(5);
EXPECT_CALL(callbacks_, OnGroupStart(DemuxerStream::AUDIO, DecodeTimestamp(),
base::TimeDelta()));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::AUDIO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(35)));
EXPECT_TRUE(ProcessFrames("0K 10K 20K 30K", ""));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,35) }");
CheckReadsThenReadStalls(audio_.get(), "0 10 20 30");
}
TEST_P(FrameProcessorTest,
OnlyKeyframes_ContinuousDts_DiscontinuousPtsJustBeyondFudgeRoom) {
// Verifies that multiple group starts and distinct appends occur
// when processing a single DTS-continuous set of frames with PTS deltas that
// just barely exceed the adjacency assumption in FrameProcessor.
InSequence s;
AddTestTracks(HAS_AUDIO | OBSERVE_APPENDS_AND_GROUP_STARTS);
if (use_sequence_mode_)
frame_processor_->SetSequenceMode(true);
frame_duration_ = base::Microseconds(4999);
EXPECT_CALL(callbacks_, OnGroupStart(DemuxerStream::AUDIO, DecodeTimestamp(),
base::TimeDelta()));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::AUDIO, _));
// Frame "10|5K" following "0K" triggers start of new group and eventual
// append.
EXPECT_CALL(callbacks_, OnGroupStart(DemuxerStream::AUDIO, DecodeTimestamp(),
frame_duration_));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::AUDIO, _));
// Frame "20|10K" following "10|5K" triggers start of new group and eventual
// append.
EXPECT_CALL(
callbacks_,
OnGroupStart(DemuxerStream::AUDIO,
DecodeTimestamp::FromPresentationTime(Milliseconds(5)),
Milliseconds(10) + frame_duration_));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::AUDIO, _));
// Frame "30|15K" following "20|10K" triggers start of new group and
// eventual append.
EXPECT_CALL(
callbacks_,
OnGroupStart(DemuxerStream::AUDIO,
DecodeTimestamp::FromPresentationTime(Milliseconds(10)),
Milliseconds(20) + frame_duration_));
EXPECT_CALL(callbacks_, OnAppend(DemuxerStream::AUDIO, _));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(base::Microseconds(34999)));
EXPECT_TRUE(ProcessFrames("0K 10|5K 20|10K 30|15K", ""));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
// Note that the result is still buffered continuous since DTS was continuous
// and PTS was monotonically increasing (such that each group start was
// signalled by FrameProcessor to be continuous with the end of the previous
// group, if any.)
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,34) }");
CheckReadsThenReadStalls(audio_.get(), "0 10 20 30");
}
TEST_P(FrameProcessorTest,
GroupEndTimestampDecreaseWithinMediaSegmentShouldWarn) {
// This parse warning requires:
// 1) a decode time discontinuity within the set of frames being processed,
// 2) the highest frame end time of any frame successfully processed
// before that discontinuity is higher than the highest frame end time of
// all frames processed after that discontinuity.
// TODO(wolenetz): Adjust this case once direction on spec is informed by
// data. See https://crbug.com/920853 and
// https://github.com/w3c/media-source/issues/203.
if (use_sequence_mode_) {
// Sequence mode modifies the presentation timestamps following a decode
// discontinuity such that this scenario should not repro with that mode.
DVLOG(1) << "Skipping segments mode variant; inapplicable to this case.";
return;
}
InSequence s;
AddTestTracks(HAS_VIDEO);
EXPECT_CALL(callbacks_,
OnParseWarning(SourceBufferParseWarning::
kGroupEndTimestampDecreaseWithinMediaSegment));
frame_duration_ = Milliseconds(10);
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(15)));
EXPECT_TRUE(ProcessFrames("", "0K 10K 5|40K"));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(video_.get(), "{ [0,15) }");
CheckReadsThenReadStalls(video_.get(), "0 5");
}
TEST_P(FrameProcessorTest, NonkeyframeAudioBuffering_BasicOperation) {
// With the support for audio nonkeyframe buffering enabled, buffer a couple
// continuous groups of audio key and nonkey frames.
// Note, see the AudioNonKeyframeChangedToKeyframe test that tests where
// nonkeyframe audio buffering is not supported, and instead takes a
// workaround that forces all audio to be keyframe.
InSequence s;
AddTestTracks(HAS_AUDIO | USE_AUDIO_CODEC_SUPPORTING_NONKEYFRAMES);
if (use_sequence_mode_)
frame_processor_->SetSequenceMode(true);
// Default test frame duration is 10 milliseconds.
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(80)));
EXPECT_TRUE(ProcessFrames("0K 10 20 30 40K 50 60 70", ""));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,80) }");
CheckReadsAndKeyframenessThenReadStalls(audio_.get(),
"0K 10N 20N 30N 40K 50N 60N 70N");
}
TEST_P(FrameProcessorTest, NonkeyframeAudioBuffering_BasicOverlaps) {
// With the support for audio nonkeyframe buffering enabled, buffer a few
// groups of audio key and nonkey frames which overlap each other.
// For sequence mode versions, timestampOffset is adjusted to make it act like
// segments mode.
InSequence s;
AddTestTracks(HAS_AUDIO | USE_AUDIO_CODEC_SUPPORTING_NONKEYFRAMES);
if (use_sequence_mode_) {
frame_processor_->SetSequenceMode(true);
SetTimestampOffset(Milliseconds(10));
}
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(60)));
EXPECT_TRUE(ProcessFrames("10K 20 30 40 50", ""));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [10,60) }");
// End-overlap the last nonkeyframe appended with a keyframe.
if (use_sequence_mode_)
SetTimestampOffset(Milliseconds(50));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(70)));
EXPECT_TRUE(ProcessFrames("50K 60", ""));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [10,70) }");
// Front-overlap the original group of frames.
if (use_sequence_mode_)
SetTimestampOffset(Milliseconds(0));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(20)));
EXPECT_TRUE(ProcessFrames("0K 10", ""));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,70) }");
SeekStream(audio_.get(), Milliseconds(0));
CheckReadsAndKeyframenessThenReadStalls(audio_.get(), "0K 10N 50K 60N");
}
TEST_P(FrameProcessorTest,
NonkeyframeAudioBuffering_InitialNonkeyframesNotBuffered) {
// With the support for audio nonkeyframe buffering enabled, try to buffer
// some frames beginning with a nonkeyframe and observe initial nonkeyframe(s)
// are not buffered.
InSequence s;
AddTestTracks(HAS_AUDIO | USE_AUDIO_CODEC_SUPPORTING_NONKEYFRAMES);
if (use_sequence_mode_)
frame_processor_->SetSequenceMode(true);
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(60)));
EXPECT_TRUE(ProcessFrames("0 10 20K 30 40 50", ""));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [20,60) }");
CheckReadsAndKeyframenessThenReadStalls(audio_.get(), "20K 30N 40N 50N");
}
TEST_P(FrameProcessorTest,
NonkeyframeAudioBuffering_InvalidDecreasingNonkeyframePts) {
// With the support for audio nonkeyframe buffering enabled, try to buffer an
// invalid sequence of nonkeyframes: decreasing presentation timestamps are
// not supported for audio nonkeyframes. For sequence mode versions,
// timestampOffset is adjusted to make it act like segments mode.
InSequence s;
AddTestTracks(HAS_AUDIO | USE_AUDIO_CODEC_SUPPORTING_NONKEYFRAMES);
if (use_sequence_mode_) {
frame_processor_->SetSequenceMode(true);
SetTimestampOffset(Milliseconds(100));
}
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(110)));
EXPECT_TRUE(ProcessFrames("100K", ""));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [100,110) }");
// Processing an audio nonkeyframe with lower PTS than the previous frame
// should fail.
EXPECT_MEDIA_LOG(AudioNonKeyframeOutOfOrder());
EXPECT_FALSE(ProcessFrames("90|110", ""));
}
TEST_P(FrameProcessorTest,
NonkeyframeAudioBuffering_ValidDecreasingKeyframePts) {
// With the support for audio nonkeyframe buffering enabled, try to buffer a
// valid sequence of key and nonkeyframes: decreasing presentation timestamps
// are supported for keyframes. For sequence mode versions, timestampOffset is
// adjusted to make it act like segments mode.
InSequence s;
AddTestTracks(HAS_AUDIO | USE_AUDIO_CODEC_SUPPORTING_NONKEYFRAMES);
if (use_sequence_mode_) {
frame_processor_->SetSequenceMode(true);
SetTimestampOffset(Milliseconds(100));
}
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(130)));
EXPECT_TRUE(ProcessFrames("100K 110 120", ""));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [100,130) }");
// Processing an audio keyframe with lower PTS than the previous frame
// should succeed, since it is a keyframe. Here, we use continuous DTS to
// ensure we precisely target the nonkeyframe monotonicity check when a
// keyframe is not required by the track buffer currently (and to make
// sequence mode versions act like segments mode without further manual
// adjustment of timestamp offset.) The original nonkeyframe at PTS 110 should
// be overlap-removed, and the one at PTS 120 should have be removed as a
// result of depending on that removed PTS 110 nonkeyframe.
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(130)));
EXPECT_TRUE(ProcessFrames("110|130K", ""));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [100,120) }");
CheckReadsAndKeyframenessThenReadStalls(audio_.get(), "100K 110K");
}
TEST_P(FrameProcessorTest,
NonkeyframeAudioBuffering_ValidSameNonKeyframePts_1) {
// With the support for audio nonkeyframe buffering enabled, try to buffer a
// valid sequence of a keyframe and a nonkeyframe: non-increasing presentation
// timestamps are supported for audio nonkeyframes, so long as they don't
// decrease. For sequence mode versions, timestampOffset is adjusted to make
// it act like segments mode.
InSequence s;
AddTestTracks(HAS_AUDIO | USE_AUDIO_CODEC_SUPPORTING_NONKEYFRAMES);
if (use_sequence_mode_) {
frame_processor_->SetSequenceMode(true);
SetTimestampOffset(Milliseconds(100));
}
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(110)));
EXPECT_TRUE(ProcessFrames("100K", ""));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [100,110) }");
// Processing an audio nonkeyframe with same PTS as the previous frame should
// succeed, though there is presentation interval overlap causing removal of
// the previous frame (in this case, a keyframe), and hence the new dependent
// nonkeyframe is not buffered.
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(110)));
EXPECT_TRUE(ProcessFrames("100|110", ""));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ }");
CheckReadsAndKeyframenessThenReadStalls(audio_.get(), "");
}
TEST_P(FrameProcessorTest,
NonkeyframeAudioBuffering_ValidSameNonKeyframePts_2) {
// With the support for audio nonkeyframe buffering enabled, try to buffer a
// valid sequence of nonkeyframes: non-increasing presentation timestamps are
// supported for audio nonkeyframes, so long as they don't decrease. For
// sequence mode versions, timestampOffset is adjusted to make it act like
// segments mode.
InSequence s;
AddTestTracks(HAS_AUDIO | USE_AUDIO_CODEC_SUPPORTING_NONKEYFRAMES);
if (use_sequence_mode_) {
frame_processor_->SetSequenceMode(true);
SetTimestampOffset(Milliseconds(100));
}
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(120)));
EXPECT_TRUE(ProcessFrames("100K 110", ""));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [100,120) }");
// Processing an audio nonkeyframe with same PTS as the previous frame should
// succeed, though there is presentation interval overlap causing removal of
// the previous nonkeyframe, and hence the new dependent nonkeyframe is not
// buffered.
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(120)));
EXPECT_TRUE(ProcessFrames("110|120", ""));
EXPECT_EQ(Milliseconds(0), timestamp_offset_);
CheckExpectedRangesByTimestamp(audio_.get(), "{ [100,110) }");
CheckReadsAndKeyframenessThenReadStalls(audio_.get(), "100K");
}
TEST_P(FrameProcessorTest,
NonkeyframeAudioBuffering_AppendWindowFilterDroppedPrerollKeyframe) {
// For simplicity currently, if the preroll (keyframe) buffer was entirely
// prior to the append window and dropped, an approximately continuous
// keyframe is still required to use that dropped frame as preroll (for
// simplicity). This may change in future if append window trimming of
// nonkeyframes with a fully excluded preroll keyframe is commonly needed to
// be supported.
InSequence s;
AddTestTracks(HAS_AUDIO | USE_AUDIO_CODEC_SUPPORTING_NONKEYFRAMES);
if (use_sequence_mode_)
frame_processor_->SetSequenceMode(true);
SetTimestampOffset(Milliseconds(-10));
EXPECT_MEDIA_LOG(DroppedFrame("audio", -10000));
if (use_sequence_mode_)
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(-10)));
else
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(0)));
EXPECT_TRUE(ProcessFrames("0K", ""));
// This nonkeyframe is dropped for simplicity since it depends on a preroll
// keyframe which was entirely outside the append window.
if (use_sequence_mode_)
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(-10)));
else
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(0)));
EXPECT_TRUE(ProcessFrames("10", ""));
// Only the following keyframe should buffer successfully, with no preroll.
EXPECT_MEDIA_LOG(DroppedAppendWindowUnusedPreroll(-10000, -10000, 10000));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(20)));
EXPECT_TRUE(ProcessFrames("20K", ""));
CheckExpectedRangesByTimestamp(audio_.get(), "{ [10,20) }");
CheckReadsAndKeyframenessThenReadStalls(audio_.get(), "10:20K");
}
TEST_P(FrameProcessorTest,
NonkeyframeAudioBuffering_AppendWindowFilter_TrimFront) {
InSequence s;
AddTestTracks(HAS_AUDIO | USE_AUDIO_CODEC_SUPPORTING_NONKEYFRAMES);
if (use_sequence_mode_)
frame_processor_->SetSequenceMode(true);
SetTimestampOffset(Milliseconds(-4));
EXPECT_MEDIA_LOG(TruncatedFrame(-4000, 6000, "start", 0));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(26)));
EXPECT_TRUE(ProcessFrames("0K 10 20", ""));
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,26) }");
CheckReadsAndKeyframenessThenReadStalls(audio_.get(), "0K 6:10N 16:20N");
}
TEST_P(FrameProcessorTest,
NonkeyframeAudioBuffering_AppendWindowFilter_TrimEnd) {
InSequence s;
AddTestTracks(HAS_AUDIO | USE_AUDIO_CODEC_SUPPORTING_NONKEYFRAMES);
if (use_sequence_mode_)
frame_processor_->SetSequenceMode(true);
append_window_end_ = Milliseconds(26);
EXPECT_MEDIA_LOG(TruncatedFrame(20000, 30000, "end", 26000));
EXPECT_MEDIA_LOG(DroppedFrameCheckAppendWindow("audio", 0, 26000));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(26)));
EXPECT_TRUE(ProcessFrames("0K 10 20 30", ""));
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,26) }");
CheckReadsAndKeyframenessThenReadStalls(audio_.get(), "0K 10N 20N");
}
TEST_P(FrameProcessorTest, NonkeyframeAudioBuffering_TrimSpliceOverlap) {
// White-box test which focuses on the behavior of underlying
// SourceBufferStream::TrimSpliceOverlap() for frame sequences involving
// nonkeyframes appended by the FrameProcessor. That method detects and
// performs splice trimming on every audio frame following either a
// discontinuity or the beginning of ProcessFrames(), and also on audio frames
// with PTS not directly continuous with the highest frame end PTS already
// processed. We vary |frame_duration_| in this test to avoid confusing
// int:decimal pairs in the eventual CheckReads* call.
InSequence s;
AddTestTracks(HAS_AUDIO | USE_AUDIO_CODEC_SUPPORTING_NONKEYFRAMES);
if (use_sequence_mode_)
frame_processor_->SetSequenceMode(true);
frame_duration_ = base::Microseconds(9750);
EXPECT_CALL(callbacks_, PossibleDurationIncrease(frame_duration_));
EXPECT_TRUE(ProcessFrames("0K", ""));
// As with all-keyframe streams, a slight jump forward should not trigger any
// splicing logic, though accumulations of these may result in loss of A/V
// sync.
frame_duration_ = base::Microseconds(10250);
EXPECT_CALL(callbacks_,
PossibleDurationIncrease(Milliseconds(10) + frame_duration_));
EXPECT_TRUE(ProcessFrames("10", ""));
// As with all-keyframe streams, a slightly end-overlapping nonkeyframe should
// not trigger any splicing logic, though accumulations of these may result in
// loss of A/V sync. The difference here is there isn't even any emission of a
// "too little splice overlap" media log, since the new frame is a
// nonkeyframe.
frame_duration_ = Milliseconds(10);
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(30)));
EXPECT_TRUE(ProcessFrames("20", ""));
// A heavily overlapping nonkeyframe should not trigger any splicing logic,
// so long as it isn't completely discontinuous. This is unlike all-keyframe
// audio streams, where such a heavy overlap would end-trim the overlapped
// frame. Accumulations of these could rapidly lead to loss of A/V sync.
// Nonkeyframe timestamp & duration metadata sequences need to be correctly
// muxed to avoid this.
frame_duration_ = base::Microseconds(10250);
EXPECT_CALL(callbacks_,
PossibleDurationIncrease(Milliseconds(22) + frame_duration_));
EXPECT_TRUE(ProcessFrames("22", ""));
// A keyframe that end-overlaps a nonkeyframe will trigger splicing logic.
// Here, we test a "too little splice overlap" case.
frame_duration_ = Milliseconds(10);
EXPECT_MEDIA_LOG(SkippingSpliceTooLittleOverlap(32000, 250));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(42)));
EXPECT_TRUE(ProcessFrames("32K", ""));
// And a keyframe that significantly end-overlaps a nonkeyframe will trigger
// splicing logic that can perform end-trimming of the overlapped frame.
// First, we buffer another nonkeyframe.
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(52)));
EXPECT_TRUE(ProcessFrames("42", ""));
// Verify correct splice behavior on significant overlap of the nonkeyframe by
// a new keyframe.
EXPECT_MEDIA_LOG(TrimmedSpliceOverlap(45000, 42000, 7000));
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(55)));
EXPECT_TRUE(ProcessFrames("45K", ""));
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,55) }");
CheckReadsAndKeyframenessThenReadStalls(audio_.get(),
"0K 10N 20N 22N 32K 42N 45K");
}
TEST_P(FrameProcessorTest, FrameDuration_kNoTimestamp_Fails) {
InSequence s;
AddTestTracks(HAS_AUDIO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
frame_duration_ = kNoTimestamp;
EXPECT_MEDIA_LOG(FrameDurationUnknown("audio", 1000));
EXPECT_FALSE(ProcessFrames("1K", ""));
}
TEST_P(FrameProcessorTest,
Pts_BeforeTimestampOffsetApplied_kNoTimestamp_Fails) {
InSequence s;
AddTestTracks(HAS_AUDIO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
EXPECT_MEDIA_LOG(PtsUnknown("audio"));
EXPECT_FALSE(ProcessFrames("MinK", ""));
}
TEST_P(FrameProcessorTest,
Pts_BeforeTimestampOffsetApplied_kInfiniteDuration_Fails) {
InSequence s;
AddTestTracks(HAS_AUDIO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
EXPECT_MEDIA_LOG(FrameTimeOutOfRange("Before adjusting by timestampOffset",
"PTS", "audio"));
EXPECT_FALSE(ProcessFrames("MaxK", ""));
}
TEST_P(FrameProcessorTest,
Dts_BeforeTimestampOffsetApplied_kNoDecodeTimestamp_UsesPtsIfValid) {
InSequence s;
AddTestTracks(HAS_AUDIO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
// When PTS is valid, but DTS is kNoDecodeTimestamp, then
// StreamParserBuffer::GetDecodeTimestamp() just returns the frame's PTS.
EXPECT_CALL(callbacks_, PossibleDurationIncrease(Milliseconds(10)));
EXPECT_TRUE(ProcessFrames("0|MinK", ""));
CheckExpectedRangesByTimestamp(audio_.get(), "{ [0,10) }");
CheckReadsAndKeyframenessThenReadStalls(audio_.get(), "0K");
}
TEST_P(FrameProcessorTest,
Dts_BeforeTimestampOffsetApplied_kMaxDecodeTimestamp_Fails) {
InSequence s;
AddTestTracks(HAS_AUDIO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
EXPECT_MEDIA_LOG(FrameTimeOutOfRange("Before adjusting by timestampOffset",
"DTS", "audio"));
EXPECT_FALSE(ProcessFrames("0|MaxK", ""));
}
TEST_P(FrameProcessorTest, After_Sequence_OffsetUpdate_kNoTimestamp_Fails) {
if (!use_sequence_mode_) {
DVLOG(1) << "Skipping segments mode variant; inapplicable to this case.";
return;
}
InSequence s;
AddTestTracks(HAS_AUDIO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
// (-Infinity + 5)ms minus 10ms saturates to (-Infinity)ms.
SetTimestampOffset(kNoTimestamp + Milliseconds(5));
EXPECT_MEDIA_LOG(SequenceOffsetUpdateOutOfRange());
EXPECT_FALSE(ProcessFrames("10K", ""));
}
TEST_P(FrameProcessorTest,
After_Sequence_OffsetUpdate_kInfiniteDuration_Fails) {
if (!use_sequence_mode_) {
DVLOG(1) << "Skipping segments mode variant; inapplicable to this case.";
return;
}
InSequence s;
AddTestTracks(HAS_AUDIO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
// (+Infinity - 5)ms minus -10ms saturates to (+Infinity)ms.
SetTimestampOffset(kInfiniteDuration - Milliseconds(5));
EXPECT_MEDIA_LOG(SequenceOffsetUpdateOutOfRange());
EXPECT_FALSE(ProcessFrames("-10K", ""));
}
TEST_P(FrameProcessorTest,
Before_Sequence_OffsetUpdate_kInfiniteDuration_Fails) {
if (!use_sequence_mode_) {
DVLOG(1) << "Skipping segments mode variant; inapplicable to this case.";
return;
}
InSequence s;
AddTestTracks(HAS_AUDIO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
// Effectively sets group start timestamp to +Infinity.
SetTimestampOffset(kInfiniteDuration);
EXPECT_MEDIA_LOG(
SequenceOffsetUpdatePreventedByOutOfRangeGroupStartTimestamp());
// That infinite value fails precondition of finite value for group start
// timestamp when about to update timestampOffset based upon it.
EXPECT_FALSE(ProcessFrames("0K", ""));
}
TEST_P(FrameProcessorTest, Segments_InfiniteTimestampOffset_Fails) {
if (use_sequence_mode_) {
DVLOG(1) << "Skipping sequence mode variant; inapplicable to this case.";
return;
}
InSequence s;
AddTestTracks(HAS_AUDIO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
SetTimestampOffset(kInfiniteDuration);
EXPECT_MEDIA_LOG(OffsetOutOfRange());
EXPECT_FALSE(ProcessFrames("0K", ""));
}
TEST_P(FrameProcessorTest, Pts_AfterTimestampOffsetApplied_kNoTimestamp_Fails) {
InSequence s;
AddTestTracks(HAS_VIDEO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
// Note, SetTimestampOffset(kNoTimestamp) hits DCHECK. This test instead
// checks that the result of offset application to PTS gives parse error if
// the result is <= kNoTimestamp. Getting such a result requires different
// test logic for segments vs sequence append modes.
if (use_sequence_mode_) {
// Use an extremely out-of-order DTS/PTS GOP to get the resulting
// timestampOffset needed for application to a nonkeyframe PTS (continuous
// in DTS time with its GOP's keyframe), resulting with kNoTimestamp PTS.
// First, calculate (-kNoTimestamp - 10ms), truncated down to nearest
// millisecond, for use as keyframe PTS and DTS.
frame_duration_ = Milliseconds(1);
base::TimeDelta ts =
Milliseconds(((kNoTimestamp + Milliseconds(10)) * -1).InMilliseconds());
std::string ts_str = base::NumberToString(ts.InMilliseconds());
// Append the keyframe and expect success for this step.
EXPECT_CALL(callbacks_, PossibleDurationIncrease(frame_duration_));
EXPECT_TRUE(ProcessFrames("", ts_str + "|" + ts_str + "K"));
EXPECT_EQ(timestamp_offset_.InMicroseconds(), (-1 * ts).InMicroseconds());
// A nonkeyframe with the same DTS as previous frame does not cause any
// discontinuity. Append such a frame, with PTS before offset applied that
// saturates to kNoTimestamp when the offset is applied.
EXPECT_MEDIA_LOG(FrameTimeOutOfRange("After adjusting by timestampOffset",
"PTS", "video"));
EXPECT_FALSE(ProcessFrames("", "-20|" + ts_str));
} else {
// Set the offset to be just above kNoTimestamp, and append a frame with a
// PTS that is negative by at least that small amount. The result should
// saturate to kNoTimestamp for PTS.
SetTimestampOffset(kNoTimestamp + Milliseconds(1));
EXPECT_MEDIA_LOG(FrameTimeOutOfRange("After adjusting by timestampOffset",
"PTS", "video"));
EXPECT_FALSE(ProcessFrames("", "-2K"));
}
}
TEST_P(FrameProcessorTest,
Pts_AfterTimestampOffsetApplied_kInfiniteDuration_Fails) {
InSequence s;
AddTestTracks(HAS_VIDEO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
// Use a video GOP with a nonkeyframe PTS that jumps forward far enough to
// saturate to kInfiniteDuration after timestampOffset is applied. Take care
// to avoid saturating the (earlier) keyframe's frame_end_timestamp to
// kInfiniteDuration, avoiding a different parse error case.
// First, calculate (kInfiniteDuration - 2ms), truncated down to nearest
// millisecond for use as keyframe PTS (after timestamp offset application).
// It's also used for start of DTS sequence.
frame_duration_ = Milliseconds(1);
base::TimeDelta ts =
Milliseconds((kInfiniteDuration - Milliseconds(2)).InMilliseconds());
// Append the keyframe and expect success for this step.
SetTimestampOffset(ts);
EXPECT_CALL(callbacks_, PossibleDurationIncrease(ts + frame_duration_));
EXPECT_TRUE(ProcessFrames("", "0K"));
// Sequence mode might adjust the offset. This test's logic should ensure the
// offset is the same as in segments mode at this point.
EXPECT_EQ(timestamp_offset_.InMicroseconds(), ts.InMicroseconds());
// A nonkeyframe with same DTS as previous frame does not cause any
// discontinuity. Append such a frame, with PTS jumped 3ms forwards such that
// it saturates to kInfiniteDuration when offset is applied.
EXPECT_MEDIA_LOG(FrameTimeOutOfRange("After adjusting by timestampOffset",
"PTS", "video"));
EXPECT_FALSE(ProcessFrames("", "3|0"));
}
TEST_P(FrameProcessorTest,
Dts_AfterTimestampOffsetApplied_kNoDecodeTimestamp_Fails) {
InSequence s;
AddTestTracks(HAS_AUDIO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
SetTimestampOffset(kNoTimestamp + Milliseconds(5));
EXPECT_MEDIA_LOG(FrameTimeOutOfRange("After adjusting by timestampOffset",
"DTS", "audio"));
EXPECT_FALSE(ProcessFrames("0|-10K", ""));
}
TEST_P(FrameProcessorTest,
Dts_AfterTimestampOffsetApplied_kMaxDecodeTimestamp_Fails) {
InSequence s;
AddTestTracks(HAS_AUDIO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
SetTimestampOffset(kInfiniteDuration - Milliseconds(5));
EXPECT_MEDIA_LOG(FrameTimeOutOfRange("After adjusting by timestampOffset",
"DTS", "audio"));
EXPECT_FALSE(ProcessFrames("0|10K", ""));
}
TEST_P(FrameProcessorTest, FrameEndTimestamp_kInfiniteDuration_Fails) {
InSequence s;
AddTestTracks(HAS_AUDIO);
frame_processor_->SetSequenceMode(use_sequence_mode_);
frame_duration_ = Milliseconds(10);
SetTimestampOffset(kInfiniteDuration - Milliseconds(5));
EXPECT_MEDIA_LOG(FrameEndTimestampOutOfRange("audio"));
EXPECT_FALSE(ProcessFrames("0|0K", ""));
}
INSTANTIATE_TEST_SUITE_P(SequenceMode, FrameProcessorTest, Values(true));
INSTANTIATE_TEST_SUITE_P(SegmentsMode, FrameProcessorTest, Values(false));
} // namespace media